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Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or 
peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion 
channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the 
CNS play a vital role in neurological disease. The N-methyl-d-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) 
propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing 
ion channels are among the major channels and receptors known to be key components of pathophysiological events in the 
CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of l-arginine, can regu-
late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established 
that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell 
migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, 
we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, 
and their interaction with agmatine in CNS injury.
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Abbreviations
CNS	� Central nervous system
PNS	� Peripheral nervous system
AD	� Alzheimer’s disease
PD	� Parkinson’s disease
HD	� Huntington’s disease
ADC	� Arginine decarboxylase
ROS	� Reactive oxygen species
NF-κB	� Nuclear factor kappa B
TBI	� Traumatic brain injury
NO	� Nitric oxide
SCI	� Spinal cord injury
BMP	� Bone morphogenetic protein
Aβ	� Amyloid-beta
Nrf2	� Nuclear factor (erythroid derived 2)-like 2
MPTP	� 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine
MES	� Maximal electroshock seizures
PTZ	� Pentylenetetrazole
NMDAR	� N-Methyl-d-aspartate receptor
AMPAR	� α-Amino-3-hydroxy-5-methylisoxazole-4-

propionic acid receptor
NOS	� Nitric oxide synthase
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KAR	� Kainite receptor
GPCR	� G protein-coupled receptor
CDS	� Clonidine displacing substance
AChR	� Acetylcholine
mAChR	� Muscarinic acetylcholine receptor
nAChR	� Nicotinic acetylcholine receptor
5-HT	� 5-Hydroxytryptamine
VDCC	� Voltage-dependent calcium channel
LVA	� Low-voltage activated
HVA	� High-voltage activated
ENaC/DEG	� Epithelial Na+ channel/degenerin
ASIC	� Acid-sensing ion channel
EL/IL	� Extracellular/intracellular loops

Introduction

Ion channels and receptors are the macromolecular mem-
brane pores that traffic a series of ions (Na+, K+, Ca2+, Cl−) 
and chemicals (neurotransmitters, hormones etc.) in or out 
of the cells and propagate the biochemical and electrical 
signals. Functional initiation of ion channels requires stimuli 
such as ligand binding, chemical/mechanical changes, and 
altered membrane potentials. Therefore, any iatrogenic, 
autoimmune, toxic, or genetic dysfunction can cause ion 

channel-related diseases termed channelopathies, which 
overlap with acute and chronic neurodegenerative disorders 
such as ischemic stroke, traumatic injury, epilepsy, Alzhei-
mer’s disease (AD), schizophrenia, and Huntington’s disease 
(HD) [1]. The majority of neurodegenerative diseases are 
related to cell death caused by disrupted ion channels and 
receptors or metabolic functions of neuronal cells [2–5]. In 
the healthy brain, ionic homeostasis is a major component 
of neuronal information transmission via action potentials, 
which are also related to synaptic transmission between pre-
synaptic and postsynaptic neurons. Loss of synaptic function 
due to low energy supply in neurodegenerative disorders 
leads to attenuation of ion homeostasis [6, 7]. In the diseased 
brain, ion homeostasis is maintained by a series of ion chan-
nels in brain cells, predominantly in neuron, astrocyte and 
microglia, and a myriad of ions that are transported across 
the cell membrane via those channels (Table 1). Among the 
range of associated ions, potassium, sodium, chloride, and 
calcium collectively play a pivotal role in cellular damage 
[1, 8]. Following central nervous system (CNS) injury, the 
well-orchestrated ion exchange across the membrane via ion 
channels or receptors is disrupted and brain cells lose their 
normal function, leading to death.

Agmatine, an arginine-derived primary amino acid 
found in the nerve cell body and synaptic terminals, acts as 

Table 1   Major ion channels and receptors to which agmatine act as a ligand and modulates their functions

Ion channel/receptor Ligand Conducting ions Related neurological disorders References

NMDA l-Glutamate, NMDA, glycine Na+, Ca2+, K+ Stoke and traumatic injury, 
AD, HD, pain, schizophrenia, 
depression

[38, 131, 133, 134]

AMPA and kinate l-Glutamate, AMPA Na+, K+, less Ca2+ Stoke and traumatic injury, 
AD, epilepsy schizophrenia, 
depression, amyotrophic 
lateral sclerosis, autism

[98]

α2-Adenoceptor: 
imidazoline recep-
tors

α2-Adenoceptor: epinephrine 
norepinephrine, α-methyl 
DOPA and others

Imidazoline receptors: imidazo-
line compounds

α2-Adenoceptor : K+, Na+ and 
H+

Imidazoline receptor: Ca+

Pain, panic disorder, addiction, 
depression, anxiety, hyperten-
sion

[164–172]

AChR Acetylcholine nicotine Na+, Ca2+, K+ Myasthenia gravis, epilepsy, 
AD, PD, schizophrenia, Tou-
rette’s syndrome, idiopathic 
inflammatory bowel disease, 
addiction, anxiety, depression

[57, 60, 62–64]

VDCC Membrane potential Ca2+ Epilepsy, seizures, AD, pain, 
autism spectrum disorder, 
migraine, anxiety, depression

[77, 78, 80]

ASICs Extracellular protons Na+, less Ca2+ Ischemic stroke, traumatic 
injury, pain, HD, PD, multiple 
sclerosis, glioblastoma, 
epilepsy

[88, 92, 99, 120]

Serotonin (5-HT) Different serotonergic com-
pounds

Na+, Ca2+, K+ by 5-HT3 AD, anxiety, depression, 
seizure locomotor activity, 
aggression

