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studies have given new views of sodium channel function at 
atomic resolution. Sodium channels are also the molecular 
targets for genetic diseases, including Dravet Syndrome, an 
intractable pediatric epilepsy disorder with major co-mor-
bidities of cognitive deficit, autistic-like behaviors, and pre-
mature death that is caused by loss-of-function mutations 
in the brain sodium channel NaV1.1. Our work on a mouse 
genetic model of this disease has shown that its multi-
faceted pathophysiology and co-morbidities derive from 
selective loss of electrical excitability and action potential 
firing in GABAergic inhibitory neurons, which disinhibits 
neural circuits throughout the brain and leads directly to the 
epilepsy, premature death and complex co-morbidities of 
this disease. It has been rewarding for me to use our devel-
oping knowledge of sodium channels to help understand 
the pathophysiology and to suggest potential therapeutic 
approaches for this devastating childhood disease.

Keywords  Sodium channel · Epilepsy · Ion channel 
structure · Local anesthetics

Introduction

It is a great pleasure for me to write this summary chap-
ter on our work on sodium channels in recognition of the 
outstanding contributions of Professor Bruce Ransom to 
neuroscience and neurology. Bruce and I were postdoctoral 
fellows at the same time at the National Institutes of Health 
in the 1970s—Bruce was a Clinical Associate in the labora-
tory of Dr. Philip Nelson in the National Institute of Child 
Health and Human Development and I was a postdoctoral 
research fellow and later a staff scientist in the laboratory 
of Dr. Marshall Nirenberg in the National Heart, Lung, and 
Blood Institute. Although they were administratively in 

Abstract  Voltage-gated sodium channels initiate action 
potentials in brain neurons. In the 1970s, much was known 
about the function of sodium channels from measurements 
of ionic currents using the voltage clamp method, but there 
was no information about the sodium channel molecules 
themselves. As a postdoctoral fellow and staff scientist at 
the National Institutes of Health, I developed neurotoxins 
as molecular probes of sodium channels in cultured neu-
roblastoma cells. During those years, Bruce Ransom and I 
crossed paths as members of the laboratories of Marshall 
Nirenberg and Philip Nelson and shared insights about 
sodium channels in neuroblastoma cells from my work and 
electrical excitability and synaptic transmission in cultured 
spinal cord neurons from Bruce’s pioneering electrophysi-
ological studies. When I established my laboratory at the 
University of Washington in 1977, my colleagues and I 
used those neurotoxins to identify the protein subunits 
of sodium channels, purify them, and reconstitute their 
ion conductance activity in pure form. Subsequent stud-
ies identified the molecular basis for the main functions 
of sodium channels—voltage-dependent activation, rapid 
and selective ion conductance, and fast inactivation. Bruce 
Ransom and I re-connected in the 1990s, as ski buddies at 
the Winter Conference on Brain Research and as faculty 
colleagues at the University of Washington when Bruce 
became our founding Chair of Neurology and provided 
visionary leadership of that department. In the past decade 
my work on sodium channels has evolved into structural 
biology. Molecular modeling and X-ray crystallographic 
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different Institutes, these two laboratories were relatively 
close to each other in Building 36, along with many other 
neuroscience programs at NIH, and there were active col-
laborations between the Nelson and Nirenberg laboratories. 
At that time, Bruce was carrying out some of the first, and 
most extensive, studies of the electrophysiological proper-
ties of cultured neurons from brain and spinal cord [1–5]. 
My research project focused on neurotoxins that acted on 
voltage-gated sodium channels. My training as a Ph. D. stu-
dent had been in membrane biochemistry, and I was excited 
about the possibility of using specific neurotoxins as bio-
chemical probes to identify the protein components of 
sodium channels and begin to study their biochemical prop-
erties, using the cultured neuroblastoma cell lines that had 
been developed in the Nirenberg Lab [6]. After these first 
interactions at the National Institutes of Health, Bruce and 
I took separate paths. I moved directly to the University of 
Washington and established an independent research labo-
ratory in the Department of Pharmacology in 1977. Bruce 
moved to Stanford University for further clinical train-
ing in Neurology and then to Yale University to begin his 
independent research program in the Department of Neu-
rology there. We often found time to ski together and dis-
cuss research at the Winter Conference on Brain Research. 
Some years later, our paths merged again when I served as 
a member of the Search Committee for the Chair of Neurol-
ogy at the University of Washington, under the leadership 
of Dr. Wayne Crill, Professor and Chair of our Department 
of Physiology and Biophysics and Professor of Neurology. 
We were fortunate to recruit Bruce Ransom to become the 
founding Chair of Neurology at the University of Wash-
ington. It has been a great pleasure to interact closely with 
Bruce again, in research collaborations on sodium channels 
in glial cells [7–10], in joint academic initiatives in neuro-
science and molecular medicine, and in skiing adventures 
at many locations, during our overlapping tenures as Chair 
of Pharmacology and Chair of Neurology. Bruce’s vision-
ary leadership has made our Department of Neurology, 
which he founded, one of the very best worldwide.

