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Abstract
Increasing evidence suggests that regular consumption of coffee, tea and dark chocolate (cacao) can promote brain health 
and may reduce the risk of age-related neurodegenerative disorders. However, the complex array of phytochemicals in cof-
fee and cacao beans and tea leaves has hindered a clear understanding of the component(s) that affect neuronal plasticity 
and resilience. One class of phytochemicals present in relatively high amounts in coffee, tea and cacao are methylxanthines. 
Among such methylxanthines, caffeine has been the most widely studied and has clear effects on neuronal network activity, 
promotes sustained cognitive performance and can protect neurons against dysfunction and death in animal models of stroke, 
Alzheimer’s disease and Parkinson’s disease. Caffeine’s mechanism of action relies on antagonism of various subclasses of 
adenosine receptors. Downstream xanthine metabolites, such as theobromine and theophylline, may also contribute to the 
beneficial effects of coffee, tea and cacao on brain health.

Introduction

Coffee, tea and chocolate are among the most commonly 
consumed substances in the world [1]. The use of the seeds 
from the cacao tree (Theobroma cacao) to create beverages 
dates to the early formative period of Mesoamerican history 
(2000−1000 BC). In Mayan and Aztecan societies, cacao 
beans were so valued they were not only used for food and 
medicinal purposes, but also as a currency.

The explorer Hernán Cortés is credited with understand-
ing cacao’s potential after drinking xocoatl at the Aztec 
emperor Montezuma’s court. In 1528, Cortés brought the 
beans and tools necessary to recreate “the drink that builds 
up resistance and fights fatigue” back to the Spanish court 
[2]. Mixed with honey, sugar and spices, dark chocolate 
(cacao) soon became a favorite of the Spanish nobility and, 
less than a 100 years later, of Europe.

The origins of coffee usage are less clear. The first sub-
stantiated evidence of coffee drinking dates to the fifteenth 
century in Yemenite Sufi monasteries, where monks used 

the brew to keep themselves awake during nightly prayers. 
The invigorating properties of the beverage soon spread 
through other Arabic countries and the Ottoman Empire, 
where Venetian merchants discovered it and began introduc-
ing caffe’, from the Turkish word kahveh, in Italy around 
1570. It is estimated that over 2.3 billion cups of coffee are 
now consumed daily throughout the world [3].

In 1902 the chemist Emil Fischer was awarded the Nobel 
prize for his work on purine and sugar metabolism, including 
the discovery that caffeine is a purinergic component of cof-
fee [4]. Indeed, during the century following Fischer’s dis-
covery, studies of the effects of caffeine on the nervous sys-
tem established it as a psychostimulant and have elucidated 
its cellular and molecular mechanisms of action on nerve 
cells. Together with the fact that caffeine is a major psycho-
active component of coffee and tea, it has been concluded 
that caffeine is the most commonly consumed psychoactive 
chemical throughout the world [5]. While caffeine is present 
in relatively high concentrations in coffee and tea, several 
other purine metabolites are also present in lower amounts 
including theobromine, theophylline and paraxanthine. On 
the other hand, theobromine and theophylline are present in 
high concentrations in cacao.

Plants likely evolved enzymatic pathways to produce caf-
feine and related methylxanthines as a mechanism to protect 
themselves against consumption by insects and herbivorous 
and omnivorous animals [6]. As evidence, caffeine has a 
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very bitter taste, is concentrated in vulnerable regions of the 
plants (seeds and leaves) and is considered a natural pesti-
cide [6, 7]. Some species of carnivores including canines 
(which presumably did not consume cacao during their evo-
lution) can be killed by doses of theobromine well below 
doses readily tolerated by herbivores and omnivores includ-
ing humans [8]. As we shall see later in this article, methyl-
xanthines may affect signaling pathways that enable neurons 
to overcome dysfunction and degeneration. This possibility 
is consistent with literature in the field of hormesis, a general 
process by which low levels of an environmental challenge 
increase the ability of cells and organisms to resist more 
severe stress and disease [6]. Indeed, emerging evidence 
suggests that many of the chemicals present in plants that 
can be beneficial for health are noxious agents/toxins from 
an evolutionary perspective [6, 9].