[107, 108, 130, 169]
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a neuromodulator that mimics the functional properties of 
other neurotransmitters [9, 10]. The enzyme arginine decar-
boxylase (ADC) synthesizes agmatine by decarboxylation of 
l-arginine [11]. On the other hand, studies suggested that in 
the mammal lacking ADC, decarboxylation of l-arginine is 
catalyzed by the ornithine decarboxylase enzyme. Agmatine-
expressing cells have been found in all regions of the brain 
such as the hypothalamus, frontal cortex, striatum, medulla, 
hippocampus, and locus coeruleus along with measurable 
ADC activity [9, 10, 12–16]. However, the highest number 
of these cells was observed in the paraventricular (PVN) and 
supraoptic (SON) nuclei of the hypothalamus, which also 
exhibited the highest ADC activity. Diverse mechanisms of 
neuroprotection by agmatine in response to neurodegenera-
tive diseases have been reported by many research groups, 
such as blocking of harmful ion channels, suppressing harm-
ful reactive oxygen species (ROS), promoting neurogenesis, 
angiogenesis, reducing glial scars etc [17–20]. In a recent 
review, Laube and Bernstein preciously reviewed the recent 
studies about the agmatine metabolism and clinical applica-
tion including nervous system [21]. In acute brain diseases, 
both exogenous and endogenous (via overexpression of ADC 
or down regulation of agmatinase experiments etc.) agmatine 
were reported to be effective in reducing hypoxic brain tissue 
damage [17, 20, 22–26]. The exogenous agmatine is also 
reported to be an anti-proliferative agent which reduces the 
biosynthesis and increases the degradation of the cell growth 
and proliferative polyamines such as putrescine, spermidine 
and spermine in different cancer cell lines [27, 28]. Exog-
enous agmatine treatment also can inhibit advanced glyca-
tion end products formation in diabetic kidney [29]. Over 
the last few decades, a significant number of studies have 
been performed regarding the interacting targets of both 
endogenous and exogenous agmatine in the brain and other 
systems. Agmatine interacts with the different receptors and 
ion channels of the brain cells which are responsible for 
different neurodegenerative diseases. Here, we will discuss 
the association of the different ion channels and receptors 
responsible for various neurodegenerative diseases and their 
possible relationship with agmatine.

Medicinal Chemistry of Agmatine

The primary amine agmatine is produced from the l-argi-
nine by the enzyme ADC. This decarboxylated arginine, 
agmatine can be found naturally in herring sperm, octopus 
muscle, ergot fungi, ragweed pollen, and also in mammalian 
brain [11]. Structurally agmatine has a protonated guani-
dine group and an amino group. At the physiological pH, 
agmatine can act as a divalent cation due to these protonated 
groups. On the other hand, due to the presence of the addi-
tional carboxylate group, arginine acts as a net monovalent 

cation [30]. Agmatine is also suggested to behave as mono-
valent when it interacts with the microscopic channels and 
divalent as a macroscopic charge transfer [30].

Agmatine can be metabolized into putres-
cine by the enzyme agmatinase or oxidized into 
γ-guanidinobutyraldehyde by diamine oxidase (Fig.  1). 
Agmatinase belongs to the family of hydrolases, those acting 
on carbon–nitrogen bonds other than peptide bonds, specifi-
cally in linear amidines, then synthesizes putrescine, one of 
polyamines. Putrescine is metabolized further into the poly-
amines, spermidine and spermine [31]. On the other hand, 
diamine oxidase deaminates oxidatively diamines to produce 
aldehydes, ammonia and hydrogen peroxide. Therefore, the 
amino group of agmatine is metabolized by the action of 
diamine oxidase to become γ-guanidinobutylbutylic acid-
aldehyde, and is further metabolized to γ-guanidinobutyric 
acid by aldehyde dehydrogenase (Fig. 1). Agmatine has two 
reactive groups, which increased its possibility of various 
chemical reactions in vivo. With this potentiality for bio-
chemical reactions, agmatine has been used as an experi-
mental and investigational drug in different neurological 
disorders. However, the precise mechanism of action for its 
potential clinical indications has not been identified yet.

Target Ion Receptors/Channels of Agmatine

Electrical and chemical signals in neurons are orchestrated 
by the neurotransmitters, ion channels, receptors, and the 
electrochemical gradient. In this manner, neurons can com-
municate with each other and other cells in the brain, which 
is essential for normal brain function. In the healthy brain, 
agmatine is known to be a neuromodulator that regulates 
multiple neurotransmitters and signaling pathways. It has 
also been demonstrated to exert neuroprotective effects, 
which are likely due to the interaction between the mem-
brane receptors/channels and agmatine, in various neu-
ronal pathologies. However, the mechanism underlying the 
interaction between agmatine and the membrane receptors/
channels remains unknown in both the healthy and diseased 
brain. Therefore, we will discuss the major ion channels and 
receptors associated with various brain functions and disor-
ders, and their association with agmatine.

N‑Methyl‑d‑Aspartate Receptor (NMDAR)

NMDARs, the glutamate-gated channels permeable to cal-
cium, sodium, and potassium, are crucial for CNS devel-
opment, cognitive function, locomotion, and breathing. 
NMDARs are activated by the excitatory neurotransmit-
ter glutamate and are also a key component of many CNS 
related major acute and chronic pathological conditions such 
as stroke, TBI, PD, AD, pain, depression, schizophrenia 
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etc. [21, 32, 33]. A typical heteromeric NMDAR consists 
of four subunits, two NMDAR1 and two NMDAR2 (A–D), 
and may also contain a less common subunit, NMDAR3 (A, 
B) [34]. NMDAR3 is expressed in neurons of various dif-
ferent regions of the brain according to the developmental 
age. Among the seven distinct subunits, NMDAR2 deter-
mines the functional heterogeneity of the NMDAR. Each 
NMDAR subunit has a large extracellular amino-terminal 
domain, which includes the ligand binding site, connected 
to four helical transmembrane domains that form the ion 
channel, and the transmembrane domain connects to the 
short intracellular carboxyl-terminal domain [34]. NMDAR 
can be found in both neuronal and glial cells. In a neuron, 
NMDARs are synaptic or extra-synaptic according to their 
localization and the majority of the synaptic NMDARs are 

