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Abbreviations
ADRP	� Adipose differentiation-related protein
AD	� Alzheimer’s disease
CNS	� Central nervous system
JNK	� c-Jun-N-terminal kinase
DAG	� Diacylglycerols
DHA	� Docosahexaenoic acid
ER	� Endoplasmic reticulum
HSN-1	� Hereditary sensory neuropathy type 1
LBs	� Lipid bodies
LPS	� Lipopolysaccharide
LXRs	� Liver X receptors
OGA	� O-GlcNAcase
SPT	� Palmitoyltransferase
SNAP23	� Synaptosome-associated protein 23
CPT2	� Palmitoyltransferase 2
PD	� Parkinson’s disease
PS	� Phosphatidyl serine
SREBP	� Sterol regulatory element binding protein
TEM	� Transmission electric microscopy
TAG	� Triacylglycerols

Introduction

Lipid bodies (LBs), also referred to lipid droplets (LD), 
lipid particles and liposomes, are dynamic lipid-rich orga-
nelles of various sizes and compositions that contain neu-
tral lipids, such as triacylglycerols (TAG), diacylglycerols 
(DAG) or steryl esters [1]. The LB surface is composed 
of a monolayer of amphipathic phospholipids, glycolipids 
and/or sterols [2] and is also decorated with various pro-
teins, such as PAT family proteins (perilipin, adipose differ-
entiation-related protein (ADRP), tail-interacting protein of 
47 kDa (TIP-47) and caveolins [3]. Although the functions 
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of these proteins on LBs were still not fully understood, 
the identities and functions of various proteins have been 
revealed gradually by proteomics analyses. These surface 
proteins play vital roles in the formation, maintenance, 
metabolism and degradation of LBs under the influence 
of various stimuli and physiological conditions. LBs were 
first thought to serve as a reservoir of lipids and to play a 
vital role in lipid metabolism. However, research suggests 
that LBs are closely related to atherosclerosis, metabolic 
disorders [4], cancer [5] and especially, aging and aging-
related diseases. Evidence suggests that LB accumulation 
in the microglia during the aging process is associated with 
remodeling and altered interactions with other organelles 
[6]. Thus, we hypothesized that LBs play important roles in 
brain aging, especially in some neurodegenerative diseases.

Microglial cells are the resident macrophages and 
immune cells in the central nervous system (CNS) and play 
an important role in the aging process [7–9], neuroinflam-
mation and as well as neuron circuit integrity and plastic-
ity [10]. Most popular models of the aging process and 
other studies suggest that LBs originate in the endoplasmic 
reticulum (ER) [11]. ER stress and mitochondrial defects 
are characteristic of brain aging and result in the microglial 
cell activation. Another key consequence of mitochondrial 
dysfunction and reactive oxygen species (ROS) genera-
tion is the accumulation of LBs [12]. Activated microglia 
secretes proinflammatory cytokines, nitric oxide (NO) and 
ROS [13, 14]. These inflammatory conditions induce LBs 
to undergo a variety of changes via specific signaling path-
ways. All these reports imply that LBs play a pivotal role in 
brain aging.

Dysregulated microglia play a vital role in aging and 
related neurodegenerative conditions, such as Alzheimer’s, 
Parkinson’s, and Huntington’s diseases as well as in schizo-
phrenia [15]. The disruption of cholesterol metabolism and 
inflammation is closely linked to the initiation and pro-
gression of AD, which is modulated by liver X receptors 
(LXRs). APP/PS1 transgenic mice lacking either of the 
Lxrα or Lxrβ genes exhibit an increasing amyloid plaque 
load [16]. The disruption of LXRα or LXRβ also leads to 
excessive LB accumulation in mouse brain [17] We have 
summarized these studies in this review and proposed three 
potential mechanisms of LB formation. We also discuss 
reduction in LB numbers and remodeling as a therapeutic 
strategy in neurodegenerative diseases.

LB Formation in Microglia

LBs exist in different cell types in various numbers and 
sizes, potentially reflecting lipid storage capacity. It is 
widely accepted that LBs originate in the ER [18–20]. 
LBs could be formed under two distinct but not mutually 

exclusive environmental conditions. First, LBs accumulate 
in cells in response to exogenous lipid availability [21]. 
Studies have shown that free fatty acids (FAs) and choles-
terol from serum lipoproteins induce the formation of LBs, 
probably to meet the needs of the cell in terms of energy 
generation and biosynthesis of steroid hormones [22, 23]. 
Second, LB biogenesis is induced by a variety of cellular 
stress conditions, including starvation [24], inflammation 
and oxidative stress [21], the latter being closely associated 
with the aging process in microglia. Based on this emerg-
ing evidence, we propose three potential molecular mecha-
nisms to account for the formation of LBs; these mecha-
nisms are summarized in Fig. 1.

