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Introduction

Morphine is an opioid widely used for clinical pain manage-
ment, however, its misuse might result in addiction [1]. The 
current main treatment for opioid addiction is agonist sub-
stitution therapy, which uses long-duration opioid agonists, 
such as methadone or buprenorphine. However, this treat-
ment is associated with several problems, such as limited 
number of patients and community acceptance. Moreover, 
methadone itself has addictive effects. Furthermore, most 
patients relapse after treatment termination [2]. Withdrawal 
from repeated exposure to abused drugs results in a series 
of negative emotions, such as anhedonia, dysphoria, and 
anxiety, which contributes to the compulsive maintenance of 
drug intake and relapse to drug use [3]. Morphine-depend-
ent rats exhibit somatic signs, withdrawal such as wet dog 
shakes, teeth chattering, piloerection, sniffing, irritability, 
and episodes of writhing after opiate [4]. Despite the numer-
ous studies devoted to morphine dependence, the cellular 
and molecular mechanisms of chronic opioid exposure lead-
ing to intracellular changes remain poorly understood [5, 6]. 
This study aims to elucidate the accurate mechanism respon-
sible for opioid addiction to develop effective compounds.

Studies have shown that opioid addiction and withdrawal 
are related to the regulation of dopamine, glutamate, and 
opioid receptors. Morphine can combine with mu opioid 
receptors (MORs), delta opioid receptors (DORs), and kappa 
opioid receptors (KORs) to produce pharmacological effects. 
MOR and DOR can mediate the rewarding effects of opioid 
systems to induce the conditioned place preference (CPP) 
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behavior in animals [7–9]. MORs play a critical role in mor-
phine-dependent incidences via the protein kinase C alpha 
or other pathways. DOR subtype participates in morphine 
addiction by the formation of MOR–DOR dimers, whereas 
the activation of KOR inhibits the MOR–DOR-mediated 
rewarding effects of morphine [10]. Tyrosine hydroxylase 
(TH), a rate-limiting enzyme that occurs in dopamine bio-
synthesis, can modulate neuronal activities in the brain 
[11]. N-Methyl-d-aspartate (NMDA) receptor 2B (NR2B) 
is a subunit of the NMDA receptor (an ionotropic glutamate 
receptor) and plays a dominant role in CPP development and 
psychostimulant abuse [12]. In addition, previous experi-
ments have shown that chronic morphine exposure can sig-
nificantly up-regulate NR2B and TH expression in opioid 
addiction-related brain areas of mice [4, 10, 13]. Therefore, 
studying the changes on opioid, glutamate, and dopamine 
receptors in opioid-addicted animal brains can elucidate 
the mechanism of opioid addiction to provide direction and 
basis for researching opioid withdrawal drugs.

Sinomenine is an active compound from the plant 
Sinomenium acutum, known as Fang-ji or Qing-teng in 
Chinese. Sinomenine exerts a variety of pharmacological 
effects, including anti-inflammatory, antiangiogenic, anti-
arrhythmic, and immunosuppressive properties [14]. It has 
attracted considerable interest due to its potential effects on 
treating drug dependence. Its chemical structure is similar 
to that of morphine (Fig. 1); however, sinomenine causes 
neither psychological nor physical drug dependence and 
could attenuate morphine-induced tolerance and morphine 
withdrawal symptoms, which may associate with its agonist-
like action to regulate MOR or other neural systems in the 
brain [15–17]. Our previous animal experimental research 
has confirmed that alcohol extracts from sinomenine can 
inhibit the release of neurotransmitters and regulate the con-
centration of intracellular calcium to alleviate withdrawal 
contractile response of morphine-dependent ex vivo ileum 
from guinea pigs and withdrawal syndromes of morphine-
dependent mice [18]. Moreover, we also found that sinome-
nine can effectively inhibit naloxone-precipitated withdrawal 
response in morphine-dependent animal models in vivo and 
in vitro [19, 20]. By establishing the CPP mouse model, 

we suggested that sinomenine can inhibit the acquisition 
of place preference induced by morphine [21]. All studies 
indicated that sinomenine may exert certain effects on drug 
dependence treatment.