located post-synaptically. NMDARs are associated with 
both survival and death mechanisms of neurons in neurode-
generative diseases. In the diseased brain, the extracellular 
glutamate increase over-activates the NMDARs, resulting 
in elevated Ca2+ and Na+ influx into the cell which triggers 
NMDAR-mediated neuronal excitotoxicity (Fig. 2a) [35]. 
After ischemic injury, NMDAR over-activation also pro-
duces NO by activating nitric oxide synthase (NOS), which 
is a major mediator of neuronal death [36, 37]. As a result, 
controlling neuronal excitotoxicity and inhibition of NO pro-
duction via modulation of NMDAR function is a first line 
treatment choice for ion channel-related brain disorders. The 
primary amine agmatine has been reported to be a neuro-
protective agent by modulating NMDARs, the NO pathway, 
and oxidative stress in various neurodegenerative diseases 

Fig. 1   Synthesis and metabolism of agmatine. Agmatine is syn-
thesized from the l-arginine by arginine decarboxylase (ADC). 
Agmatine structurally contains two protonated groups, a guanidine 
group and an amino group, and thus can act as a divalent cation in the 

physiological pH. The guanidine group of agmatine is metabolized by 
diamine oxidaze and the amino group is metabolized by agmatinase 
to γ-guanidinobutyraldehyde and putrescine respectively
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[18, 23, 38, 39]. Agmatine treatment in the different neu-
ronal cultures have been demonstrated to be neuroprotective 
against excitotoxicity by blocking NMDAR and inhibiting 
the increase in cellular calcium levels (Fig. 2b) [18, 40, 41]. 
Agmatine inhibits NMDA excitotoxicity-induced cell death, 
but not by intercellular Ca2+ or protein kinase blockade [41]. 
Differential studies on synaptic and extrasynaptic NMDARs 
have suggested that synaptic NMDARs were more neuropro-
tective, whereas the extrasynaptic NMDARs induced cell 
death, and increase in neuronal NO [18, 42–44]. In various 
neuropathologies, neuronal death by NO synthesis was also 
attenuated by the NMDA antagonist agmatine via inhibition 
of NOS [45]. Previous studies also reported that endothelial 
NOS was attenuated by agmatine in cerebral ischemia in rats 
[23, 38]. Although a number of studies have explored the 
relationship between NMDAR and agmatine, determination 
of the full molecular interaction between these two could be 
an important finding in the treatment of various neurological 
disorders.

Non‑NMDA Receptors

According to the agonist preference, the non-NMDA recep-
tors are divided into two subclasses; α-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid receptors (AMPARs) 
and kainite receptors (KARs). Among all ionotropic and 
glutamate receptors, AMPARs are known for fast excita-
tory synaptic transmission and are densely dispersed in the 
mammalian brain, whereas KARs are generally copious in 
the least abundant NMDAR pathways. Both AMPAR and 

KAR are tetrameric and comprise GluA (1–4) and GluK 
(1–5) subunits, respectively [46, 47]. A high proportion 
of AMPARs and few KARs are impermeable to Ca2+. 
However, Ca2+-permeable AMPARs and KARs can regu-
late neurological disease processes in a similar manner to 
NMDARs [48, 49]. Ca2+-permeable AMPARs are typically 
expressed in hippocampal CA1 regional pyramidal neurons, 
and the increase in the number of AMPARs in the diseased 
brain indicates that they are of marked importance. A high 
number of AMPARs can decrease the vulnerability of the 
ischemic neurons, but a low number of AMPARs increases 
the vulnerability [50, 51]. Due to the higher excitotoxicity of 
NMDARs and AMPARs, the role of the KARs in excitotoxic 
cell death have received less focus. Of the five subunits of 
the KAR, GluK4 and GluK5 exhibit high agonist-affinity, 
and GluK4 is co-expressed pre-and post-synaptically with 
GluK2 in the CA3 region of the hippocampus, whereas the 
remaining subunits are expressed throughout the CNS [52, 
53]. Both AMPARs and KARs follow the same intracellular 
Ca2+ loading mechanism of cell death during ischemia, but it 
remains unclear whether Ca2+ overload is the sole reason for 
cell death. Koh et al. demonstrated that the divalent cation, 
Zn2+, to which AMPARs are permeable, contributes to neu-
ronal death via mechanisms such as poly ADP ribose poly-
merase activation, generation of ROS, and enzyme induction 
[54]. However, the pro-apoptotic c-Jun N-terminal kinase 
signaling cascade can be activated by over activation of the 
KAR subunit GluK2 in the ischemic brain [55]. The effect 
of agmatine on AMPARs and KARs has not been explored 
to the same extent as that on NMDAR. However, Neis et al. 

Fig. 2   Agmatine inhibits NMDAR activation. a at resting stage the 
pore of the NMDAR is blocked by magnesium ion. b In brain injury 
excessive glutamate release over-activate the NMDAR and transports 

the ion in and outside of the cell which causes Ca2+ excitotoxicity. c 
NMDA antagonist agmatine inhibits ionic transport via NMDAR and 
attenuates the Ca2+ excitotoxicity
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reported that agmatine has potential antidepressant prop-
erties via activation of AMPARs [56]. In their study, they 
found that the pretreatment of the agmatine (0.1 mg/kg oral) 
reduced the immobility time than the AMPAR antagonist 
treated mice in tail suspension tests. The pretreatment of the 
agmatine also increased the synaptic GluA1 and PSD95 pro-
tein expression and activated the PI3K/Akt/mTOR pathway. 
They suggested that the antidepressant effects of agmatine 
resemble the antidepressant effects of ketamine.