The first two potential mechanisms are based on the 
observation that LB formation in the microglia is induced 
by ROS, generated either in the microglial cell itself or 
in neurons in the vicinity. This discovery was the result 
of intense investigations and continues to be a focus of 
research [25]. Although the relationship between ROS and 
LB formation has been known for some time, this associa-
tion in the context of microglia has only recently been dis-
covered. Lee et al. showed that ROS induced by hyperoxia/
hypoxia resulted in loss of mitochondrial DNA (mtDNA) 
and also enhanced LB formation. This group also showed 
that LB formation is greatly influenced by heme oxygenase 
(HO)-1, an inducible stress protein [21]. Subsequently, 
Khatchadourian et  al. reported that ROS produced by 
lipopolysaccharide (LPS)-stimulated microglia induce LB 
formation via the JNK and p38 MAPK stress signaling 
pathways, in which LD-associated protein perilipin-2 (also 
known as adipose differentiation-related protein, ADRP) 
and cytosolic phospholipase A2 (cPLA2-α) play vital roles 
[25]. The mechanism by which ROS induce LB formation 
and their relationship with neurodegeneration represent a 
current focus of research in this area. Recently, Liu et  al. 
demonstrated that ROS induced by mitochondrial defects 
in microglia stimulated the formation of LBs and promoted 
neurodegeneration [12]. In fact, a number of seemingly 
autonomous observations indicate the close relationship 
between LBs and neurodegeneration. These observations 
include the discovery of mitochondrial mutants that are 
closely associated with neurodegenerative diseases and 
aging [26] as well as the correlation between LB accumula-
tion and increased ROS, an effect that is ameliorated by a 
reduction in ROS. Furthermore, elevated ROS levels pro-
mote JNK/SREBP activation, which leads to LB accumula-
tion and most importantly, to a reduction in LBs in micro-
glia resulting in delayed neurodegeneration. Based on these 
observations, it was concluded that ROS and mitochon-
drial dysfunction stimulates neuronal c-Jun-N-terminal 
kinase (JNK) and sterol regulatory element binding protein 
(SREBP) activity, leading to LB accumulation in micro-
glia, and probably resulting in neurodegeneration [12].
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Thus, we postulate three possible mechanisms for LB 
formation. The first mechanism proposed for LB formation 
is based primarily on experiments involving LPS-induced 
ROS produced in microglia. LPS is an outer cell wall 
component of Gram-negative bacteria that is widely used 
to induce ROS generation both in  vivo and in  vitro [27]. 
LPS is also often used as a proinflammogen to stimulate 
the microglial activation that occurs as part of the aging 
process [28]. Normally, LPS binds to TLR4 to activate 
downstream signaling of mitogen-activated protein kinase 
(MAPK), JNK and p38 [29]. MAPK kinases (MKK) phos-
phorylate p38 and JNK, with resulting activation of the 
downstream targets activator protein-1 (AP-1) transcription 
complex (c-Jun/ATF2) and ELK1. This activation of AP-1 
induces proinflammatory cytokine expression, which is the 
key characteristic of microglia in the aging process [30]. 
Activated AP-1 binds to the Ets/AP-1 binding site, increas-
ing the expression of perilipin-2, a key regulator of LB 
formation [31]. This increased perilipin-2 expression stim-
ulates LB formation not only in macrophages, but also in 

microglia [25, 31]. In addition to LPS, oleic acids or low-
density lipoproteins have also been shown to induce per-
ilipin-2 expression [32, 33]. Although the detailed mecha-
nism by which perilipin-2 influences LB formation remains 
to be fully elucidated, a number of hypotheses have been 
proposed. One is based on the location of perilipin and 
other enzymes in the ER, where triglycerides accumulate 
at privileged sites to form nascent LD [11]. The binding 
of perilipin-2 to LBs does not require other LD proteins, 
which suggests that perilipin-2 is probably one of the first 
proteins to bind to LBs [34]. However, there is no direct 
evidence that perilipin-2 is located in the ER. Alternatively, 
binding of perilipin-2 to phospholipids at the surface of the 
nascent LD occurs via hydrophobic and electrostatic inter-
actions. This binding results in accumulated binding of 
more lipoproteins and continuously increased size until the 
LD becomes large enough to bud from the ER, forming a 
new LB [35, 36]. This hypothesis is supported by several 
studies showing that perilipin-2 in the cytosol binds to LD 
in  vitro without the assistance of other LD proteins, and 