In this study, we aimed to investigate the inhibitory 
effects of sinomenine on morphine-induced CPP in mice and 
elucidate the possible molecular mechanisms of sinomenine 
detoxification by measuring the expression levels of TH, 
NR2B, MOR, and DOR in mouse brains.

Materials and Methods

Animals

Kunming mice weighing 20–25 g were provided by the 
Experimental Animal Center of Southern Medical Univer-
sity (Guangzhou, China). Prior to testing, the animals were 
habituated to laboratory conditions (temperature: 20 ± 2 °C, 
humidity: 55 ± 5%, and 12/12 h dark-light cycle: lights on 
from 7:00 a.m. to 7:00 p.m.) for 1 week. All mice had free 
access to food and water. Animal care and procedures strictly 
followed the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health and were approved 
by the Experimental Animal Ethics Committee of Southern 
Medical University.

Drugs and Reagents

Morphine hydrochloride (No. 710303) was purchased from 
the medication supply station of the Chinese People’s Liber-
ation Army General Logistics Department, China. Sinome-
nine (No. 20000528, purity 99.7%) was bought from Hunan 
Zhengqing Co., Ltd., China. Methadone (No. 020111) was 
obtained from the Central Pharmaceutical Co., Ltd., Tian-
jin, China. Anti-NMDAR2B Antibody (AB1557P) and 
Anti-Tyrosine Hydroxylase Antibody (AB152) were bought 
from Millipore, USA. Protein assay reagents A (500-0113, 
Bio-Rad) and B (500-0114, Bio-Rad), APS (A3678), Sigma 
extraction reagent (71009-3, Novagen), protein inhibitor 
(539134, Calbiochem), and all other chemicals and rea-
gents were of standard quality for commercially available 
biochemicals.

Conditioned Place Preference Procedure

The CPP apparatus consisted of two equal-sized compart-
ments (15 × 15 × 15 cm): one with a white box and the 
other with a black box, joined by a sliding board. For test-
ing, the sliding door was raised above the floor to allow the 
mice free access to both sides of the box [22]. The time the 
mice spent on the box was calculated. The activity routes 

Fig. 1   a Structural formula of sinomenine. b Structural formula of 
morphine
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of the mice in the box were video recorded and analyzed 
using the Noldus EthoVision XT 8.5 software (Noldus, 
Wageningen, Netherlands).

Experimental Design

All mice were tested before the CPP experiment. In brief, 
the sliding board in the CPP apparatus was removed, 
which allowed the mice to move freely. The mice were 
placed in the middle of two parts, and then the time the 
mice stayed in each side was recorded within 15 min. The 
result showed a significant difference between the time of 
mice spent on the white compartment (595.20 ± 38.37 s, 
n = 60) and the time of mice spent on the black compart-
ment (304.80 ± 38.37 s, n = 60) (**P < 0.01), which sug-
gested that almost all mice preferred the black box. There-
fore, we chose the white compartment as the medicine 
compartment. The mice that showed significant preference 
for one side of the apparatus were removed. Fifty quali-
fied mice were selected after the CPP test to assess the 
effect of sinomenine on the morphine-induced CPP mice. 
These mice were randomly divided into five groups: (1) 
control group, (2) morphine model group (9 mg/kg), (3) 
morphine with low dose of sinomenine group (40 mg/kg), 
(4) morphine with high dose of sinomenine group (80 mg/
kg), and (5) morphine with methadone group (15 mg/kg).

The CPP test consisted of three phases and was con-
ducted within 8 consecutive days. For the pre-conditioning 
phase (days 1–3), the mice were placed under the door, 
which was left open to allow free access to the entire 
box for 5 min daily. During the conditioning phase (days 
4–7), the door was closed to separate the two boxes and 
mice underwent two conditioning sessions. On day 4, 
the first session was performed in the morning. All mice 
received morphine (9 mg/kg, s.c.) except for the control 
group mice, which were treated with the same volume of 
physiological saline and then immediately confined to the 
white compartment for 1 h. After an interval of 8 h, the 
second session of the day began. All mice were treated 
with saline (0.3 ml, s.c.) and immediately confined to the 
black compartment for 1 h. In the following days (day 
5–7), 30 min before the start of the first session in the 
morning, the mice in the control group were injected with 
saline (10 ml/kg, i.p.), those in the sinomenine group were 
treated with different doses of sinomenine (40 and 80 mg/
kg, i.p.), and those in the methadone group were injected 
with methadone (15 mg/kg, s.c.); then, the same schedule 
as day 4 was followed. Twenty-four hours after the last 
morphine-paired conditioning trial (day 8), the duration 
that the mice spent in the white compartment was calcu-
lated within 5 min, and the activity routes of the mice were 

video recorded and analyzed using the Noldus EthoVision 
XT 8.5 software (Noldus, Wageningen, Netherlands).