α2‑Adrenoreceptor/Imidazoline Receptor

Both the imidazoline receptor and the α2-adrenoreceptor 
are well-known components of the sympathetic nervous 
system, and their agonist have been used as a common drug 
to treat hypertension, pain and panic disorders, addiction, 
depression, and other behavioral disorders. However, due 
to difficulties regarding distinction of the functional proper-
ties of the α2-adrenoreceptor and the imidazoline receptor, 
researchers focused on the agents or endogenous ligands that 
could selectively identify the receptors and bind to them. 
The α2-adrenoreceptors are a family of G protein-coupled 
receptors (GPCRs) that can be found in both the CNS and 
the PNS and are pharmacologically divided into three 
subclasses: α-2A (CNS, sympatholytic), α-2B (blood ves-
sels, vasodepressor), and α-2C (CNS, sympatholytic) [57]. 
Structurally, the α2-adrenoreceptor has three extracellular 
domains (with small amino termini) and three intracellular 
domains (with large carboxy-termini), and the hydrophobic 
transmembrane domain consists of seven well-conserved 
helices (Fig. 3a) [58]. Henderson et al. suggested that these 
membrane spanning transmembrane domains form a pocket-
like structure, which serves as the ligand binding site for 
the adrenoreceptors [58, 59]. The notion of imidazoline 
receptors evolved while searching for the anti-hypertensive 
function of clonidine, an imidazoline compound, which was 
first thought to be a peripheral α2-adrenoreceptor agonist. 
However, recent studies suggested that the anti-hyperten-
sive function of clonidine and other imidazole-possessing 
ligands occurred via interaction with an imidazoline recep-
tor rather than binding to the α2-adrenoreceptor [60]. Sev-
eral imidazoline-like drugs have been developed, which 
selectively bind to the imidazoline receptors but have no 
affinity for α2-adrenoreceptors. The imidazoline recep-
tors have been identified as three distinct classes: I-1, I-2 
(I-2A, I-2B), and I3. The I-1 receptors regulate the sym-
pathetic inhibitory functions of the sympathetic nervous 
system and regulate the systolic and diastolic blood pres-
sure by reducing the peripheral resistance, and have been 
well-studied. The functions of the I-2 receptors are yet to 
be determined, but are suggested to be an important thera-
peutic target for pain and stroke [61, 62]. The I-3 receptors 
induce insulin secretion from pancreatic β cells. Agmatine 

was first purified as a clonidine displacing substance (CDS) 
from the α2-adrenoreceptors and named CDS by Atlas et al. 
[63]. Others later found that it also displaced imidazoline 
binding from I-1 and I-2 receptors [12, 64, 65]. Li et al. 
first reported the notion that the previously identified CDS 
was agmatine and could be formed in mammalian tissues 
[12]. Agmatine is considered to have therapeutic potential 
for treating pain, ischemic injury, and seizures. It has been 
suggested to regulate morphine-induced analgesia in SCI 
via a neuronal NOS-dependent mechanism involving the 
site-specific imidazoline receptors and α2-adrenoreceptors 
[42, 66, 67]. In mixed I-1/α2 agonists study showed that 
the anticompulsive-like effects of agmatine in OCD rodents 
were significantly related to imidazoline binding sites [68]. 
The anti-depressant, anti-convulsant, and memory retrieval 
effects of agmatine have been found to be associated with 
α2-adrenoreceptors in addition to NMDAR and NO [69–71]. 
The imidazoline receptors I-1/I-2 also interact with agmatine 
and reduce ethanol-induced anxiolysis, opioid withdrawal 
anxiety, and depression in mammals. Agmatine has greater 
potential to reduce morphine dependency than do other 
I-1-specific ligands such as moxonidine and rilmenidine 
[72–74]. Giusepponi et al. reported that agmatine has higher 
affinity and greater anti-addiction potential in the triple 
interaction among the imidazoline receptors I-1 and I-2 and 
α2-adrenoreceptors than in the double interaction of imida-
zoline receptors I-1 and I-2 only [75].

Fig. 3   Probable binding site for agmatine in GPCR types. a The 
transmembrane domain of GPCR types produce a channel for 
ion transport which also possess the ligand binding site. b Prob-
able mechanism of GPCR blockade by agmatine (Lig: ligand, Amg: 
agmatine)
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Acetylcholine Receptor

