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Introduction

Traumatic brain injury (TBI) is a major public health issue, 
which caused by road traffic collisions, assaults, and falls, 
etc. Before retired athletes and veterans of wars, chronic 
traumatic encephalopathy (CTE), a progressive neurode-
generation of the brain tissue or a result of repetitive mild 
traumatic brain injury (rmTBI) [1], was not considered to 
be a common phenomenon.

TBI elicits robust immune events that leads to axonal 
damage and secondary injury. However, changes of T cell 
subsets and microglia post-rmTBI remain incomplete. 
Thus, our study would preliminary descriptive analysis.

Method and Material

All research were approved by institutional (Animal Care 
and Use Committee of Tianjin Medical University). All 
animals were maintained according to the EC Directive 
86/609/EEC for animal experiments. And all investigators 
were blinded to the treatment groups during animal sur-
gery, data collection and analysis.

Animals

12 weeks old male Sprague–Dawley rats (n = 162, each 
weighing about 200  g), which were purchased from the 
Chinese Academy of Military Science (Beijing, China) 
and bred at Experimental Animal Laboratories of Tianjin 
Neurological Institute, with a 12 h light–dark cycle (lights 
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on at 7:00 a.m. and off at 7:00 p.m.), a constant tempera-
ture (22 ± 2  °C) and relative humidity (55–60%). Rats 
were randomly divided into 7 groups: the sham group and 
1/3/7/14/28/42 dpi groups, with 6 rats in each group.

Controlled Cortical Impact (CCI) Induced Repetitive 
Mild Traumatic Brain Injury (rmTBI) Model

Rats were anesthetized with 10% chloride hydrate (3.5 ml/
kg intraperitoneal injection) and were put under a stere-
otaxic frame. The circular craniotomy (diameter, 4  mm) 
was performed on the right parietal skull, with center of the 
drill located at 4.0 mm posterior from bregma and 3.0 mm 
lateral to the sagittal suture. The impact was induced using 
a pneumatic impact device (American Instruments, Rich-
mond, VA USA) with the standard parameters for CCI 
rmTBI, including velocity at 3.6 m/s, tracel range 1.2 mm, 
dwell settings 2 s, and 24 h apart. And the removed skull 
was returned to its original position and the incision was 
suture-closed. Sham operations underwent the same anes-
thesia and were not exposed to injury.

Flow Cytometry

Rats were deeply anesthetized with 10% chloral hydrate at 
corresponding 1/3/7/14/28/42 dpi groups.

After collecting peripheral blood samples in K2-EDTA 
vials (BD Biosciences, USA), it was diluted with phosphate 
buffered saline (PBS; Sigma–Aldrich, USA) and stratified 
with lympholyte-mammal (Sigma–Aldrich, USA). After 
density gradient centrifugation at 300g for 20 min at room 
temperature, peripheral blood mononuclear cells (PBMCs) 
were isolated from collected peripheral blood. Cells were 
purified by washing with PBS twice times.

Rats were transcardially perfused with ice-cold PBS. 
Then brains were removed as soon as possible and homog-
enized with syringe through a 70 µM cell strainer (BD Bio-
sciences, USA) to acquire a single cell suspension. After 
centrifugation at 1500 rpm for 10 min at room temperature, 
cells were re-suspended in 30% percoll and 70% percoll 
(GE Healthcare, Little Chalfont, UK, diluted in HBSS: 
Hanks’ balanced salt solution; Life Technologies, Carls-
bad, CA). After centrifugation at 400g for 20 min at room 
temperature, CNS mononuclear cells were at the mid-layer, 
which was between the 30 and 70% percoll interface. Cells 
were purified by washing with PBS twice times.

Mononuclear cells were stained with Rat T lym-
phocyte Cocktail, anti-rat CD3-APC, anti-rat CD4-PE, 
anti-rat CD8-FITC, and anti-rat CD11b-FITC, anti-rat 
CD45-PerCP, anti-rat CD86-PE, anti-rat CD206-APC 
(BD Biosciences, USA) following standard protocols and 
manufacturer’s instructions. Data were obtained using a 

FACSCalibur (BD Biosciences, USA) and analyzed with 
Flow Jo VX software.