Immunohistochemistry for TH and NR2B Expression 
Levels

The mice were killed through cervical dislocation after the 
CPP test. The brains were fixed with 4% paraformaldehyde 
in phosphate buffer saline (PBS, pH 7.4) at 4 °C for 24 h. 
They were sectioned using a vibratome at 3 µm, deparaffi-
nized with xylene, and dehydrated in decreasing concen-
trations of alcohol. After blocking the endogenous peroxi-
dase activity in 3% H2O2 in PBS for 30 min, the slices were 
boiled for 10 min under pressure in citrate buffer for antigen 
retrieval. Nonspecific binding was blocked with 5% bovine 
serum albumin in PBS for 15 min. The tissues were incu-
bated with primary antibodies for anti-TH and anti-NR2B 
(1:200 dilution; Millipore, Billerica, MA, USA) in PBS con-
taining 5% bovine serum albumin overnight at 4 °C. Brain 
slices were then washed thrice with PBS and incubated with 
horseradish peroxidase-labeled goat anti-rabbit IgG as the 
secondary antibody for 1 h at room temperature. After rins-
ing, the sections were immersed in DAB/H2O2 for a reason-
able time, stained with hematoxylin for 80 s, and then sealed 
with neutral gum. Tissue images were captured using a light 
microscope. The positive expression levels of TH and NR2B 
in the hippocampuses of the mouse brains were defined as 
the appearance of brown particles in the cell nuclei. Image-
Pro Plus 6.0 image analysis software was used to measure 
the integrated optical density of the positive cells, and the 
mean value of the group was noted as the relative contents 
of TH and NR2B [22].

Quantitative Reverse Transcription Polymerase Chain 
Reaction for MOR and DOR Expression Levels

Total RNA from mouse brains was extracted using the RNe-
asy kit (Takara Biotechnology, Dalian, China). Reverse 
transcription and complementary DNA (cDNA) ampli-
fication were performed according to the manufacturer’s 
instructions (Takara Biotechnology, Dalian, China). The 

Table 1   Primer sequence of RT-qPCR assay

Primer name Primer sequence (F: upstream primer, 
R: downstream primer)

MOR F: CCA​GGG​AAC​ATC​AGC​GAC​TG
R: GTT​GCC​ATC​AAC​GTG​GGA​C

DOR F: GCT​GGT​GGA​CAT​CAA​TCG​G
R: GCG​TAG​AGA​ACC​GGG​TTG​AG

β-actin F: TGA​CAG​GAT​GCA​GAA​GGA​GA
R: CGC​TCA​GGA​GGA​GCA​ATG​
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primer sequences (Table 1) were designed and synthesized 
by Invitrogen Inc. (Shanghai, China). Relative quantitative 
real-time PCR was used to assess the mRNA levels of these 
genes (ABI 7500 real-time PCR detection system), in which 
β-actin was used as an internal control and was measured in 
each sample. The mixture was prepared by combining 10 µl 
of SYBR Green Mix (2X), 1 µl of cDNA template, 1 µl of 
primer pair mix (5 pmol/ml each primer), and 8 µl of double 
distilled water. The total volume of each combined reac-
tion mixture was 20 µl. Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) amplification was 
conducted under the following conditions: cDNA synthesis 
at 50 °C for 2 min, RT inactivation at 95 °C for 2 min, 40 
cycles of denaturation at 95 °C for 15 s, and annealing at 
60 °C for 1 min. The dissociation reactions were performed 
on the qPCR system at 95 °C for 15 s, 60 °C for 1 min, and 
95 °C for 15 s. All reactions were run in triplicate and inde-
pendently repeated at least thrice.