Acetylcholine receptors (AChRs) are divided into two 
groups according to their agonist; muscarinic (mAChR) 
and nicotinic (nAChR). Most AChRs are the associated with 
the parasympathetic nervous system. mAChRs are members 
of the α-branch of class A GPCRs and have five subtypes 
(M1–5) [76]. Although signal transduction via mAChRs is 
slow, these receptors were reviewed to be key components 
in several mammalian physiological processes such as 
smooth muscle contraction, heart rate regulation, glandular 
secretion, and many CNS functions [77, 78]. All mAChR 
subtypes are found in the CNS with higher expression in 
the cortex, hippocampus, and thalamus, but M1–M4 can be 
found in various tissues throughout the body. The extracellu-
lar domain of the mAChR binds with their activator (ACh), 
the intracellular carboxyl-terminal domain of the M1, M3, 
and M5 subtypes couples with the Gq-G protein, and that 
of the M2 and M4 subtypes couples with Gi/Go-G proteins 
[79]. The diseases and their pathophysiology related to the 
particular mAChRs are still poorly known due to the absence 
of specific small-molecule ligands. However, recent studies 
reviewed that the mAChRs are related to diseases such as 
AD, PD, Sjögren’s disease, schizophrenia, Chagas’ disease, 
various smooth muscle disorders such as overactive blad-
der, and chronic obstructive pulmonary disease [80–82]. The 
ionotropic nAChRs are ligand-gated ion channels found in 
both the CNS and PNS. Each nAChR is formed by homo-
meric or heteromeric pentamers from a group of sixteen 
subunits (α1–α7, α9–10, β1–β4, γ, δ, ε) [83]. nAChRs are 
also a member of the cys-loop receptor superfamily, which 
includes 5-hydroxytryptamine (5-HT), γ-aminobutyric acid, 
and glycine, and shares structural similarities such as two 
extracellular N- and C-terminal domains, four transmem-
brane domains, and a large cytoplasmic domain. The quater-
nary ammonium affinity-labeling test revealed that the qua-
ternary ammonium reagent could only label the α-subunits, 
which identified these subunits as the primary binding sites 
for the agonists [84]. nAChRs are expressed in the neuro-
muscular junction, autonomic ganglia, and synapses of the 
brain and spinal cord, and can functionally regulate clas-
sical neurotransmission (post-synaptic), neurotransmit-
ter release (presynaptic), and second messengers via Ca2+ 
signaling [83, 85]. The neurotransmitter release function 
of the nAChRs allows them to participate in mammalian 
cognitive functions such as learning, memory, and attention 
[86]. Numerous neurological pathologies, such as AD, PD, 
epilepsy, schizophrenia, and dysautonomia, are associated 
with nAChRs [87, 88]. In addition to chronic neurologi-
cal diseases, the central cholinergic system was reviewed 
to be associated with increased cortical perfusion in cer-
ebral ischemia via impaired ACh synthesis, and mAChRs 
in particular are associated with alteration of cerebral blood 

flow via vasodilation [89]. The neuromodulator agmatine 
can act on both of the AChR subtypes. However, until now, 
the efficacy of agmatine on nAChRs was more apparent 
than that on mAChRs. Loring et al. reported that agmatine 
can act as both a cation and a neuronal receptor antagonist 
[90]. Nicotine and other psychoactive drugs act on central 
nAChRs and mediate conditioned place preference, addic-
tion, depression, and anxiety. Even ethanol and morphine 
withdrawal syndrome has been reported to be attenuated by 
agmatine [91–96]. Studies suggested that agmatine modu-
lates neuropeptide Y-mediated neurotransmission in the 
brain to regulate nAChR-related anxiolytic function [97, 
98]. Scopolamine-induced learning and memory impairment 
have been reported to be reversed by exogenous agmatine 
treatment [99]. Thus, further study of agmatine and AChR 
function warrants more attention.

Voltage‑Dependent Calcium Channel

As a type of voltage-gated ion channel, voltage-dependent 
calcium channels (VDCCs) are activated by cell membrane 
depolarization and allow the densely-concentrated extracel-
lular calcium ions to flow into the cell and act as the second 
messenger of the electrical signals that transduce the mem-
brane potential in various excitable and non-excitable tissues 
such as cardiac and smooth muscle, neurons, and endocrine 
tissues. The fundamental activity of VDCCs is to couple the 
cell surface electrical signals with physiological intracellular 
processes such as calcium-dependent enzyme and protein 
modulation, contraction, gene expression regulation, and 
synaptic transmission. In a review Tsien et al., suggested that 
VDCCs are divided into two major groups; low-voltage acti-
vated (LVA) and high-voltage activated (HVA), according to 
their activation in response to the membrane potential [100]. 
Considering the cellular distribution, pharmacology, kinet-
ics, and single channel conductance, the HVAs are classified 
into L, P/Q, N, and R-types, whereas the LVA has only the 
T-type transient channel [101, 102]. VDCCs are reviewed to 
be heteromultimeric and comprise multiple subunits, such 
as the pore-forming common principal subunit Cavα1 and 
other ancillary subunits Cavα2δ1–4, Cavβ1–4, and Cavγ1–8, 
but the LVA channels are devoid of ancillary subunits [103]. 
Each Cavα1 subunit contains four transmembrane domains 
of six membrane-spanning helices each, S1–S6. Of these, 
the positively charged amino acids (lysine/arginine) of S4 
regulate the voltage-dependent activation of the VDCCs 
[104]. Cavα1 forms the selective pore for the ions and com-
prises the drug or ligand binding site. The large carboxy- 
and short amino-terminal of the Cavα1 subunit are located 
intracellularly. The different subtypes of VDCCs are associ-
ated with different neurological and non-neurological dis-
eases. Neurological diseases related to the VDCC subtypes 
and drug development targeting those subtypes have been 
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reported previously, including PD (L, T-types), AD (L-type) 
epilepsy (T, R-types), pain (L, N, R, T, and N-types), anxi-
ety/dependency (N-types), and febrile seizures (L, T-types) 
[105–107]. Wang et al., suggested that, although the neuro-
modulator agmatine does not exert any effect on Na2+ and 
K+ currents, it might have some physiological and pharma-
cological effects on the Ca2+ current via VDCC blockade in 
rat hippocampal neurons [108]. They also suggested that the 
mechanism underlying VDCC blockade involves reversible 
blocking of the L-type channel and few other subtypes, and 
is voltage-dependent [108, 109]. Wang et al. suggested that 
the presence of agmatine in the presynaptic region of the 
hypothalamic magnocellular neurons of the SON nuclei and 
PVN nuclei also regulates VDCCs to modulate neurotrans-
mitter release [110]. The N-type Ca2+ channels present in 
the sympathetic nerve terminals are reported to be inhibited 
by agmatine treatment, which reduced the intracellular Ca2+ 
and noradrenaline release by the I-2 receptor and eventually 
reduced the sympathetic vascular tone [111].