In the present short review article, we focus on the neu-
robiological actions of caffeine, theophylline, theobromine 
in the contexts of neuroplasticity, cognition and vulnerabil-
ity to age-related neurological disorders. Some, but not all, 
epidemiological studies have found a negative association 
between moderate consumption of coffee and the risk of 

age-related cognitive disorders and Parkinson’s disease (PD) 
[10–13]. However, the influence of caffeine and other meth-
ylxanthines present in these beverages and cacao on brain 
aging and disease risk remain to be determined.

The Purine Chemistry of Coffee and Cacao

Coffee and cacao contain different ratios of 1,3,7-trimethyl-
xanthine (caffeine) and 3,7-dimethylxanthine (theobromine) 
and traces of 1,3-dimethylxanthine (theophylline). In humans, 
within 45 min of oral ingestion, 99% of consumed caffeine is 
absorbed by the small intestine and stomach [14, 15], with 
less than 2% of caffeine being excreted untransformed in urine 
[16]. The majority of caffeine is metabolized in the liver via 
cytochrome P450 enzymes to form mono- and dimethylxan-
thines, and methylated uracil-derivatives (Fig. 1) [17, 18]. 
CYP1A2 accounts for more than 95% of the primary metabo-
lism of caffeine [19]. Although the main metabolic pathways 
are similar between humans and rodents, there are substantial 
quantitative differences in their metabolic profiles. In humans, 
caffeine is primarily metabolized via N-3 demethylation into 

Fig. 1  Caffeine metabolites in humans. Solid arrows indicate a 
direct pathway. Dashed arrows indicate the presence of an unknown 
intermediate. Abbreviations from top left to bottom right: 3-MUA 
3-methyluric acid; 3-MX 3-methylxanthine; 6A5NF-1,3-DMUA 
6-amino-5-(N-formylmethylamino)-1,3-dimethyluracil; 1,3,7-
TMUA 1,3,7-trimethyluric acid; 6A5NF-1MUA 6-amino-5-(N-
formylmethylamino)-1-methyluracil; 1,3-DMUA 1,3-dimethyluric 

acid; TP theophylline; CA caffeine; TB theobromine; 3,7-DMUA 
3,7-dimethyluric acid; 1-MUA 1-methyluric acid; 1-MX 1-methylx-
anthine; PX paraxanthine; 7-MX 7-methylxanthine; 7MUA 7-methy-
luric acid; 5A6F3M 5-acetylamino-6-formylamino-3-methyluracil; 
6A5NF3M 6-amino-5-(N-formylmethylamino)-3-methyluracil; 1,7-
DMUA 1,7-dimethyluric acid
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paraxanthine (1,7-dimethylxanthine) (~ 80%), over theo-
bromine (3,7-dimethylxanthine) (~ 12%), and theophylline 
(1,3-dimethylxanthine) (~ 4%), with C-8 hydroxylation to 
1,3,7-trimethyluric acid accounting for less than 6% [20] 
(Fig.  1). Consequently, the main urinary metabolites in 
humans are paraxanthine and its derivatives 1-methyluric acid, 
1-methylxanthine, 1,7-dimethyluric acid, and 6-amino-5-(N-
formylmethylamino)-3-methyluracil. In rodents, on the other 
hand, about 40% of caffeine undergoes C-8 hydroxylation to 
generate trimethyl derivatives, with the primary demethylation 
products being N-1 theobromine and N-7 theophylline [1].

While paraxanthine is not present in plant extracts, in 
humans its concentrations in the blood reach levels compa-
rable to or higher than those of caffeine [18]. Paraxanthine 
should thus be considered when investigating the physio-
logical effects of caffeine, especially under chronic caffeine 
intake conditions [21].

Like caffeine, theophylline undergoes extensive hepatic 
biotransformation. Approximately 10% of theophylline is 
excreted unchanged in the urine, 6% is methylated to gen-
erate caffeine [22], 50% is converted to 1,3-dimethyluric 
acid, and the remaining portion is demethylated to 1- and 
3-methylxanthine (Fig. 1). Fewer studies are available on 
theobromine metabolism; however, it has been shown that 
it is converted to 3- and 7-methylxanthine, and, based on 
the reducing status of the cell, to 3,7-dimethyluric acid or 
6-amino-5-(N-formylmethylamino)-1-uracil [23, 24].