Neurotoxins and Sodium Channels

Voltage-gated sodium channels initiate action poten-
tials in neurons and other excitable cells [11], and their 
dysfunction causes inherited epilepsy, chronic pain, and 
other diseases of hyperexcitability [12, 13]. The physio-
logical role of sodium channels in action potential gener-
ation was well established by the classic work of Hodgkin 
and Huxley in 1952 [14]. Many of the basic functional 
properties of sodium channels were analyzed in exten-
sive voltage clamp studies of nerve axons [11]. However, 
in the 1970s, there was no experimental information on 
the protein molecules that formed sodium channels or on 

how they worked at the molecular or structural level. This 
brief review touches on some of the highlights of our 
research on sodium channels that has led from the early 
experiments as a postdoctoral fellow at the NIH to an 
increasingly complete understanding of sodium channel 
structure, function, pharmacology, and roles in disease.

My work as a postdoctoral fellow at NIH and as a new 
faculty member at the University of Washington showed 
that different classes of neurotoxins act on distinct recep-
tor sites on sodium channels and serve as activators, 
inhibitors, or allosteric modulators of their voltage-
dependent gating processes. We developed these potent 
neurotoxins as molecular probes for ligand binding and 
photoaffinity labeling studies and also as tools to activate 
sodium channels in biochemical experiments and study 
their functional properties in nontraditional cell and 
membrane preparations. These studies, and related work 
in other laboratories, were reviewed comprehensively in 
an article in the Annual Review of Pharmacology and 
Toxicology in 1980 [15].

The Sodium Channel Protein

Based on these early studies of toxin action, my colleagues 
and I were able to use specific neurotoxins in complemen-
tary ways to identify, purify, and functionally characterize 
the sodium channel protein. As a first step, we identified 
the large α subunits of 260 kDa and smaller β subunits of 
30–40  kDa by photoaffinity labeling with a derivative of 
the polypeptide α-toxin from the North African scorpion 
Leiurus quinquestriatus [16]. This scorpion toxin was one 
of the first gating modifier toxins to be characterized, and 
we assumed that it would covalently label the voltage-
dependent gating apparatus of sodium channels. After 
much work to design experimental conditions to solubilize 
the sodium channel while retaining its high-affinity bind-
ing of the pore-blocker saxitoxin, we found that sodium 
channels purified from rat brain are composed of an α 
subunit with a noncovalently associated β1 subunit and 
a disulfide-linked β2 subunit (Fig.  1a) [17–19]. Because 
the purified protein contained receptor sites for the gating 
modifier scorpion toxins and the pore-blockers tetrodotoxin 
and saxitoxin, we assumed that it comprised a complete 
sodium channel with functional gating apparatus and pore. 
Importantly, we showed that this purified protein complex 
was sufficient to reconstitute voltage-gated sodium channel 
function with the correct pharmacology in single-walled 
phospholipid vesicles; moreover, activation of the purified 
and reconstituted sodium channel protein with the lipid-
soluble neurotoxin batrachotoxin revealed single purified 
channels with the expected single-channel conductance and 
voltage sensitivity after insertion into planar phospholipid 
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bilayers (Fig. 1b) [20–22]. These studies led to a biochemi-
cal model of the sodium channel protein as illustrated in 
Fig. 1c.