Acid‑Sensing Ion Channel

The extracellular acidic environment-sensing channels 
belong to a proton-gated ion channel family known as epi-
thelial Na+ channel/degenerin (ENaC/DEG) and termed 
acid-sensing ion channels (ASICs). ASICs and the other 
ENaC/DEG super family members share the same topologi-
cal structures, which comprise a properly organized large 
extracellular domain rich in cysteine, two hydrophobic trans-
membrane domains (TM1 and TM2), and small intracel-
lular N and C-termini [112, 113]. The extracellular loop, 
which spans the TM domains, harbors a pocket-like structure 
known as an “acidic pocket”, and is responsible for the acid-
dependent channel gating, desensitization, and response to 
extracellular regulators [114]. To date, four genes (ACCN1-
4) have been found that encode six different types of ASIC 
subunits. The various ASICs function in a range of extra-
cellular pH levels and can be located in both the CNS and 
PNS, such as ASIC1a (pH 5.8–6.8, CNS, PNS), ASIC1b 
(pH 6.1–6.2, PNS), ASIC2a (pH 4.5–4.9 CNS, PNS), 
ASICb (N/A, CNS, PNS), ASIC3 (pH 6.4–6.8, PNS), and 
ASIC4 (N/A, CNS, PNS) [115, 116]. Structurally, ASICs are 
trimers and can be both homomeric and heteromeric, e.g., 
homomeric ASIC1a and heteromeric ASIC1a/2b. ASICs 
are selectively permeable to Na+ but low amounts of other 
cations (Ca2+, K+, H+, and Li+) can also diffuse through 
ASICs. Pathophysiological events such as Inflammation, 
ischemia, hematoma, exercise etc. that cause the pH to fall 
below 7 and induce pain by stimulating nociceptive neurons 
are suggested to be regulated by ASICs [117]. However, the 
mechanism related to pain processing via ASICs is yet to 
be clarified. In addition to nociceptive functions, ASICs are 
also associated with other acute and chronic neurological 

diseases such as ischemic stroke, SCI, multiple sclerosis, 
HD, PD, migraine, glioblastoma, and epilepsy, and also 
with processes related to synaptic plasticity, learning, and 
memory [118–120]. Therefore, the study of modulators of 
ASICs has received much attention with regard to the treat-
ment of such neurological diseases. Li et al. reported that 
agmatine might act as an extracellular non-proton ligand 
for ASIC3 [121]. They demonstrated that agmatine and its 
analog, arcaine, can activate both homomeric and hetero-
meric ASIC3 channels even in neutral pH conditions, and 
that the mechanism of activation is not via Ca2+ chelation 
but rather by non-proton ligand-sensitive domain interaction 
[117, 121].

Serotonin Receptors

Serotonin, also known 5-HT, is the one of the oldest 
neurotransmitters and receptors and is thought to have 
appeared approximately 700–800 million years ago in 
single cell eukaryotes [122]. The serotonin receptors are 
known to control emotional and psychological events in 
various natural conditions. In 1957, Gaddum and Picarelli 
proposed that the 5-HT receptors were of two kinds; “M” 
receptors, which were likely found in nervous tissue, and 
“D” receptors, which were likely found in muscle. How-
ever, based on the pharmacological properties, the modern 
classification divides 5-HT receptors into seven classes: 
5-HT (1–7). All 5-HTs belong to the seven transmembrane 
domain-containing GPCR family with the exception of 
5-HT3, which is a ligand-gated ion channel. To date, sev-
eral subtypes of 5-HT1 (A, B, D–F), 5-HT2 (A–C), and 
5-HT5 (A and B) have been identified [123]. Structurally, 
5-HT receptors, as class A GPCRs, have seven transmem-
brane α-helices connected by large extracellular amino-
termini and short intracellular carboxy-termini. They also 
have an intra-membrane helix (H8), which is connected via 
three extracellular/intracellular loops (EL/IL). The bind-
ing pocket, which is partially covered by EL2, is located 
in TM3, 5–7, and EL2 and EL3 [124, 125]. Most of the 
5-HT receptors are found in the CNS and regulate animal 
and human behavioral responses e.g. anxiety, depression, 
locomotor activity, aggression, and other psychiatric con-
ditions [126]. Agmatine does not exert any direct effect 
on serotonin or serotonin release in PC12 neurons [127]. 
However, the antidepressant effect of selective serotonin 
reuptake inhibitors is suggested to be associated with 
agmatine-induced imidazoline receptor modulation [74]. 
Zomkowski et al. demonstrated that agmatine exerts an 
anti-depressant-like function involving the 5-HT1A/1B 
and 5-HT2 receptors in mice, as assessed by the forced 
swim test [128]. The 5-HT3 receptors can be inhibited by 
agmatine, which is about 4 ± 3%, lowest among all imi-
dazoline drugs [129]. In a recent study, researchers found 
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that the antidepressant effect of agmatine was not medi-
ated through serotonergic mechanism but via glutamater-
gic mechanism [130]. Agmatine was also reported to exert 
neuroprotective effects in response to corticosterone-medi-
ated injury, via α2-adrenergic and 5-HT2A receptor-reg-
ulated Nrf2 induction [131]. However the mechanism of 
GPCRs blockage by agmatine are yet to discover (Fig. 3b).

Role of Agmatine in CNS Disorders

The neuroprotective effects of agmatine were first reported 
by Gilad in 1996 [132]. Since then, these effects have 
been demonstrated by numerous studies of neurological 
diseases [18, 26, 132–136]. In most studies agmatine has 
been administered via intravenous, intraperitoneal or oral 
route in different dosages (in vitro ranging 10 nM–100 µM 
and in vivo from 20–100 mg/kg). In the following sec-
tion, we will discuss the role of agmatine in various CNS 
disorders.