Fig. 2   Time of mice spent in the white (morphine-induced) com-
partment after treatment with sinomenine. Data are shown as 
means ± SD, n = 10. *P < 0.05, **P < 0.01 versus control group; 
▲P < 0.05, ▲▲P < 0.01 versus morphine model group

Fig. 3   Activity routes of mice in the CPP compartment. a Control group, b morphine model group, c low dose of sinomenine, d high dose of 
sinomenine, e methadone group
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Statistical Analysis

Data are presented as mean ± SD. The statistical analysis 
was performed with SPSS software (version 21.0). Differ-
ences were tested for significance by one-way analysis of 
variance (ANOVA), followed by a post-hoc test with Bonfer-
roni correction when appropriate. A value of P < 0.05 was 
considered to be statistically significant.

Results

Effects of Sinomenine on the Time of Mice 
in the Morphine‑Induced Compartment

The effects of sinomenine on the time spent by the mor-
phine-induced CPP mice are shown in Fig. 2. Compared 
with the control group, morphine dramatically increased the 

Fig. 4   Micrographs of TH-positive cells in the hippocampus. a Control group, b morphine model group, c low dose of sinomenine, d high dose 
of sinomenine, and e methadone group
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time spent by mice in the white compartment (**P < 0.01). 
Compared with the morphine model group, the high dose of 
sinomenine (80 mg/kg) and methadone (15 mg/kg) signifi-
cantly reduced the time spent by mice in the white compart-
ment (**P < 0.01), and the values had no significant differ-
ence with those in the control group (P > 0.05). However, the 
low dose of sinomenine (40 mg/kg) showed no significant 
difference on the values (P > 0.05).

Activity Routes of Mice in CPP

As shown in Fig. 3, the activity routes of the morphine 
model group were significantly different from those of the 
control group. Compared with the morphine model group, 
the low (40 mg/kg) and high (80 mg/kg) doses of sinome-
nine significantly reduced the activity routes. Similar results 
can be observed in the methadone group.

Effects of Sinomenine on TH Expression

Immunohistochemistry results showed that the morphine 
and low dose of sinomenine groups (40 mg/kg) have a 
significantly increased number of TH-positive cells and 
significantly higher TH expression than the control group 
(**P < 0.01); by contrast, the values in the sinomenine 
(80 mg/kg) and methadone (15 mg/kg) groups showed no 
significant difference compared with that in the control 
group (P > 0.05). Compared with the morphine model 
group, high dose of sinomenine (80 mg/kg) and methadone 
(15 mg/kg) can significantly down-regulate the expression 
of TH (**P < 0.01). Moreover, no significant difference 
was observed in TH expression between the sinomenine 
(40 mg/kg) and morphine model groups (P > 0.05) (Fig. 4; 
Table 2).

Effects of Sinomenine on NR2B Expression

Immunohistochemistry results showed that the morphine 
group had a significantly increased number of NR2B-pos-
itive cells and significantly higher NR2B expression than 
the control group (**P < 0.01); however, the values in the 
sinomenine (80 mg/kg) and methadone (15 mg/kg) groups 
showed no significant difference compared with that in the 
control group (P > 0.05). Compared with the morphine 
model group, the high dose of sinomenine (80 mg/kg) and 
methadone (15 mg/kg) significantly down-regulated NR2B 
expression (**P < 0.01); however, no significant difference 
in NR2B expression was observed between the sinomenine 
(40 mg/kg) and morphine model groups (P > 0.05) (Fig. 5; 
Table 3).

Effects of Sinomenine on MOR and DOR Expression 
Levels

qRT-PCR was performed to determine the mRNA expres-
sion of MOR and DOR after the behavioral test extinction 
CPP testing. As shown in Table 4, the expression levels of 
MOR were significantly down-regulated in the morphine 
model and sinomenine (40 mg/kg) groups compared with 
those in the control group (**P < 0.01); however, the high 
dose of sinomenine (80 mg/kg) and methadone (15 mg/kg) 
reversed and significantly up-regulated the MOR expres-
sion (**P < 0.01). Compared with the morphine model 
group, MOR expression was significantly increased in the 
brains of mice in the high dose of sinomenine (80 mg/kg) 
and methadone groups (**P < 0.01). However, the low dose 
of sinomenine (40 mg/kg) did not significantly change the 
levels of MOR.