Fig. 1   Three postulated models of lipid body formation cell.  LBs 
consist of a monolayer of amphipathic phospholipids decorated with 
various proteins (such as perilipin-2 and TIP-47 as shown in above). 
The figure shows three possible models for LB formation. (1) The 
first model is characterized by LPS-induced perilipin-2 expression. 
ILR4 phosphorylates TAK1 following LPS stimulation, and induces 
MKK phosphorylation. Phosphorylated MKKs activate the JNK and 
p38 pathways, leading to LB formation through expression of per-

ilipin-2 by activating the downstream targets, AP-1 and ELK1. (2) In 
the second model, mitochondrial defects increase ROS production, 
which further activates the JNK and Akt-mTORC1-SREBP pathways 
in neurons, leading to accumulation of LBs in the surrounding micro-
glia. (3) In the third model, the absence or dysfunction of CPT2 pre-
vents the entry of TAG into the mitochondria for β-oxidation, leading 
to cytosolic accumulation and LB formation 
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also that perilipin-2 interacts directly with other LD pro-
teins [34, 37–39].

The second proposed mechanism of LB formation 
involves defects in neuronal mitochondria that lead to 
elevated levels of ROS, resulting in activation of the JNK 
signaling pathway and also SREBP. This important regu-
lator of LB biogenesis is a highly conserved, membrane-
bound, basic helix-loop-helix leucine zipper transcription 
factor that is crucial for lipid homeostasis [12, 40]. This 
activation of JNK and SREBP in neurons induces accumu-
lation of LBs in glial cells, including microglia. However, 
the specific mechanism of LB formation in response to this 
stimulation by surrounding neurons remains unknown and 
it is noteworthy that mitochondrial defects in neurons, but 
not in glial cells, induce downstream LB accumulation in 
microglia [12].

In addition to non-cell-autonomous LB accumulation, 
LBs can also accumulate in microglia in a cell-autonomous 
manner. Thus, a third explanation for LB accumulation 
in microglia is raised. Triglycerides (TAGs) accumulate 
to form abundant LBs in glial cells, including microglia, 
which lack the mitochondrial enzyme carnitine palmi-
toyltransferase 2 (CPT2) that is necessary for β-oxidation 
of long-chain FAs [41, 42]. This accumulation of LBs 
has also been observed in  vitro [43]. CPT2 catalyzes the 
replacement of carnitine by CoA, which is catabolized by 
β-oxidation and generates ATP in brain tissues [44, 45]. In 
the absence of CPT2 in microglia, TAGs do not undergo 
β-oxidation in mitochondria, resulting in LB accumulation 
in the microglial cytoplasm and a reduction in the energy 
supply to the surrounding neurons. This suggests a pos-
sible relationship between LB accumulation and neurode-
generative diseases via a mechanism that does not involve 
SREBP, which is an important molecule in non-cell-auton-
omous LB accumulation [41].

Lipid Bodies and Neurodegenerative Diseases

LBs are associated with neurodegenerative diseases, 
although LB accumulation has not been reported in patients 
with neurodegenerative diseases such as Leigh Syndrome 
or in corresponding animal models resulting from LBs’ 
transient accumulation and intensive occurrence during 
the presymptomatic stages [12]. Nevertheless, an associa-
tion between LB accumulation and neurodegenerative dis-
eases is indicated based primarily on evidence that LBs 
release proinflammatory molecules. Some studies have 
shown an increasing number of LBs and alterations in lipid 
metabolism in autosomal dominant neurodegenerative dis-
eases, including Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), although the specific mechanisms remain 
unknown.

Alzheimer’s Disease

AD, which is the most common neurodegenerative disease, 
is closely associated with aging, microglia and the metabo-
lism of lipids, such as cholesterol, resulting in amyloid β 
accumulation. However, the association of LBs with AD 
has recently been revealed with the discovery of protein-
O-linked N-acetyl-β-d-glucosaminidase (O-GlcNAcase, 
OGA). Evidence has shown that OGA accumulates on the 
surface of the nascent LD along with perilipin-2. Further-
more, OGA knockout causes increased levels of perilipin-2 
and perilipin-3, suggesting that OGA is a regulator of LD 
formation. OGA has also been linked with AD via the hex-
osamine signaling pathway. Therefore, these findings indi-
cate that LB assembly and mobilization are associated with 
AD [46].