Ischemic Stroke

Ischemic stroke, via occlusion of the cerebral artery(ies), 
results in energy depletion and subsequent death of cells 
in the vascular territory. This condition is a cause of long-
term disability and ranks as the third most frequent cause 
of death following heart disease and cancer; yet, despite the 
high prevalence, the number of approved therapies remains 
low [137]. Agmatine has been effective in ameliorating 
neuropathological damage in in vivo and in vitro models 
of ischemic stroke. Previous studies have reported that 
agmatine led to a reduction in the size of ischemic infarc-
tions or the loss of neurons under excitotoxic conditions in 
various stroke models in rodents [39, 41, 138]. Agmatine 
(100 µM) also improved the survival rate of neurons and 
astrocytes in vitro following ischemic and ischemia-like 
insults [139]. Additionally, Kim et al. reported that agmatine 
(100 mg/kg i.v.) mitigated the severe ischemia-induced neu-
ronal damage in a cat model, which was used to mimic the 
clinical situation of hyperacute ischemic stroke [140], and in 
mice model agmatine (100 mg/kg, i.p.) was able to attenu-
ate brain edema via regulation of aquaporin-1 expression in 
endothelial cells after experimental stroke [141]. Further-
more, agmatine treatment has been demonstrated to regulate 
neuroinflammation by decreasing the expression of proin-
flammatory factors such as nuclear factor kappa B (NF-κB) 
and matrix metalloproteinases in experimental stroke models 
[139, 142]. Therefore, the investigation of agmatine has clear 
clinical implication in terms of potential neuroprotective 
therapies for ischemic stroke and related conditions.

Traumatic Brain Injury (TBI) and Spinal Cord Injury 
(SCI)

TBI is a complex injury that occurs when an external force 
traumatically injures the brain. In the primary process, apop-
totic cell death and brain edema occur immediately after the 
insult. After a period of hours to days, TBI leads to brain 
edema and hemorrhage, which trigger the inflammatory 
response. Following TBI, agmatine treatment decreased 
necrosis, blood–brain barrier disruption, and brain edema by 
reducing the phosphorylation of mitogen-activated protein 
kinases, the expression of aquaporins, and the promotion 
of NF-κB nuclear translocation [143]. Agmatine (50 mg/
kg, i.p) was also able to improve the cortical lesion size, 
neurobehavioral outcome, and neuronal vitality, and reduce 
apoptosis, gliosis, increased hippocampal levels of gluta-
mate, nitric oxide (NO), lactate-to pyruvate ratio, glycerol 
levels, and intracranial hypertension induced by TBI [20, 
144]. Another condition associated with traumatic damage 
is spinal cord injury (SCI), which results in permanent dis-
ability or loss of movement and sensation below the site 
of injury, leading to paraplegia (thoracic level injury) or 
tetraplegia (cervical level injury). SCI causes neuronal and 
glial cell death, induces glial scar formation, and inhibits 
axonal regeneration and remyelination. Goracke-Postle et al. 
reported that agmatine was transported into spinal cord-
derived nerve terminals in a concentration- and temperature-
dependent manner [145]. Furthermore, agmatine (100 mg/
kg, i.p.) administration was able to accelerate the recovery 
of neurological function and prevent the loss of motoneurons 
in an SCI rat model of spinal cord ischemia [133]. Park et al. 
demonstrated that transplantation of human mesenchymal 
stromal cells transfected with the ADC gene improved loco-
motor function and the viability of neurons and oligodendro-
cytes after SCI [146]. Following SCI, agmatine can promote 
remyelination, increase neuronal viability, and interrupt glial 
scar formation, which are related to increased bone mor-
phogenetic protein (BMP) 2/7 expression in neurons, oli-
godendrocytes, and astrocytes. Furthermore, after complete 
spinal cord transection, agmatine can reduce collagen scar 
formation and enhance functional recovery associated with 
decreased tumor growth factor beta-2 and increased BMP-7 
expression [19, 147].

Alzheimer’s Disease (AD)

AD is a well-known degenerative brain disease characterized 
by the formation of amyloid-beta (Aβ)-containing plaques 
and intraneuronal deposits of neurofibrillary tangles [148]. It 
is the most common cause of dementia. Agmatine treatment 
improved the cognitive performance of rodents as assessed 
by the inhibitory avoidance task and the Morris water maze 
test [149, 150], and prevented morphine-induced memory 
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impairment in mice as assessed by the step-down inhibitory 
avoidance test [151]. In addition, agmatine pre-treatment 
reversed hippocampal extracellular-signal-regulated kinase 
and protein kinase B inactivation induced by scopolamine, 
suggesting that this endogenous substance may be a can-
didate treatment for amnesia [99, 152]. Our recent study 
demonstrated that agmatine (100 mg/kg i.p.) interrupted hip-
pocampal Aβ accumulation, prevented cognitive decline as 
assessed by the Morris water maze, and attenuated apoptosis 
and expression of nuclear factor (erythroid derived 2)-like 2 
(Nrf2)-mediated anti-oxidant signaling in a streptozotocin-
induced AD rat model [153]. Agmatine (40 mg/kg i.p.) was 
also capable of protecting against Aβ25-35-induced neuronal 
toxicity and memory deficits as assessed by behavioral tests, 
such as the elevated plus maze, open field, memory version 
of the water maze task, and object recognition memory task 
[154]. In the mouse brain, agmatine suppressed the accumu-
lation of Aβ and phosphorylated-tau, which may contribute 
to reduce the cognitive decline in mice subjected to high-fat 
diet [148].