The half-lives of the various methylxanthines differ and 
are dose-dependent, suggesting saturable kinetics of enzy-
matic metabolism. Caffeine reaches peak plasma concentra-
tions within 1–2 h of consumption and exhibits a half-life of 
approximately 2.5–5 h, with variability between individuals 
[17, 25]. Paraxanthine’s half-life is similar to that of caf-
feine (3.1–4.1 h), whereas theophylline and theobromine 
have somewhat longer half-lives (6.2–7.2 h) [26].

As for distribution throughout the body, the use of radi-
olabeled probes showed no bioaccumulation of the different 
methylxanthines [18, 27]; however, their intrinsic hydropho-
bic properties impact their ability to cross the blood–brain 
barrier. The high hydrophobicity of caffeine allows its unre-
stricted passage through all biological membranes, including 
the blood–brain barrier [28]. On the other hand, recovery of 
theophylline [29], theobromine [30] and paraxanthine [31] 
in the brain is much lower than that of caffeine.

Coffee and Cacao Purines and Synaptic 
Plasticity

The arousing and energizing effects that originally led our 
ancestors to include coffee and cacao in their diets have 
been substantiated using scientific approaches. Growing 
evidence indicates that habitual consumption of coffee and/

or chocolate results in improved cognitive performance dur-
ing stressful conditions [32–34] and measurable attenuation 
of neurocognitive decline associated with normal aging and 
neurodegenerative disorders [35–37]. Acute caffeine intake 
improves performance on memory tasks [38, 39]. The Insti-
tute of Medicine’s Food and Nutritional Board Commit-
tee on Military Nutrition Research reported that a dose of 
150 mg of caffeine enhances cognitive performance for at 
least 10 h, and advised including caffeine in military rations 
[40]. Large longitudinal clinical studies have established an 
inverse relationship between coffee consumption and mem-
ory decline during normal aging [41, 42]. Similar results 
have been found for chocolate consumption. In controlled 
studies, 8 weeks of daily chocolate drink intake resulted 
in improved cognitive performance in patients with mild 
cognitive impairment [43], as well as in cognitively intact 
elderly [44].

While caution is warranted when extrapolating the results 
of studies conducted in rodents to humans [45], the mecha-
nisms of action of coffee and cacao methylxanthines have 
begun to emerge from animal studies. Most studies have 
focused on caffeine, yet there is evidence that its metabolites 
share some of the same historically reported cellular actions, 
including adenosine receptor antagonism at physiologically 
relevant doses [1], and non-selective inhibition of cyclic 
nucleotide phosphodiesterases [30, 46, 47] and stimulation 
of intracellular calcium release [48] at higher concentra-
tions that are toxic in vivo. Concentrations of caffeine in the 
millimolar range are necessary to activate calcium release 
from ryanodine receptors and neurotransmitter exocytosis 
[49–52]. Relatively high concentrations (100 µM–1 mM), 
are also required to inhibit cyclic nucleotide phosphodies-
terases, thereby elevating cyclic AMP levels and its down-
stream signaling pathways [53]. The concentrations that can 
induce such responses are more than ten-fold higher than the 
biological levels found in plasma and brain after ingestion of 
food containing methylxanthines. It is therefore implausible 
that such mechanisms contribute to the effects of methylx-
anthines on neurological functions [54]. Instead, at physi-
ologically relevant doses, the neurological actions of caf-
feine, paraxanthine and theophylline actions are mediated by 
non-selective adenosine receptor antagonism [1, 55] (Fig. 2).