The three isoforms of apolipoprotein E (ApoE) encoded 
by the ε2, ε3 and ε4 alleles play important roles in lipid 
metabolism and transport from one tissue or cell to another 
in the brain. The ε4 allele of the apolipoprotein E gene 
(ApoE4) is a major risk factor for later onset AD. Studies 
have revealed that the ApoE4-lipoproteins bind to Aβ with 
lower affinity than that of the ApoE3-lipoproteins, which 
may lead to less efficient Aβ clearance by microglial cells 
[47, 48]. Furthermore, ATP-binding cassette sub-family A 
member 1 (ABCA1)-deficiency is associated with reduced 
efflux of cholesterol to exogenous ApoE in the microglia. 
Expression of both ABCA1 and ApoE is induced follow-
ing LXR stimulation, which is closely related to the amy-
loid plaque load [49]. Taken together, these observations 
indicate the close relationship between lipid metabolism in 
microglial cells and AD.

Parkinson’s Disease

PD is the second most common neurodegenerative disorder 
associated with microglia and aging. Studies have shown 
that activated microglia accumulate in damaged areas of 
the brain in patients with PD [50, 51]. The release of pro-
inflammatory cytokines, such as IL-1β, by activated micro-
glia has been demonstrated in animal models of PD induced 
by MPTP, 6-OHDA and LPS [52]. LBs play a role in this 
process as a site of proinflammatory cytokine storage. In 
addition, LBs interact with α-synuclein, a key player in 
PD and triglyceride turnover. Normally, α-synuclein exists 
in the soluble state in the cytosol and adopts an α-helical 
structure when it interacts with membranes containing 
acidic phospholipids [53]. The A53T mutant of synuclein, 
which causes PD [54], is redistributed to the lipid droplet 
surface, where it forms oligomers. This is an initial step in 
the formation of α-synuclein patches, which are a charac-
teristic of PD [55].
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Hereditary Sensory Neuropathy Type 1(HSN‑1)

Hereditary sensory neuropathy type 1(HSN-1), an auto-
somal dominant neurodegenerative disease, is caused by 
SPTLC1 gene missense mutations [56] which encodes the 
serine palmitoyltransferase long-chain subunit of serine 
palmitoyltransferase (SPT). This ubiquitously expressed, 
and highly regulated ER-bound membrane enzyme main-
tains sphingolipid concentrations and is involved in lipid 
metabolism and signaling [57–59]. Studies have shown 
increased LB accumulation in HSN-1 patient-derived 
lymphoblasts, which is consistent with earlier reports that 
HSN-1 is caused by the accumulation of two neurotoxic 
sphingolipids [57]. Although co-localization with mito-
chondria was not detected [56], this evidence is controver-
sial because it was based on immunoblotting of markers of 
these two organelles in fractions rather than observation in 
unbroken cells in vivo. This method does not exclude the 
possibility that these interactions are weak and may be bro-
ken during the purification of the fractions.

No research into LBs has yet been conducted in HSN-1 
patient-derived microglia. However, since microglia and 
lymphoblasts are both immune cells, we assume that the 
results obtained by studying lymphoblasts can be applied in 
microglia. Thus, we propose the hypothesis that mutations 
in the SPTLC1 gene result in the production of toxic lipids 
by the mutated SPT enzyme. These toxic lipids accumulate 
in LBs, which interact with mitochondria to promote neu-
rodegeneration and induce the death of peripheral neurons 
to cause HSN-1.

Remodeling of Lipid Bodies in Microglia

So far, we have discussed LB accumulation during the 
aging process and the potential mechanisms. However, this 
process involves the active formation of large LBs in prepa-
ration for storage of various inflammatory mediators [60]. 
This remodeling represents the morphological and func-
tional changes in organelles as a result of several types of 
stimulation, including docosahexaenoic acid (DHA). Fur-
thermore, emerging evidence suggests that the LB remod-
eling is an early biomarker of neuroinflammation and 
modulator of neurodegenerative diseases [6]. In this review, 
we describe the morphological changes and transforming 
interactions between LBs and other organelles during LB 
remodeling.