Primary Structures of Sodium Channel Subunits

Cloning and sequencing cDNA encoding the α subunits of 
sodium channels established their primary structures and 
showed that mRNA encoding the α subunit is sufficient 
for expression of functional sodium channels [23–25]. 
Sodium channel α subunits are composed of approximately 
2000 amino acid residues organized in four homologous 
domains, which each contain six transmembrane seg-
ments (Fig. 2a). Biochemical analyses and cDNA cloning 
showed that sodium channel β subunits are composed of an 
N-terminal extracellular immunoglobulin-like fold, a single 
transmembrane segment, and a short intracellular segment 
[26, 27]. These subunits are thought to form complexes 
composed of a single α subunit and one or two β subunits 
in neuronal membranes, and co-expression of β subunits 
modulates the kinetics and voltage dependence of sodium 
channel activation and inactivation [28, 29]. Almost two 
decades after purification and biochemical characteriza-
tion of NaV channels, a low-resolution structural model of 
a sodium channel from electric eel electroplax based on 
cryo-electron microscopy revealed the size and shape of 
the sodium channel protein (Fig. 2b), which closely resem-
bled models drawn from early biochemical studies of brain 
sodium channels (Fig. 1c).

Fig. 1   Sodium channels as originally purified from mammalian 
brain. a The α and β1 subunits of brain sodium channels analyzed by 
SDS–PAGE. b Single channel currents from purified and reconsti-
tuted brain sodium channels. Sodium channels purified from rat brain 
were first reconstituted into phospholipid vesicles under conditions 
that yielded an average of one sodium channel molecule per vesi-
cle. These vesicles fused with pre-formed planar phospholipid bilay-
ers and sodium currents were recorded. Single channel currents with 
the voltage dependence and conductance of sodium channels in  situ 
were recorded. c A model of the purified rat brain sodium channel 
derived from biochemical experiments. This model depicts the state 
of the field in 1986 when it was drawn [32]. Since that time, clon-
ing of sodium channel β subunits has revealed a family of four related 
genes, each of which encodes a single membrane-spanning protein 
with a large, glycosylated extracellular N-terminal domain composed 
primarily of an immunoglobulin-like fold and a small intracellular 
C-terminal domain [26, 27, 29]
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Fig. 2   Sodium channels in eukaryotes and prokaryotes. a The α 
subunit of NaV1.2 channels is illustrated as a transmembrane folding 
diagram in which cylinders represent transmembrane alpha helices 
and lines represent connecting amino acid sequences in proportion to 
their length. Structural components responsible for voltage sensing, 

pore formation, and fast inactivation are indicated. b A low-resolu-
tion image of the sodium channel from electric eel electroplaque. c 
A transmembrane folding diagram of the bacterial sodium channel 
NaChBac. Reprinted from [79]
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Functional Modules of Sodium Channels

The three key steps in sodium channel function are voltage-
dependent activation, rapid and selective ion conductance, 
and fast inactivation on the millisecond time scale. Volt-
age-dependent activation of sodium channels depends on 
movement of “electrically charged particles” across the cell 
membrane through the transmembrane electric field [14]. 
The transmembrane movement of these “gating charges” 
was detected as a small capacitative gating current in squid 
giant axon [30]. Based on the original amino acid sequence, 
Robert Guy and I independently proposed that the S4 trans-
membrane segments of sodium channels, which contain 
four conserved motifs of a positively charged amino acid 
residue flanked by two hydrophobic residues, carry the gat-
ing charges in the sliding helix or helical screw model of 
voltage sensing [31–34]. In this model, the S4 segment is 
in a transmembrane position in both resting and activated 
states, the gating charges are stabilized by forming ion pairs 
with neighboring negatively charged and hydrophilic resi-
dues, and their outward movement is catalyzed by exchange 
of ion pair partners [31–35]. Mutagenesis showed that 
the S4 arginines are indeed the gating charges [36]; their 
transmembrane position in resting and activated states was 
confirmed by scorpion toxin binding studies [37, 38]; out-
ward movement was detected by chemical labeling experi-
ments under voltage clamp control [39–41]; and exchange 
of ion pairs partners was demonstrated by disulfide locking 
of substituted cysteine residues [42–44]. These results on 
sodium channels, and much parallel work on voltage-gated 
potassium channels, led to a consensus that the sliding helix 
model is an accurate description of voltage-sensing [45].