Adenosine receptors are G protein-coupled receptors 
expressed in a variety of organs including heart, colon, 
lungs, bladder, skeletal muscles and brain [56]. In the central 
nervous system, adenosine receptors regulate sleep/wakeful-
ness, synaptic plasticity, motor function and neuronal sign-
aling [57–63]. Methylxanthines have been shown to bind 
with different affinities and specificities to A1 and A2A, 
the adenosine receptor subtypes found in the brain [62, 64]. 
Compared to caffeine, paraxanthine and theophylline have 
an overall higher binding affinity, while theobromine is a low 
affinity ligand and a weaker adenosine receptor antagonist 



217Neurochemical Research (2019) 44:214–227 

1 3

[1, 65]. Studies using adenosine receptor knock-out mice 
have shown that adenosine receptor A2A regulates sleep and 
motor activity, whereas A1 and A2A influence heart rate, 
body temperature and oxygen consumption [66].

The selective antagonism of adenosine receptors A1 
and A2A can also modulate hippocampal long-term poten-
tiation (LTP) [62, 67] a type of synaptic plasticity strongly 
associated with learning and memory. A1Rs are highly 
expressed in the CA2 region of the hippocampus [68], and 
their antagonism enhances the induction and stabilization 
of activity-dependent LTP [61, 69]. Under basal conditions 
Shaffer collateral synapses in the CA2 fail to elicit activity-
dependent LTP due to the higher calcium buffering and 
extrusion capacity of CA2 neurons and the expression of 
the inhibitory protein regulator of G protein signaling 14 
[70–72]. However, oral administration of caffeine in vivo, 
as well as short-term application of caffeine to hippocam-
pal slices, causes a persistent increase in synaptic responses 
in CA2 neurons [73]. The ability of low doses of caffeine 

to facilitate basal synaptic transmission, possibly via A1R 
antagonism, is also observed in CA1 following acute in vitro 
application [74]. This effect is not only achieved with physi-
ologically relevant concentrations of caffeine, but appears to 
be age-independent [74].

In the brain A2A receptors are present at high density 
in the ventral and dorsal striatum and, to a lower extent, 
in the cortex and hippocampus [56]. While in the striatum 
they are found predominantly in post-synaptic neurons, in 
the hippocampus A2ARs are most abundant in the pre-
synaptic active zone of the nerve terminals [75]. The role 
played by A2A receptors in modulation of synaptic plastic-
ity is quite limited under basal conditions [76, 77], but is 
fundamental in CA1 and CA3 areas under high frequency 
stimulation [74, 78]. A2A receptors essentially act as con-
trollers, switching presynaptic modulation from inhibitory 
to facilitatory [67]. Optogenetic studies have shown that 
activation of A2A receptor signaling in the hippocampus is 
sufficient to induce LTP in the CA1 while impairing spatial 

Fig. 2  Impact of antagonism of neuronal adenosine A1 and A2A receptors by caffeine, theobromine, paraxanthine and theophylline on brain 
physiology and behavior
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memory performance, and A2A receptor activation in the 
nucleus accumbens stimulates locomotor activity [79]. 
Similarly, selective inhibition of A2A receptor signaling 
in the CA3 area of an Alzheimer’s mouse model restores 
LTP and reverses memory deficits [80]. While the activa-
tion of A2A receptors in hippocampus is sufficient to trigger 
memory deficits [81], pharmacological or genetic interven-
tions blocking A2A receptors enhance working memory [78, 
82], reversal learning [83] and fear conditioning [84, 85] in 
normal animals, and reverse memory impairments in aged 
animals [86] and animal models of Parkinson’s [87] and 
Alzheimer’s [80, 88–90] diseases. The causal link between 
adenosine receptor overactivation and neurological disorders 
is further supported by the consistent observation of upregu-
lated A2A receptors in conditions characterized by chronic 
stress and/or neurodegeneration [67, 80, 91–95]. Overall, 
these findings provide mechanistic insight into the nuanced 
beneficial effects coffee and cacao purines may have on cog-
nition and prevention of age-related memory impairment.

While adenosine receptor antagonism can explain most 
of the central nervous system effects of methylxanthines, it 
is possible that additional yet uncharacterized mechanisms 
contribute as well. For example, following both acute and 
chronic caffeine intake, changes in local rates of cerebral 
energy metabolism with increased glucose utilization are 
found in various monoaminergic areas, motor and limbic 
systems, and the thalamus [96, 97]. These changes are dis-
sociated from the effects on cerebral blood flow, as they 
occur under conditions of vasoconstriction and hypoperfu-
sion [98]. Furthermore, they also involve areas of the brain 
not particularly enriched with adenosine receptors [96] and 
are insensitive to receptor-dependent desensitization [97].