Compared with the control group, the expression levels 
of DOR were significantly down-regulated in the morphine 
model and sinomenine (40 mg/kg) groups (**P < 0.01). 
The low (40  mg/kg) and high doses of sinomenine 
(80 mg/kg) significantly lowered the DOR expression lev-
els (**P < 0.01). However, the values in the methadone 
(15 mg/kg) group were higher than those in the control 
group (**P < 0.01). In addition, compared with the mor-
phine model group, DOR expression in mice brains were 
significantly higher in the methadone group (**P < 0.01) but 
remained unchanged in the high and low dose of sinomenine 
groups (P > 0.05).

Discussion

CPP is a classical experimental model for evaluating drug 
dependence [23]. The conditioned mice exhibited a prefer-
ence for the environment that was previously paired with 
morphine in a drug-free condition [24]. When the morphine 
administration was repeatedly associated with a distinct cir-
cumstance, the circumstance served as a cue and induced 
positive subjective feelings even in the absence of the drug. 

Table 2   IOD of TH-positive cells in the hippocampus of mice in 
each group

Data are shown as means ± SD, n = 10. *P < 0.05, **P < 0.01 versus 
control group; ▲P < 0.05, ▲▲P < 0.01 versus morphine model group

Group Dose (mg/kg) (TH) IOD

Control – 7074.34 ± 874.77
Morphine model 9 11073.64 ± 2995.27**
Morphine + sinomenine 40 10959.94 ± 2822.44**
Morphine + sinomenine 80 8422.23 ± 2114.38▲▲

Morphine + methadone 15 7944.33 ± 2321.22▲▲
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In this study, the mouse model in the morphine-induced 
CPP was used to further investigate the anti-addictive effect 
of sinomenine and its underlying mechanisms by focusing 
on the neurotransmitters and their drug addiction-related 
receptors [25]. Methadone is a MOR agonist. Several studies 
indicated that blocking the NMDA receptor can mediate the 
pharmacological effects of methadone, attenuate morphine 

tolerance and dependence, and reduce the expression of CPP 
induced by morphine [26, 27]; moreover, methadone main-
tenance treatment is an effective intervention for treating 
heroin dependence and is widely used as an opioid replace-
ment therapy. Research suggests that a good maintaining 
effect was obtained for patients treated with 60 mg/day or a 
higher dose of methadone. According to the formula of dose 

Fig. 5   Micrographs of NR2B-positive cells in the hippocampus. a Control group, b morphine model group, c low dose of sinomenine, d high 
dose of sinomenine, and e methadone group
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conversion relationship between mice and humans, our pre-
vious toxicology measurement found that in mice, treatment 
with methadone (15 mg/kg) was safe, and no side effects 
were observed. Thus, methadone (15 mg/kg) was selected 
as the positive drug in this experiment [28–30]. In a previ-
ous study, we used morphine at a dose of 9 mg/kg to induce 
stable CPP with a reasonably low mortality [21]. The current 
results showed that morphine significantly increases the time 
spent and the activity routes of mice in the morphine-paired 
group compared with those of the control group, indicating 
successful morphine-dependent mouse CPP models. Metha-
done and high doses of sinomenine dramatically reversed the 
morphine-induced CPP effect in mice, which was similar to 
previous reports that sinomenine can suppress the acquisi-
tion of morphine-induced CPP in mice [21].

TH and NR2B were the primary substances in the cur-
rent research [22]. TH plays a key role in drug addiction in 
humans and animals. Its main function is to catalyze the 
conversion of l-tyrosine into l-dopa [31]. NMDA recep-
tors are involved in morphine tolerance and dependence; 
however, little is known about the roles of individual 
NMDA receptor subtypes [32]. For example, NR2B has a 
lower desensitization capacity and requires a longer recov-
ery time from desensitization than the NR2A subunits [33, 
34]. The reduced NR2B expression during development is 
marked by a concomitant change in the NMDA receptor 
function [35]. The functional properties of NR2B renders it 
an attractive target in studying the mechanisms behind the 
experience-dependent changes in behavioral responses [32]. 