Amino acid residues in the short segments between S5 
and S6 (Fig. 2a) form the receptor site for the pore blocker 
tetrodotoxin [46, 47]. Analysis of site-directed muta-
tions showed that a set of four residues (DEKA), each in 
an equivalent position in one of the four domains, control 
selectivity for sodium vs. calcium, consistent with the idea 
that they come together to form a key ion coordination site 
in the pore [48]. Moreover, substitutions in this signature 
DEKA motif cause progressive changes in Na/K selectiv-
ity. These results established the S5 and S6 segments and 
the conserved P loop between them as the pore-forming 
module.

Sodium channels in vertebrates open in response to 
depolarization and then inactivate within 1–2  ms [49]. 
This fast inactivation process is required for repetitive fir-
ing of action potentials in neural circuits and for control 
of excitability in nerve and muscle cells. Studies with site-
directed antibodies showed that the short intracellular loop 
connecting homologous domains III and IV of the sodium 
channel α subunit mediates fast inactivation by fold-
ing into the intracellular mouth of the pore and blocking 

it (Fig.  2a) [50]. Severing the channel protein within this 
loop by expression of the sodium channel in two separate 
pieces greatly slowed inactivation [36]. The key amino acid 
motif IFM is required to maintain closure of the inactiva-
tion gate [51], and peptides containing this inactivation 
gate sequence motif can restore fast inactivation to mutant 
sodium channels [52]. Analysis of the structure of the 
inactivation gate by NMR showed that it contains a rigid 
alpha helix preceded by two loops of protein. This struc-
ture arrays the IFM motif and a neighboring Thr residue 
in position for interaction with the open pore and block of 
sodium conductance (Fig. 2a) [53].

Ancestral Sodium Channels

Sodium channel α subunits are encoded by ten genes in 
mammals [54]. Surprisingly, the sodium channel family is 
ancient in evolution. The bacterial sodium channel NaCh-
Bac and many prokaryotic relatives are composed of homo-
tetramers of a single subunit whose structure resembles one 
of the domains of a vertebrate sodium channel (Fig.  2c) 
[55, 56]. It is likely that these bacterial sodium channels 
are the evolutionary ancestors of the larger, four-domain 
sodium channels in eukaryotes.

Sodium Channel Structure at Atomic Resolution

Sodium channel architecture was revealed at atomic reso-
lution by determination of the crystal structure of the bac-
terial sodium channel NaVAb at high resolution (2.7 Å) in 
2011 (Fig.  3a) [57]. As viewed from the top, the central 
pore is surrounded by four pore-forming modules com-
posed of S5 and S6 segments and the intervening P loop 
(Fig.  3a, blue). Four voltage-sensing modules composed 
of S1–S4 segments are symmetrically associated with the 
outer rim of the pore module (Fig.  3a, green and red). A 
view from the side of NaVAb reveals a large external ves-
tibule, a narrow ion selectivity filter, a large central cavity 
lined by the S6 segments, and an intracellular activation 
gate located where the S6 segments cross at the intracel-
lular surface of the membrane (Fig. 3b) [57]. The ion selec-
tivity filter has a high-field-strength site at its extracellular 
end, which is formed by four negatively charged gluta-
mate residues [57]. This site is crucial for ion selectivity 
in vertebrate sodium and calcium channels [48]. Consid-
ering its dimensions of approximately 4.6  Å square, Na+ 
with up to four planar waters of hydration could fit in this 
high-field-strength site. This outer site is followed on the 
intracellular side by two ion coordination sites formed by 
backbone carbonyls [57]. These two carbonyl sites are 
perfectly designed to bind Na+ with four planar waters of 
hydration but would be much too large to bind Na+ directly. 
Thus, Na+ is selected and conducted as a hydrated cation 
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interacting with the pore through its inner shell of bound 
water molecules.