Immunofluorescence Procedures

For the immunofluorescence staining, rats were sacri-
ficed by transcardiac perfusion with cold PBS followed by 
4% paraformaldehyde at corresponding 1/7/14/28/42  dpi 
groups. The dissected injured brain were fixed in 4% 
paraformaldehyde for 24 h at 4 °C, and incubated in 30% 
sucrose for 48 h. After fixation, they were embedded in the 
optimum cutting temperature (OCT) medium (Sakura, Tor-
rance, CA, USA) on dry ice, and stored at −80 °C immedi-
ately. A series of 40 µm coronal sections using a Microm 
HM550 cryostat were made on a cryostat at −20  °C and 
processed for immunofluorescence.

After air drying, all sections were treated with 3% 
bovine serum albumin for 30 min at 37  °C to block non-
specific staining, and incubated over night at 4 °C with the 
primary antibody: anti-Iba-1 (ab107159, 1:200; Abcam). 
After being rinsed by PBS (3 × 10  min), the slides were 
incubated for 2 h at room temperature with a 1:2000 dilu-
tion of anti-goat IgG secondary antibody (Invitrogen, Carls-
bad, CA, USA). The nuclei were counterstained with DAPI 
(Sigma–Aldrich, USA) at room temperature. Sections were 
digitized under a 20× objective using a 3-CCD color video 
camera (Sony DXC-970MD, Japan) with an immunofluo-
rescence microscope (Olympus IX81, Japan).Four separate 
slides (40 μm apart from each other) from each brain with 
each slide containing three randomly selected 200× fields 
from the lesion site were digitized. Image processing analy-
sis and measurements were performed using Image J soft-
ware (National Institute of Health, USA).

Statistics Analysis

The data were expressed as mean ± SD. All statistical anal-
yses were conducted using SPSS 22.0 and Graphpad Prism 
5 software. p vales were calculated with the single-facto-
rial analysis of variance (ANOVA) and Student’s t-test. A 
p-value of less than 0.05 was significant.

Results

Dynamic Changes of T Lymphocyte Subsets 
in the Brain After rmTBI in Rats

T lymphocyte subsets were characterized by the expression 
of cell surface markers: all T cells (CD3+), CD4+ or CD8+ 
T cells (CD3+CD4+ or CD3+CD8+) [2].

The gating strategy of live cell analysis was shown 
(Fig. 1a).The proportion of T cells significantly increased at 
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7 and 42 days post-injury (dpi) (Fig. 1b). Quantitative data 
for the percentage of T cells in CNS are shown in Fig. 1c.

The percentage of CD4+ T cells rose first during 7 dpi 
and gradually returned to the baseline (Fig.  2a). The 

percentage of CD8+ T cells decreased during 7 dpi, and 
returned to the baseline level at 42 dpi (Fig. 2b). Quanti-
tative data for the percentage of CD4 + and CD8 + T cells 
in CNS are shown in Fig. 2c, d.

Fig. 1   Analysis of T lymphocyte in the injured brain after rmTBI. 
a Dot plots of isolated immune cells in the brain, gated for live cell 
analysis. b Representative flow cytometry data for T cells (CD3+ 
cells) in the brain at the indicated days after rmTBI. c Graph illustrat-

ing quantitative data for accumulated T cells in the brain after rmTBI. 
n = 6 for each experiment. T cells: ##p < 0.01 at 7 and 42  dpi com-
pared with sham; #p < 0.05 at the others compared with sham
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Dynamic Changes of Microglia in the Brain After 
rmTBI in Rats

Intense signals for Iba-1+ were observed around the site 
of injury at 7  dpi (Fig.  3c). At 7  dpi, the percentage of 
Iba-1+ microglia was approximately 4 times more than 
that of 1 dpi (Fig. 3b). Then it declined at 14 dpi (Fig. 3d) 
and finally increased at 28  dpi (Fig.  3e) and 42  dpi 
(Fig.  3f). Quantitative data for the percentage of Iba-1+ 
microglia are shown in Fig. 3g.

Two distinct populations of macrophages and micro-
glia were observed: CD45high/CD11b+ cells and CD45low/
CD11b+ cells. CD45high/CD11b+ cells were considered 
macrophages and CD45low/CD11b+ cells were consid-
ered microglia [3, 4]. Microglia have been classified into 
two subsets: pro-inflammatory M1 and anti-inflamma-
tory M2 [5, 6]. CD86 is considered an M1 marker, and 
CD206 is considered an M2 marker [7]. Flow cytometry 
was performed to further examine the dynamic changes 
of distinct subsets of microglia in the brain. Of the iso-
lated cells, microglia account for 90% (Fig. 4a). CD86+/
CD11b+ M1-like microglia significantly increased at 
42  dpi (Fig.  4b). CD206+/CD11b+ M2-like microglia 
peaked at 7 dpi and roughly returned to the baseline level 
at 42 dpi (Fig. 4c). Quantitative data for the percentage of 
M1 and M2-like microglia are shown in Fig. 4d, e.