Morphological Changes

LPS is used to stimulate microglia to mimic the state occur-
ring in aging and neuroinflammatory conditions. Using 
confocal microscopy and transmission electric microscopy 

(TEM), Tremblay showed that LBs accumulate in various 
sizes in N9 microglial cells exposed to LPS. Under LPS 
stimulation, the newly formed LBs were in larger in size 
than those in the control cells. The electron density was 
also found to vary, with electron-lucent content observed in 
LBs in LPS-stimulated microglia. However, following the 
addition of DHA, LBs reorganized and aggregated, with 
the formation of medium-sized LBs and electron-dense 
bodies. This remodeling could be induced by the activation 
and phosphorylation of p38 [12, 25, 61]. This result was 
observed in both human and mouse microglia [6].

Interactions with Other Organelles

LB remodeling also influences their spatial relationship 
with other organelles, as shown in Fig. 2.

Mitochondria

In LPS-stimulated microglia, LBs and mitochondria are in 
close proximity, but with few direct contacts and no fusion. 
DHA induces numerous direct contacts with mitochondria 
and LB remodeling. Interestingly, LPS stimulation results 
in partial or even complete loss of mitochondrial cristae 
and the double membrane, leading to decreased mitochon-
drial membrane potential and ROS generation. ROS not 
only stimulates the formation of LBs and release of TNFα, 
IL-1β and NO, leading to inflammation and neurodegen-
eration, but also causes damage to mtDNA, proteins and 
lipids, and influences phagocytosis. Dysregulated phago-
cytosis promotes cytokine production, leading to mito-
chondrial modification and LB remodeling [61–63]. DHA 
rescues mitochondrial integrity and ameliorates the defects 
associated with mitochondrial damage, probably through 
LB remodeling [61].

The molecules involved in the LB-mitochondrial inter-
action in microglia have not yet been fully clarified, 
although this interaction has been elucidated in other cells. 
LBs play an important role in cells under conditions of 
starvation stress by functioning as storage and transporta-
tion compartments for FAs. Furthermore, the LB-mito-
chondria interaction is beneficial in starved cells, which use 
LBs as a conduit for β-oxidation of FAs by mitochondria 
[24]. However, the mechanisms underlying the responses of 
microglia under nutrient stress conditions and the proteins 
involved in the fusion of LBs and mitochondria remain 
to be clarified. Perilipin-2 (ADFP) is found in significant 
levels in the mitochondrial fraction, suggesting a potential 
interaction with mitochondria. Synaptosome-associated 
protein 23 (SNAP23) and the soluble NSF adaptor protein 
receptor (α-SNAP) are also found in the LB-mitochondria 
interactional area. Ablation of SNAP23 reduces perilipin-2 
levels, indicating a decrease in LB-mitochondria complex 



3145Neurochem Res (2017) 42:3140–3148	

1 3

formation [64]. Perilipin-5, also known as LB-associated 
protein, was first detected in isolated mitochondria and 
recruits mitochondria to the LB surface. Moreover, per-
ilipin-5 inhibits LB hydrolysis and prevents excessive fatty 
acid (FA) oxidation in the mitochondria by storing FAs 
transiently in the LBs [65]. Erg6 and Pet10 are two pro-
teins located in LBs that have been shown to interact with 
a series of mitochondrial proteins, including Mcr1, Mdv1, 
Om14 and Cox7, using bimolecular fluorescence comple-
mentation (BiFC) assays [66], but further underling mecha-
nisms still need to be elucidated.

Endoplasmic Reticulum

In contrast to the interaction between LBs and other orga-
nelles, the LB–ER interaction has been regarded as the 
result of budding of LBs from the ER [67–69]. Excess 
FAs and cholesterol are stored in the ER as neutral lipids, 
such as triglycerides and cholesterol esters. The terminal 
enzymes involved in neutral lipid synthesis, including acyl-
CoA: cholesterol acyltransferase (ACAT) and acyl-CoA: 
diacylglycerol acyltransferase (DGAT), are also localized 
in the ER [70]. Acyl-CoA synthetase 3 (ACSL3) is another 
enzyme that is redistributed from the ER to LBs and is nec-
essary for the formation of LBs in the early stages [11]. 
The hydrophobic nature of neutral lipids is also important 
for the budding of lipid droplets from the ER; this widely 
accepted hypothesis for LBs formation is reviewed else-
where [20]. There is, however, evidence also showing that 