Drug Receptor Sites in Sodium Channels

Sodium channels are blocked by drugs used clinically as 
local anesthetics, antiarrhythmics, and antiepileptics [58]. 
The receptor site for local anesthetics and related drugs 
is formed by amino acid residues in the S6 segments in 
domains I, III, and IV of mammalian sodium channels 
[59–63]. These drugs bind to a common receptor site 
in the pore and impede ion permeation. The amino acid 
residues that form the receptor sites for sodium channel 
blockers line the inner surface of the S6 segments and 
create a three-dimensional drug receptor site in NaVAb, 

where drug binding would fully block the pore (Fig. 4a) 
[28, 57, 59, 61]. Access to this receptor site by large or 
hydrophilic drugs would require opening of the intra-
cellular activation gate, which is tightly closed. This 
tight closure of the activation gate provides a structural 
basis for use-dependent block of sodium channels by 
local anesthetics and related drugs [64], as they would 
bind much more rapidly when the channel is frequently 
opened. Remarkably, as predicted by the modulated 
receptor hypothesis [64], fenestrations lead from the lipid 
phase of the membrane sideways into the drug receptor 
site, providing an access pathway for binding of small 
hydrophobic drugs in the resting state (Fig.  4a, b, pore 
portals) [57].

Fig. 3   a Structure of the NaVAb bacterial sodium channel at 2.7  Å 
resolution. a Top view colors represent temperature factors such that 
increased mobility in the crystals coded in warmer colors. Blue pore-
forming module; green to red voltage-sensing module. b Ion permea-
tion pathway. The pore-forming modules of two NaVAb subunits are 
shown surrounding the pore. S5, P helix, P2 helix, and S6 segments 

are labeled. Contour of the water-filled pore, gray. c Three-dimen-
sional structure of the voltage-sensing module of NaVAb. Arginine 
gating charges, blue (R1–R4). Extracellular negative cluster (ENC), 
red; intracellular negative cluster (INC), red. Hydrophobic constric-
tion site (HCS), green 

Fig. 4   Drug receptor site in NaVAb. a Side view of NaVAb with amino acid residues analogous to the NaV1.2 drug receptor site colored. Pore 
portal denotes the fenestration leading to the membrane lipid phase in each of the four subunits of NaVAb. b Top view of NaVAb colored as in a 
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Structure of a Eukaryotic Sodium Channel

Recent studies with the cryo-electron microscopy method 
has greatly advances research on sodium channels by 
revealing the three-dimensional structure of a four-domain 
sodium channel for the first time [65]. The sodium chan-
nel from cockroach has the same fold of its core trans-
membrane segments as the bacterial sodium channels. The 
four voltage-sensing modules have slightly different struc-
tures, but all are in activated conformations. The backbone 
structure of the ion selectivity filter is the same as bacte-
rial sodium channels, but the high field-strength site has 
a rectangular array of Asp–Glu–Ala–Lys rather than an 
array of four glutamate residues. The fast inactivation gate 
in the intracellular linker between domains III and IV is 
withdrawn from the intracellular mouth of the pore and is 
interacting with the C-terminal domain. The amino acid 
sequence characteristic of the inactivation particle in mam-
malian sodium channels (Ile–Phe–Met) is not conserved 
in the cockroach sodium channel, so it may not have a fast 
inactivation process. The folding patterns of the intracellu-
lar and extracellular loops connecting the transmembrane 
segments are revealed for the first time. This landmark 
structure opens the way to future structure–function stud-
ies of mammalian sodium channels guided by a eukaryotic 
sodium channel structure.