Dynamic Changes of T Lymphocyte Subsets 
in the Peripheral Blood After rmTBI in Rats

The gating strategy of live cell analysis was shown 
(Fig. 5a). The number of T cells decreased at 1 dpi, and 
rose slightly by 14 dpi, which again decreased at 28 and 
42 dpi (Fig. 5b). Quantitative data for the percentage of T 
cells are shown in Fig. 5c.

The percentage of CD4+ T cells continuously declined 
from 7 to 42 dpi (Fig. 6a), while the percentage of CD8+ 
T cells increased from 7 to 42 dpi (Fig. 6b). Quantitative 
data for the percentage of CD4+ and CD8+ T cells are 
shown in Fig. 6c, d.

Discussion

T lymphocytes, a group of complicated multifunctional cell 
colonies, include many subsets of CD3+, CD4+, CD8+ and 
others. Representing T lymphocytes, CD3+ can reflect the 
condition of cellular immunity and immune response to dif-
ferent exogenous antigens. Regarded as T helper cells or T 
inducible cells, CD4+ can help B cells to promote the func-
tion of various antibodies. Defined as T suppression cells 
or T cytotoxic cells, CD8+ can help B cells to restrain vari-
ous antibodies and exert cytotoxic effect on MHC-I anti-
gen at the membrane of target cells. Treated as a crucial 
marker in immune regulation, the percentages of CD4+ T 
cells and CD8+ T cells are often recognized as a manifes-
tation of immune balance [8]. In the injured brain, CD3+ 
T cells showed a bimodal increase during 42 dpi (Fig. 1). 
CD3+CD4+ T cells firstly increased and then decreased, 
while CD3+CD8+ T cells had reversed tendency (Fig.  2). 
Thus, there was alterations in T cell homeostasis in CNS 
after rmTBI in rats.

Microglia are resident immune cells in the brain, 
which regulate inflammatory response after a CNS injury. 
Changes in the ratio of pro-inflammatory M1 cells versus 
anti-inflammatory M2 cells reveal the direction of immune 
response [9, 10]. We observed that a bimodal increase at 
7 and 42 dpi (Fig. 3), coinciding with the flow cytometry 
that CD206+/CD11b+ M2-like microglia peaked at 7  dpi, 
whereas CD86+/CD11b+ M1-like microglia increased at 
42  dpi (Fig.  4). Given that M1-like microglia displays a 
primed role in the ageing CNS [11], we make reference, 
where appropriate, to modification of the M1/M2 balance 
in the immune system to provide plausible treatments fol-
lowing rmTBI.

Especially, we observed that the peak of T cells in the 
peripheral blood were at 14 dpi (Fig. 5), which showed a 
7  dpi delay compared to that of microglia in CNS, con-
sisting with Xuemei Jin’s view that T cells in the cervical 
lymph nodes respond to activated microglia in the injured 
brain transiently [12]. Hence, we observed that periph-
eral immunosuppression in the chronic phase after rmTBI 
(Fig.  6). Also, impaired CD4+/CD8+ T cell function was 
found in several studies on chronic injuries [13], and the 
immunosuppression could be lasted about 3 months [2, 14].

Generally, TBI immediately activates the SNS, leading 
to splenic contraction, spleen shrinkage [15], and dys-
function of immunity [16], all of which eventually make 
profound immune suppression. In later stages, because of 
exhausted spleen-derived immune cells and dramatically 
reduced spleen size, post-injury peripheral immunosup-
pression will develop [17]. Specifically, proposed mecha-
nisms underlying peripheral immunosuppression impact 
on susceptibility of infections, which includes a set of 
molecular determinants [18] (high-mobility group box 1 