Parkinson’s Disease (PD)

Agmatine elicited neuroprotective effects in experimental 
models of PD, which is a chronic progressive disease char-
acterized by the degeneration of dopaminergic neurons in 
the substantia nigra [155–157]. Daily agmatine treatment 
attenuated the dopaminergic neurotoxicity in the mouse 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
model of PD [157]. A recent study reported that agmatine 
(30 mg/kg i.p.) repeatedly attenuated short-term memory 
and motor impairments induced by intranasal administra-
tion of MPTP in 15-month-old mice, which also causes a 
decrease in hippocampal glutamate uptake. In the human-
derived dopaminergic neuroblastoma cell line (SHSY5Y), 
agmatine (10–500 nM) was capable of preventing cell dam-
age caused by exposure to rotenone in a PD model [156]. 
It’s beneficial effect could be associated with blocking of 
NF-κB nuclear translocation, suppression of ROS levels, 
and interruption of the apoptosis signaling cascade [155]. 
These results are associated with reducing oxidative dam-
age and apoptotic cell death by agmatine in experimental 
models of PD.

Epilepsy

Epilepsy is a neurological disorder characterized by epi-
leptic seizures, which increases with age. Indeed, agmatine 
appears to play an anti-epileptic role. It plays an anti-sei-
zure role against maximal electroshock seizures (MES), an 
experimental model for generalized tonic–clonic seizures, 
in both mice and rats [158]. Agmatine (100 mg/kg i.p.) also 
improves the anticonvulsant function of phenobarbital and 

valproate in the MES model [159], and enhances the anti-
convulsant effect of morphine or lithium chloride in mice 
via modulation of α2-adrenoceptors [160, 161]. In addition, 
agmatine mimicked the anticonvulsant effects of melatonin 
on the pentylenetetrazole (PTZ)-induced seizure thresh-
old in mice [162], and had strong anticonvulsant effects 
in MES- and glutamate-induced seizure models in mice. 
These effects were likely related to N-methyl-d-aspartate 
receptor (NMDAR) antagonism [163]. In the hippocampi 
of PTZ-induced seizure model mice, a high dose of agmatine 
(20–80 mg/kg i.p.) reduced astrocytic hyperplasia and neu-
ronal damage, indicating a reduction in the expression of the 
NR1 subunit of the NMDAR by agmatine [164]. This find-
ing supports the involvement of the glutamatergic system 
in the anticonvulsant effects of agmatine. Based on these 
studies, agmatine is effective as an antiepileptic agent, and 
its effects are likely related to the l-arginine-NO pathway.

Other Neuropsychiatric Disorders

The therapeutic effects of agmatine also have been studied 
in different other neuropsychiatric disorders such as autism, 
schizophrenia, obsessive–compulsive disorder (OCD), 
depression and anxiety-like behaviours. Autism, also known 
as autism spectrum disorder (ASD), is a neurobehavioral 
condition lacks in social interaction and developmental 
impairment of language and communication skills with 
restricted/repetitive behaviors. The plasma agmatine levels 
in the ASD patients have been found to be remarkably lower 
than the non-ASD patients which suggests the involvement 
of agmatine to the ASD pathogenesis [165]. In the valp-
roic acid animal model of autism agmatine ameliorated the 
ASD like symptoms by modulating the over-excitability of 
the neural circuit via inhibiting the over activation of the 
ERK1/2 signaling in the prefrontal cortex and hippocampus 
[166]. On the other hand, the plasma level of agmatine in the 
patients with schizophrenia found to be increased and in the 
rodent schizophrenia model agmatine, at a dose of (160 mg/
kg i.p.), disrupted the paradigm of prepulse inhibition (PPI) 
of the acoustic startle reflex [167, 168]. Kotagale et al., sug-
gested that agmatine alone can not induce schizophrenia like 
effects in rodents rather significant schizophrenic catalepsy 
can be found when agmatine (80 mg/kg i.p.) is injected into 
5-HT1A receptor antagonist pretreated rodents [169]. How-
ever, agmatine was found to rescue the negative and cogni-
tive schizophrenic symptoms but not the sensorimotor gating 
in MK-801-induced rat model of schizophrenia and pretreat-
ment of a low dose of agmatine (20 mg/kg i.p.) could rescue 
the psychotomimetic drug phencyclidine (PCP) induced PPI 
deficit [170]. In the OCD rodents agmatine can effectively 
reduces the compulsive like behaviours which might be 
related to NO in brain [171, 172]. The agmatine level in 
the postmortem brain of the individuals with/without major 
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depressive disorder (MDD) and suicide found to be lower 
than the normal individuals [173]. In the stress induced and 
CREB-regulated transcription coactivator 1 (CRTC1) knock-
out rodent models of depression agmatine showed marked 
anti-depressive and anti-anxiolytic effects through oxidative 
homeostasis pathway which may also involve serum CORT 
and BDNF levels [131, 174, 175].

Conclusion

The presence of agmatine in mammals was first noted in 
1994 after its initial discovery by Nobel Laureate Albre-
cht Kossel in 1910. In mammals, it was identified as a 
CDS while searching for the endogenous ligand for I-1. A 
wide range of studies have since been performed and have 
shown that agmatine possesses most of the characteristics 
of an endogenous neurotransmitter and can bind to a vari-
ety of receptors or ion channels and modulate their func-
tions (Fig. 4). Previous studies showed that, by modulating 
receptors or ion channels, agmatine exerted protective effects 
in many chronic and acute neurological diseases such as 
ischemic stroke, traumatic injury, AD, PD, schizophrenia, 

anxiety, depression, autism, and addiction. In addition to 
neuroprotection against neurological diseases, agmatine has 
been reported to function as an anti-diabetic, anti-hyper-
tensive, nephron-protective, and gastro-protective drug. Our 
review provides a brief summary of the diseases related to 
the nervous system, and receptors and ion channels acted 
upon by this primary amine. This review will provide the 
basic information to the researchers studying the functional 
mechanism of agmatine on those receptors and ion channels 
which are not clearly understood yet. However, to perfect 
the use of agmatine as a choice pharmacological agent, a 
wide range of future studies are needed in order to determine 
its ligand binding and functional mechanisms related to the 
receptors and ion channels.
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