Adenosine Receptor Signaling in Synaptic 
Plasticity

Emerging findings suggest that a general mechanism by 
which some chemicals in vegetables, fruits, coffee and tea 
provide health benefits is by inducing adaptive cellular 
responses [8, 9]. From an evolutionary perspective, such 
phytochemicals might function to dissuade insects and her-
bivorous and omnivorous animals from eating plants. It is 
conceivable that animals, in turn, evolved adaptations not 
only enabling them to consume limited amounts of phyto-
chemicals without toxic effects but to potentially benefit 
from their consumption [6, 9]. For example, it was recently 
shown that while honeybees are repulsed by high doses of 
caffeine, the low amounts present in the nectar of coffee and 
citrus species facilitate associative learning and memory act-
ing via adenosine receptor antagonism [99]. Moreover, the 
consumption of sugar syrup supplemented with low doses 
of caffeine significantly increased the resistance to parasite 

infestation and lifespan of worker honeybees [100]. As men-
tioned in previous sections, converging evidence suggests 
that at physiologically relevant doses methylxanthines act 
as non-selective adenosine receptor antagonists. Here we 
describe the signaling pathways elicited by adenosine recep-
tors A1 and A2A that may be functional targets of caffeine 
and its metabolites, with a focus on modulation of synaptic 
plasticity.

The best characterized mechanism of signal transduc-
tion elicited by activation of the adenosine receptors is 
the modulation of adenylate cyclase activity [101, 102]. 
Adenosine receptors A1 and A2A are indeed respectively 
coupled to inhibitory (Gi) and stimulatory (Gs) GTP-bind-
ing proteins which inhibit and stimulate adenylate cyclase 
(Fig. 3). Inhibition of adenylate cyclase by A1Rs promotes 
the activation of potassium channels and phospholipase C 
as well as the inactivation of N, P, and Q-type calcium chan-
nels [103]. Presynaptically, A1R activation depresses the 
release of neurotransmitters including glutamate, gamma-
aminobutyric acid (GABA), norepinephrine, and dopamine 
[61], with a particularly prominent effect on glutamatergic 
excitatory transmission [104]. Post- and extra-synaptic A1R 
activation influences the response to excitatory stimuli by 
hyperpolarizing the resting membrane potential via acti-
vation of inward rectifying potassium channels [105] and 
controlling the N-type channels and N-methyl-D-aspartate 
(NMDA) receptors [106, 107]. Dose and time-dependent 
phosphorylation of extracellular signal-regulated kinases 
(ERKs) 1/2 by A1R activation has also been reported [108] 
(Fig. 3a). Impairment of paired-pulse facilitation at Shaf-
fer collateral-CA1 synapses is observed in A1R knockout 
mice, without overall changes in LTP and LTD [109]. Both 
genetic and pharmacological approaches suggest that under 
physiological conditions A1Rs are not essential for plastic-
ity at mossy fiber synapses [110]. On the other hand, stud-
ies using genetic A1R ablation, specific A1R antagonists or 
removal of adenosine via adenosine deaminase have shown 
a selective augmentation of mossy fiber basal transmission 
in the hippocampus, but decreased short-term plasticity (i.e. 
paired pulse facilitation) and LTP at this synapse [111]. Fur-
thermore, under non-physiological conditions such as in 
sleep deprivation [112] or chronic morphine administration 
[113], the activation of A1Rs normalizes CA3-CA1 LTP in 
animals. The possibility that the role of A1Rs in learning 
and memory varies under physiological and pathological 
conditions is supported by the fact that A1Rs knockout ani-
mals can normally acquire and retain spatial reference and 
working memory [109, 114, 115]; whereas pharmacologi-
cal interventions implicate A1Rs in preventing spatial and 
working memory impairments induced by morphine [113] 
or scopolamine [116].