Pathophysiology of Sodium Channel Mutations

Because of its crucial function in excitable cells, a large 
number of genetic diseases are caused by mutations of 
sodium channels, including inherited forms of periodic 
paralysis, cardiac arrhythmia, epilepsy, and chronic pain 
[12, 13]. The genes most frequently associated with inher-
ited forms of epilepsy encode sodium channels NaV1.1 
and NaV1.2, which are highly expressed in the brain. Our 
research has focused on Dravet syndrome (DS; also known 
as severe myoclonic epilepsy of infancy), which is a severe 
form of childhood epilepsy with frequent premature deaths 
and many co-morbidities. DS is primarily caused by loss of 
function due to stop codons, deletions, or inactivating sin-
gle residue mutations in the SCN1A gene encoding NaV1.1 
channels, demonstrating that haploinsufficiency of this 
sodium channel is pathogenic.

Effects of NaV1.1 Mutations That Cause Epilepsy 
in Dravet Syndrome

DS begins during the first year of life, with seizures associ-
ated with elevated body temperature due to fever or bath-
ing, and progresses to prolonged, clustered, or continuous 
seizures that are drug-resistant [66, 67]. During the sec-
ond to fifth years of life, patients develop co-morbidities 

including hyperactivity, psychomotor delay, ataxia, sleep 
disorder, autistic-like behaviors, and cognitive impairment. 
It was a surprise that haploinsufficiency of a NaV channel 
causes epilepsy, because reduced sodium current should 
lead to hypoexcitability rather than hyperexcitability. We 
generated a mouse genetic model of DS by targeted dele-
tion of the Scn1a gene in mice [68, 69]. DS mice have 
spontaneous and thermally evoked seizures like DS patients 
[70], and they die prematurely after postnatal day 21 when 
they begin to have spontaneous seizures [68, 71]. We found 
that interneurons in the hippocampus of DS mice have a 
substantial defect in sodium currents and action potential 
firing, whereas excitatory pyramidal neurons are unaffected 
[68]. These results pointed to disinhibition of neural cir-
cuits as the probable cause of epilepsy and premature death 
in DS.

To definitively test the hypothesis that selective loss of 
Na+ channels in GABAergic inhibitory neurons is the caus-
ative change in DS, we inserted Lox P sites on both sides 
of an exon encoding a large part of domain IV in the Scn1a 
gene, and the Floxed mice were mated with a mouse strain 
expressing the Cre recombinase in GABAergic inhibitory 
neurons in the cerebral cortex and hippocampus under the 
Dlx1,2 promoter, which is selectively expressed in migrat-
ing inhibitory neuron precursors destined for these brain 
areas. Cre+ mice die prematurely and have spontaneous sei-
zures that are as severe as Scn1a+/− mice [72], confirming 
that loss of NaV1.1 channels in forebrain inhibitory neurons 
is sufficient to cause epilepsy and premature death in DS.

The most devastating outcome of DS is sudden unex-
pected death in epilepsy (SUDEP). Up to 70% of DS mice 
die by the time of sexual maturity at 60 postnatal days [73]. 
SUDEP in this mouse model is always preceded by a severe 
tonic-clonic seizure and an associated period of severe 
bradycardia, which leads to ventricular fibrillation [73]. 
Bradycardia is caused by hyperactivity of the parasympa-
thetic cholinergic outflow from the central nervous system 
to the heart during and immediately following the seizure, 
as it is reduced by the general muscarinic antagonist atro-
pine and the peripherally restricted muscarinic antagonist 
N-methylscopolamine [73]. These results show that epi-
lepsy and premature death in DS are caused directly by 
loss-of-function of NaV1.1 channels and resulting reduced 
excitability of GABAergic inhibitory neurons.