Fig. 2   Analysis of T cell subsets in the injured brain after rmTBI. a 
Representative flow cytometry data for CD4+ T cells (CD3+ CD4+ 
cells) in the injured brain at the indicated days after rmTBI. b Repre-
sentative flow cytometry data for CD8+ T cells (CD3+ CD8+ cells) in 
the injured brain at the indicated days after rmTBI. c Graph illustrat-
ing quantitative data for the percentages of CD4+ T cells in the brain 
at the indicated days after rmTBI. d Graph illustrating quantitative 
data for the percentages of CD8+ T cells in the brain at the indicated 
days after rmTBI. n = 6 for each experiment. CD4+ T cells: ##p < 0.01 
at 3, 7, and 14  dpi compared with sham; #p < 0.05 at 1 and 28  dpi 
compared with sham. CD8+ T cells: ##p < 0.01 at 7 and 14 dpi com-
pared with sham; #p < 0.05 at 1, 3, and 28 dpi compared with sham

◂
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Fig. 3   Immunofluorescence 
analysis of the Iba-1+ cells in 
the injured brain after rmTBI. 
Sections are stained of Iba-1 
in sham (a) and at 1 dpi (b), 
7 dpi (c), 14 dpi (d), 28 dpi 
(e) and 42 dpi (f). g The graph 
shows the percentages of Iba-1+ 
microglia around the injured 
site at the indicated days after 
rmTBI. n = 6 for each experi-
ment. ##p < 0.01 at 7 and 42 dpi 
compared with sham. Scale bar 
50 µm (magnification ×200)
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[HMGB1] [19–21], ATP [22–24], S100 [25, 26]), activa-
tion of the HPA axis and SNS [27, 28], and disruption of 
the blood–brain barrier (BBB) [29].

In summary, what is characteristic of our finding is 
that dynamic changes of T cell subsets and microglia was 
implicated in the acute and chronic phase post-rmTBI. 

Further studies need to be explored, including the mecha-
nisms underlying changes of the M1/M2 balance, the 
specific roles of CD3+/CD4+/CD8+ T cells in CNS or the 
peripheral blood, and the possible relationship between 
immunity and the post-injury prognosis.

Fig. 4    Analysis of subsets of microglia in the injured brain after 
rmTBI. a Representative flow cytometry data for the purity of micro-
glia isolated. Of the isolated cells, 90% were microglia .b Representa-
tive flow cytometry data for CD86+/CD11b+ M1-like microglia in the 
injured brain at the indicated days after rmTBI. c Representative flow 
cytometry data for CD206+/CD11b+ M2-like microglia in the injured 
brain at the indicated days after rmTBI. d Graph illustrating quantita-

tive data showing the percentages of CD86+/CD11b+ M1-like micro-
glia. e Graph illustrating quantitative data showing the percentages 
of CD206+/CD11b+ M2-like microglia. n = 6 for each experiment. 
CD86+/CD11b+ M1-like microglia: ##p < 0.01 at 1 and 42 dpi com-
pared with sham. CD86+/CD11b+ M2-like microglia: ##p < 0.01 at 7 
dpi compared with sham
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Fig. 5   Analysis of T lymphocyte in the peripheral blood after 
rmTBI. a Dot plots of isolated immune cells in the peripheral blood, 
gated for live cell analysis. b Representative flow cytometry data for 
T cells (CD3+ cells) in the peripheral blood at the indicated days 

after rmTBI. c Graph illustrating quantitative data for accumulated 
T cells in the peripheral blood after rmTBI. n = 6 for each experi-
ment. T cells: ##p < 0.01 at 1, 14, 28, and 42 dpi compared with sham, 
#p < 0.05 at 7 dpi compared with sham
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Fig. 6   Analysis of T cell subsets in the peripheral blood after rmTBI. 
a Representative flow cytometry data for CD4+ T cells (CD3+ CD4+ 
cells) in the peripheral blood at the indicated days after rmTBI. b 
Representative flow cytometry data for CD8+ T cells (CD3+ CD8+ 
cells) in the peripheral blood at the indicated days after rmTBI. c 
Graph illustrating quantitative data for the percentages of CD4+T 
cells in the peripheral blood at the indicated days after rmTBI. d 

Graph illustrating quantitative data for the percentages of CD8+ T 
cells in the peripheral blood at the indicated days after rmTBI. n = 6 
for each experiment. CD4+ T cells: ##p < 0.01 at 14, 28, and 42 dpi 
compared with sham; #p < 0.05 at 1 and 3 dpi compared with sham. 
CD8+ T cells: ##p < 0.01 at 14, 28, and 42 dpi compared with sham; 
#p < 0.05 at 1 and 3 dpi compared with sham
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