Agonism of A2ARs coupled to Gs or, in the striatum, 
to Golf [117], leads to an increase in cAMP and activation 



219Neurochemical Research (2019) 44:214–227 

1 3

of protein kinase A and downstream signaling pathways 
[107]. It is indeed well established that activation of A2AR 
controls the recruitment of cAMP response element binding 
protein (CREB), a transcription factor involved in memory 
formation [118–120]. It has also been shown that A2ARs 

modulation of neurotransmitter release is dependent on pro-
tein kinase C activity [121–123], and that the recruitment 
of mitogen activated protein kinases underlies the ability 
of A2AR to prevent synaptotoxicity and memory impair-
ment in Alzheimer’s mouse models [90]. The understanding 

a

b

Fig. 3  Signaling pathways associated with A1R and A2A activa-
tion.  (a) Inhibition of adenylate cyclase by A1Rs (1) promotes the 
activation of potassium channels (2) and phospholipase C (3), as well 
as the inactivation of N, P, and Q-type calcium channels (4). Presyn-
aptically, A1R activation depresses the release of almost every clas-
sical neurotransmitter (i.e. glutamate, gamma-aminobutyric acid, 
norepinephrine, dopamine, etc.) (5), with a most prominent effect on 
glutamatergic excitatory transmission. Post- and extra-synaptic A1R 
activation influences the response to excitatory stimuli by hyperpo-
larizing the resting membrane potential via activation of inward rec-
tifying potassium channels (6) and controlling the N-type channels 
(7) and N-methyl-D-aspartate (NMDA) receptors (8). Dose and time-
dependent phosphorylation of extracellular signal-regulated kinases 
(ERK) 1/2 by A1R activation has also been reported (9). (b) Agonism 
of A2ARs coupled with Gs or, in the striatum, with Golf, leads to an 
increase in cAMP and activation of protein kinase A and downstream 
signaling pathways (10). It is indeed well established that activation 
of A2AR controls the recruitment of cAMP response element binding 
protein (CREB), a transcription factor involved in memory formation. 

It has also been shown that A2AR modulation of neurotransmitter 
release is dependent on protein kinase C activity (11), and that the 
recruitment of mitogen activated protein kinases (12) underlies the 
ability of A2AR to prevent synaptotoxicity and memory impairment 
in Alzheimer’s mouse models. A2AR can dimerize with themselves, 
A1R, D2 dopamine receptors, D3 dopamine receptors, metabo-
tropic glutamate type 5 receptors and the cannabinoid CB1 receptor 
in a synergistic or antagonistic fashion (13). Activation of A2ARs 
facilitates the release of BDNF, BDNF-mediated synaptic transmis-
sion and hippocampal LTP (14). A2ARs can influence hippocampal 
synaptic plasticity by modifying post-synaptic calcium responses. 
At hippocampal mossy fiber-CA3 synapses A2AR activation medi-
ates LTP elicited by (15) NMDA and mGluR5 -dependent calcium 
increases. A2AR-dependent activation of PKA regulates the phos-
phorylation of GluR1, its insertion in α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors, thus AMPA-evoked LTP 
in CA1 pyramidal neurons as well as the potentiation of LTP at CA3-
CA1 synapses (16)
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of A2AR signaling mechanisms is further complicated by 
the fact that they can dimerize with themselves [124], A1R 
[125], D2 dopamine receptors [126], D3 dopamine recep-
tors [127], metabotropic glutamate type 5 receptors [128] 
and the cannabinoid CB1 receptor [129] in a synergistic 
or antagonistic fashion [107]. A2ARs can also interact 
and transactivate receptor tyrosine kinases in the absence 
of neurothrophins [130–132]. Brain-derived neurotrophic 
factor (BDNF) is a critical modulator of hippocampal syn-
aptic plasticity under physiological and pathological condi-
tions [133]. Activation of A2ARs facilitates the release of 
BDNF, BDNF-mediated synaptic transmission [134] and 
hippocampal LTP [135]. Pharmacological inhibition as well 
as genetic knockout of A2ARs results in decreased levels 
of BDNF in the brain [136]. In addition to modulation of 
BDNF signaling, A2ARs can influence hippocampal synap-
tic plasticity by modifying post-synaptic calcium responses. 
At hippocampal mossy fiber-CA3 synapses A2AR activation 
modulates LTP elicited by NMDA- and mGluR5- dependent 
calcium increases [78]. A2AR-dependent activation of PKA 
regulates the phosphorylation of GluR1, its incorporation 
into α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors, and thus AMPA-evoked LTP in CA1 
pyramidal neurons as well as the potentiation of LTP at 
CA3-CA1 synapses [137] (Fig. 3b).