Therefore, we selected the morphine dependence-associated 
substances, TH and NR2B, as the biochemical indicators in 
detecting the morphine-dependent formation in the mouse 
brains to evaluate the morphine-associated neurobiological 
mechanisms.

Immunohistochemistry results showed that morphine-
positive cells were significantly increased in the brains of 
the model group, indicating that morphine can increase 
the density of positive neurons in the mouse brains. The 
increases in TH- and NR2B-positive neurons have certain 
connections with CPP, and these might be among the neu-
robiological mechanisms involved in the changes in ani-
mal behavior. Compared with the morphine model group, 
the methadone can significantly inhibit the expression 
levels of TH and NR2B in mouse brain induced by mor-
phine. The low and high doses of sinomenine dramatically 
reduced the expression levels of TH and NR2B, indicating 
that sinomenine has inhibitory effects on the CPP in mice 
induced by morphine. Therefore, sinomenine may down-
regulate the expression levels of TH and NR2B.

Numerous studies have revealed that the endogenous 
opioid system plays a key role in regulating mood and 
reward and is central in modulating addictive behavior 
[36]. Some in vitro studies demonstrated that the down-
regulation of opioid receptors follow the tolerance induced 
by chronic agonist exposure [37, 38]. Moreover, chronic 
morphine exposure will change DOR function, and aber-
rant DOR activity may contribute to the behavioral dis-
order caused by repeated MOR activation [39]. Shippen-
berg TS et al. found that the DOR antagonist naltrindole 
inhibited morphine-induced CPP [40]. Chefer et al. also 
reported that morphine tolerance and reward decreased 
in DOR gene knockout rats [41]. The present study used 
qRT-PCR to examine the alterations in the mRNA expres-
sion levels of MOR and DOR in the brains of morphine 
CPP mice. We found that the mRNA levels of MOR and 
DOR decreased in the morphine model group, whereas 
sinomenine significantly reversed this down-regulation 
and up-regulated the MOR mRNA expression levels to a 
certain extent compared with those in the control group. 
However, the mRNA level of DOR may not be involved in 
this process. The increased mRNA level of MOR indicated 

Table 3   IOD of NR2B-positive cells in the hippocampus of mice in 
each group

Data are shown as means ± SD, n = 10. *P < 0.05, **P < 0.01 versus 
control group; ▲P < 0.05, ▲▲P < 0.01 versus morphine model group

Group Dose (mg/kg) (NR2B) IOD

Control – 5968.29 ± 2104.23
Morphine model 9 12618.01 ± 1643.75**
Morphine + sinomenine 40 12258.92 ± 1899.34**
Morphine + sinomenine 80 7789.57 ± 1626.45▲▲

Morphine + methadone 15 7643. 73 ± 1846.44▲▲

Table 4   Relative content of 
MORs and DORs in mouse 
brain

Data are shown as means ± SD, n = 10. *P < 0.05, **P < 0.01 versus control group; ▲P < 0.05, ▲▲P < 0.01 
versus morphine model group

Group Dose (mg/kg) MOR DOR

Control – 1.00 ± 0.00 1.00 ± 0.00
Morphine model 9 0.78 ± 0.08** 0.67 ± 0.05 **
Morphine + sinomenine 40 0.80 ± 0.19** 0.69 ± 0.26**
Morphine + sinomenine 80 1.29 ± 0.11**▲▲ 0.71 ± 0.13**
Morphine + methadone 15 1.26 ± 0.08**▲▲ 1.08 ± 0.11**▲▲
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that the anti-morphine dependence of sinomenine is asso-
ciated with the ameliorated content of MOR but not the 
mRNA level of DOR in mouse brains.

In summary, our research showed that sinomenine 
reverses the expression of morphine-induced reward effect, 
as mediated by the regulation of TH, NR2B, and MOR 
expression levels in the mouse brains. Therefore, sinome-
nine can be developed to treat or prevent morphine abuse. 
Further study is needed to clarify the possible mechanisms 
of the effect of sinomenine in morphine dependence to 
provide new directions for studying the mechanisms 
underlying drug addiction.
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