Reduced Excitability of GABAergic Interneurons 
Causes Co‑morbidities in DS

Co-morbidities contribute substantially to the poor quality 
of life, burden of care, and premature deaths in DS (Dravet, 
http://www.ilae-epilepsy.org/ctf/dravet.html) [74, 75]. We 
have linked all of these co-morbidities to failure of firing 
of GABAergic interneurons (Table 1). DS mice have mild 

http://www.ilae-epilepsy.org/ctf/dravet.html
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ataxia [76]. Sodium currents and firing rates of cerebel-
lar Purkinje neurons are substantially reduced in DS mice, 
consistent with causing their ataxia [76]. Both children and 
mice with DS have a significant impairment of sleep and 
circadian rhythm [77]. Reduced excitability of the GABAe-
rgic neurons of the suprachiasmatic nucleus causes the cir-
cadian rhythm defect [78]. Failure of normal rebound fir-
ing of action potentials by the GABAergic neurons of the 
reticular nucleus of the thalamus reduces the frequency and 
amplitude of sleep spindles and non-REM sleep [79].

DS mice have severe cognitive impairment, observed 
as a deficit in spatial learning and memory in the context-
dependent fear-conditioning test and the Barnes circular 
maze test [80]. In addition, DS mice have striking autis-
tic-like traits, including repetitive grooming and circling 
behaviors, as well as failure of social interaction [80]. 
These cognitive and behavioral deficits are also observed 
in DS mice in which the NaV1.1 channels have been selec-
tively deleted in forebrain GABAergic interneurons [80]. 
Therefore, our results show that failure of firing of action 
potentials in forebrain GABAergic interneurons is responsi-
ble for these co-morbidities of DS in mice.

Pathogenic Roles of Major Interneuron Classes in DS

In the cerebral cortex, interneurons can be separated 
into three non-overlapping classes that express specific 
marker proteins: parvalbumin-expressing (PV), somato-
statin-expressing (SST), and 5-HT3a receptor-expressing 
(5-HT3aR) [81]. We used the Cre–Lox method to delete 
NaV1.1 channels specifically in each of these interneuron 
classes [82]. We found that these interneurons are selec-
tively involved in the different DS phenotypes (Table  1) 
[82]. Deletion in PV interneurons causes pro-epileptic 
effects and autistic-like behavior, but not other phenotypes 
[82]. Deletion in SST interneurons causes pro-epileptic 
effects and hyperactivity, but not other phenotypes [82]. 
Deletion in both PV and SST interneurons causes syner-
gistic effects on the severity of epilepsy and on cognitive 
deficit [82]. Deletion in 5-HT3aR interneurons causes only 
autistic-like effects without epilepsy or cognitive deficit 
(Cheah et al. unpublished). These results with specific dele-
tion in 5-HT3aR interneurons are important because they 
show that autistic-like behaviors are a result of the genetic 
mutation and do not arise as a consequence of epilepsy. 
Overall, our experiments with specific gene deletion meth-
ods show that the complex phenotypes of DS arise directly 
from disinhibition of multiple neural circuits by impair-
ment of electrical excitability of GABAergic interneurons. 
These results are encouraging for therapy of this devastat-
ing disease, because they imply that enhancement of excit-
ability of GABAergic interneurons by specific pharmaco-
therapy or local gene therapy has the possibility to rescue Ta
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the multifaceted deficits of this disease. As a basic neuro-
scientist, it has been a pleasure to be a participant in these 
advancements in understanding the pathophysiology of 
this devastating disease and investigating next-generation 
therapies.

Conclusions and Perspectives

Sodium channels have been a constant theme of my 
research over more than 40 years. In that time, we and the 
ion channel field as a whole have advanced from knowl-
edge of ionic currents that generate action potentials toward 
a full understanding at the molecular, chemical, and atomic 
levels of the mechanisms underlying ion channel function 
and electrical signaling. It has been a special pleasure to 
have been part of the major advances of this field and to 
have had the scientific and academic interactions and the 
many personal connections with Bruce Ransom, one of the 
founders of our current understanding of cellular physiol-
ogy and one of the leaders of academic neurology.
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