Due to differences in expression levels of A1R and 
A2AR, their opposing effects on hippocampal LTP and the 
fact that caffeine has very similar binding affinities for each 
receptor, predicting the impact of caffeine on LTP/LTD 
remains a challenge. As mentioned previously, the data gath-
ered over the last several decades using pharmacological and 
gene knockout experiments suggests that the neurological 
effects of caffeine, and possibly other methylxanthines, cor-
relates well with inhibition of A2ARs [1, 62, 98].

Coffee, and Cacao Purines and Neurological 
Disorders

Because of the widespread distribution of adenosine recep-
tors throughout the body and nervous system, methylx-
anthines have several potential therapeutic applications. 
Theobromine and theophylline are used as smooth muscle 
relaxants, vasodilators, diuretics and myocardial stimulants 
[138]. Caffeine can act as an adjuvant analgesic increasing 
the action of painkillers [139], and because of its effect on 
metabolism and insulin sensitivity [140–142] is included 
in weight loss supplements. A possible role for methylx-
anthines in preserving brain health is suggested by epide-
miological studies evaluating the association of nutritional 
and lifestyle factors with neurodegenerative conditions 
[143–147]. Habitual intake of methylxanthines in humans 
is associated with a reduced risk of stroke [148], depression 

[149, 150] and suicide [151]. Higher caffeine levels in the 
cerebral spinal fluid (CSF) are correlated with better clinical 
outcomes in patients with traumatic brain injury [152]. Lev-
els of theobromine in the CSF are inversely correlated with 
the amyloid beta 42 levels in Alzheimer’s patients [153]. 
Some, but not all population studies have found positive 
associations between coffee and tea intake and cognitive 
performance in older subjects [33, 41, 154]. In particular, 
habitual caffeine consumption appears to improve verbal 
memory [41], long-term memory and psychomotor speed 
[33].

With regard to neurodegenerative disorders, the strongest 
associations have been found for methylxanthine consump-
tion and Parkinson’s disease (PD) incidence. Several meta-
analyses have shown that moderate coffee intake lowers 
one’s risk of developing PD by 24–30% [146, 155–157]. In 
general, an inverse dose–response association between cof-
fee and tea intake and PD incidence has been consistently 
reported in studies of men, with a maximal effect found at 
about 3 cups of daily coffee [155, 157]. However in women, 
the associations between methylxanthine consumption and 
PD risk is more complex with regards to dose and hormonal 
status [158, 159]. Data suggest that caffeine is beneficial 
against PD at low doses in women not receiving estrogen 
therapy; however, at high doses it may increase PD risk in 
those under hormonal replacement therapy [158]. It should 
be appreciated, however, that such epidemiological data 
cannot account for all possible confounding variables, and 
further experimentation is required to establish whether caf-
feine, theophylline and/or other methylxanthines influence 
symptoms and/or progression of PD.

The gender disparities suggested by epidemiological stud-
ies are substantiated by human studies showing that caffeine 
metabolism is inhibited in women taking estrogen either in 
oral contraceptives or as replacement supplements after 
menopause [160, 161]. Furthermore, studies in rodents have 
demonstrated that estrogen supplementation interferes with 
the protection afforded by caffeine against dopaminergic loss 
in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
model of PD [162]. Notably, in the same experimental 
model the caffeine metabolites paraxanthine and theophyl-
line also conferred neuroprotection against MPTP-induced 
striatal dopamine loss [163]. Similar to other physiological 
responses, antagonism of adenosine receptors may mediate 
protection of dopaminergic neurons by methylxanthines. In 
fact, antagonism of A2A receptors with selective inhibitors 
or genetic knockout mimics caffeine protection in various 
experimental models of PD [164–166].