LB–ER interactions are independent of LB formation [71, 
72]. There is a lack of direct evidence to support both of the 
hypotheses that have been proposed previously. Although 
the detailed molecular mechanism of the LB–ER inter-
action in microglia remains to be elucidated, molecules 
involved in this process have been identified in other non-
adipocyte cells. Proteomic analyses have revealed a number 
of Rab proteins in LBs. Among them, Rab18 plays a cen-
tral role in the LB–ER interaction and Rab18 overexpres-
sion significantly reduces perilipin-2 levels. However, in 
contrast to the effects in the LB–mitochondrial interaction, 
reduced perilipin-2 induces membrane apposition between 
LBs and the ER, as well as the ER-derived membrane 
[73]. Furthermore, regulation of the LB–ER interactions is 
dependent on the GTP/GDP state of Rab18 [74].

Few focal contacts between LBs and stretches of ER 
occur in response to LPS stimulation. However, following 
the addition of DHA, electron microscopy showed stretches 
of ER running parallel to the LBs and their intermingling 
over long distances, suggesting the occurrence of spe-
cifically orientated functional interactions induced by LB 
remodeling [6]. Studies have shown that LBs are related to, 
and probably derive from the ER, which contains enzymes 
involved in LB formation and accumulation. Budding from 
the ER occurs once the LBs reach a certain size [18, 75, 
76]. Furthermore, this remodeling is critical for neurode-
generation. DHA treatment increases the direct contacts 
between these two organelles as well as the levels of phos-
phatidyl serine (PS), which is the most abundant negatively 

Fig. 2   Remodeling of lipid bodies and interactions with other orga-
nelles. The left-hand schematic shows LPS-stimulated mimicry of the 
aging state in microglia, while the right-hand schematic shows DHA-
induced remodeling of microglia. Striking differences occur: stretches 
decrease obviously through this remodeling; the number and size of 

LB reduces significantly; mitochondrial function is greatly rescued 
with increasing cristae and membrane integrity through remodeling; 
interaction of LB with mitochondria and ER increases. Possible regu-
lators are shown in the box (perilipin-2 and Rab18; perilipin-2, per-
ilipin-5 and SNAP23, α-SNAP, Erg6 and Pet10)



3146	 Neurochem Res (2017) 42:3140–3148

1 3

charged phospholipid in the eukaryotic membrane [77]. PS 
is critically involved in signal transduction, suggesting that 
DHA-induced remodeling plays a role in releasing proin-
flammatory cytokines in the microglia [78].

Lipofuscin Granules

Lipofuscin granules, which are formed in microglia and 
neurons during the aging process in animals as a result of 
oxidative stress [79], interfere with several metabolic pro-
cesses [80] and are implicated in the development of neu-
rodegenerative diseases. After remodeling, LBs are juxta-
posed to very large lipofuscin granules, with some regions 
of fusion [6]. However, the significance of this interaction 
in neurodegeneration remains to be clarified.

Perspective

In the main, we have discussed LB formation and remod-
eling in relation to neurodegenerative diseases. Studies 
have shown that LB accumulation results in the release of 
proinflammatory molecules and neuroinflammation, which 
serves as a signaling platform and indicates the potential 
of LBs as therapeutic targets in neurodegenerative diseases 
[81, 82]. Two aspects of LB function are implicated as tar-
gets for the treatment of aging-related neurodegenerative 
diseases; LB remodeling and reduction in LB numbers, 
especially large LBs. As we have discussed earlier in this 
review, LB remodeling induced by DHA restores normal 
LB function in aging microglia by increasing contacts 
with other organelles that are required for normal function 
of activated microglia [57]. DHA treatment has also been 
shown to reduce the number of large LBs [6, 83], thus, 
indicating the marked potential of ω-3 polyunsaturated 
fatty acids (PUFAs) for the treatment of neurodegenerative 
diseases.

Even with these exciting advances in our understanding 
of the role of microglia in aging and neurodegeneration, 
significant challenges remain. First, relevant animal models 
of neurodegenerative disease have not yet been established. 
Moreover, reports of LBs in humans with neurodegen-
erative diseases are scarce, probably because LB forma-
tion and degradation is a highly dynamic process, which 
is therefore difficult to monitor. However, overcoming the 
difficulties associated with investigations of neurodegen-
erative diseases will enable researchers to gain a further 
understanding of the role of LBs in these diseases.
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