An inverse relationship between habitual methylxanthine 
consumption and risk of developing Alzheimer’s disease 
(AD) late in life was found in several longitudinal studies 
[11, 42, 167, 168]. In animal studies, caffeine intake can 
decrease brain amyloid burden and prevent or ameliorate 
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memory impairment in AD transgenic mice [169–172], as 
well as in pharmacological models of AD [88]. Mechanisms 
that may mediate the benefits exerted by caffeine and deriva-
tives in AD models include, adenosine receptor antagonism 
[88, 173], regulation of cerebral blood flow [174–176], 
increased oxygen consumption [177] and increased cerebro-
spinal fluid production [178, 179].

Recent genome-wide analyses studying the genetic vari-
ants that influence coffee consumption provide insights into 
additional mechanisms of action of caffeine, paraxanthine, 
theophylline and theobromine [180, 181]. Together with loci 
directly linked to methylxanthine metabolism, these stud-
ies discovered new loci associated with habitual caffeine 
intake spanning about 90 genes implicated in various meta-
bolic and physiological functions [180, 181]. Among the 
various genes, some have potentially important implications 
for brain physiology and pathology. For example, the gene 
ATP-binding cassette sub-family G member 2 (ABCG2) is a 
xenobiotic transporter also expressed in the endothelium of 
the blood brain barrier, where it has been shown to regulate 
the clearance of amyloid beta peptides from the parenchyma 
[182, 183]. The locus at 2p24 includes the gene encoding 
glucokinase regulatory protein (GCKR) and is known to play 
an important role in glucose, cholesterol, triglyceride and 
urate metabolism [184, 185]. Similarly, 17q11.2 includes 
the gene encoding MLX interacting protein like (MLXIPL), 
which activates carbohydrate response element motifs in the 
promoter regions of genes implicated in glucose and lipid 
metabolism in a glucose-dependent manner [186].

Notably, alterations in glucose and lipid metabolism have 
long been associated with the incidence of different neuro-
degenerative disorders [187]. The locus 11p13 (associated 
with BDNF) and LIN7C are also relevant to neurodegenera-
tive disorders. BDNF is a neurotrophin involved in survival, 
differentiation, and synaptic plasticity of several neuronal 
systems [133]. Alterations in BDNF levels have been found 
with aging and in many psychiatric and neurodegenerative 
diseases [133, 188]. LIN7C has been shown to be instru-
mental for vertebrate neurulation [189] and ensures proper 
localization of NMDA receptor subunit 2 at post synaptic 
densities, as well as potassium channels (Kir2), GABA 
transporters and 5-hydroxytryptamine type 2C receptors 
[190–192]. Finally, expression of the SNP at 17q11.2 maps 
EF-hand calcium binding domain 5 (EFCAB5) and is nega-
tively correlated with epigenetic age acceleration in five dif-
ferent brain regions [193].

Conclusions and Perspective

Increasing evidence suggests that regular moderate con-
sumption of coffee, tea and cacao can enhance brain health. 
Purines are one class of phytochemicals that may contribute 

to the beneficial effects of these widely consumed plant 
products on the brain. Among such purines, caffeine has 
been the most widely studied, theobromine and theophylline 
less so, and other methylxanthines have been largely unex-
plored (Fig. 1). While the neurological effects of caffeine 
are well-established, it is not known whether this purine is 
solely responsible for beneficial effects of coffee and cacao 
consumption on cognition and resistance to neurodegen-
erative disorders. Indeed, emerging evidence suggests that 
other classes of phytochemicals present in high amounts in 
coffee and cacao can enhance neuroplasticity and protect 
neurons against dysfunction and degeneration. Among the 
many non-purine phytochemicals in coffee and cacao, fla-
vonoids such as epicatechins have been shown to promote 
synaptic plasticity, enhance cognition and protect neurons 
in experimental models of stroke and AD [194–197]. The 
presence of numerous neuroactive chemicals in coffee, tea 
and chocolate has thus far precluded the identification of the 
specific chemical or combination of chemicals that account 
for the beneficial effects of consumption of these plant mate-
rials on brain health suggested by data from epidemiological 
studies. Nevertheless, the literature reviewed in the present 
article suggests that purine metabolites are one prominent 
class of such neuroactive chemicals.
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