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Introduction

Neurons from different brain areas of rodents can be cul-
tured on MEAs and remain spontaneously active and stable 
for several months [1–3]. Moreover, the responses of neural 
cultures to neurotransmitters and their blockers are similar 
to those found in vivo [4–6]. Thus, the study of neural net-
works on MEAs would enable us to study how neuroactive 
substances influence the electrophysiological behaviors of 
neurons [7–11].

One of the major modes of activity in neural cultures is 
globally synchronized bursting, which is also called net-
work bursting. This activity can be observed using elec-
trophysiological recordings at about 10–14  days in  vitro 
(DIV) [12–14]. In a typical network burst, most of neurons 
fire a cluster of spikes within hundreds of milliseconds 
[15–17]. Many studies have been carried out to study the 
characterization or pattern of spontaneous network bursts 
activity [18–24]. It has been reported that network bursts 
can be divided into subgroups with distant spatiotemporal 
correlation patterns [22], and that inhibitory antagonists 
[23] or the architecture of the culture [24] can produce new 
network burst patterns. However, interactions between the 
individual spiking units during the network burst are still 
unclear.

Recently, functional connectivity (statistical dependence 
between nodes activities) of the neural networks or brains 
gained further attention by modeling them as graph, whose 
nodes represent the spiking units and the edges represent 
the interactions between nodes [25]. Graph theory provides 
a valuable tool to study functional connectivity of neural 
cultures using MEAs [26–29] and to evaluate the global 
properties of the neuronal network. Researchers have found 
some non-random features in neural cultures. One of these 
features is small-worldness, which indicates a network 
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architecture that most of the nodes were not connected 
directly but can communicate with few intermediate relay 
steps. Functional networks of neural cultures display small-
world structure after weeks of culture [27, 30]. In addition, 
a rich-club topology emerges during the development of 
neural cultures [29], which implies a network architecture 
in which nodes rich in connections tend to form strongly 
interconnected clubs. With graph theory, the above studies 
propose ways in network view to describe how the integra-
tive nature of neural network function can be illuminated 
from a complex network perspective, rather than from indi-
vidual neuron perspective.

To our knowledge, the neural pharmacological studies 
that used electrophysiological techniques to evaluate the 
impact of drug on neural cultures were mainly used patch 
clamp or multi-electrodes array to measure the changes of 
membrane potentials, firing rates, bursting rates, bursting 
duration etc. [31–34] of neuron or neural network induced 
by drugs. However, the drug effects on functional inter-
actions within neural networks have yet to be examined. 
Functional connectivity of neural cultures has recently 
become valuable tools to assess the effects of drug son neu-
rons. There is currently evidence indicating that drugs can 
be evaluated using graph theory by analyzing factors such 
as small-worldness in neuronal networks in vitro [26, 28].

In this study, the inhibitory neurotransmitter GABA 
was used to acutely treat cortical neural cultures in this 
study. During a network burst, functional connectivity 
was assessed by using cross-covariance (determine func-
tional connections) and graph theory (statistics of network 
property). The study is one of the first to investigate func-
tional connectivity to evaluate the pharmacological effect 
of GABA, supporting the perspective that graph theory can 
provide useful information about pharmacological impacts 
on neuronal networks.

Materials and Methods

Animals

All animal procedures complied with the guidelines of the 
Recommendations from the Declaration of Helsinki, and 
were approved by the Institutional Animal Care and Use 
Committee of the Chinese Academy of Military Medical 
Science. We made all possible efforts to reduce the number 
of animals used.

Pregnant Sprague–Dawley (SD) female rats were bought 
from the Experimental Animal Center, Academy of Mili-
tary Medical Science (Beijing, PRC). The rats were placed 
in a room with constant temperature (24 ± 2 °C) and were 
individually housed in cages under a normal day/night 
cycle.

Neuronal Cell Culture on MEAs

Cortical tissues were dissected out from 18-day-old 
embryonic rats and were dissociated by enzymatic diges-
tion in a 0.25% trypsin solution (30  min at 37 °C). The 
resulting tissue was resuspended in Dulbecco’s modified 
Eagle’s medium (DMEM, Sigma) containing 10% equine 
serum (Hyclone) and 10% fetal calf serum (Hyclone) at a 
final concentration of 1 × 106 cells/ml. Cells were plated 
onto MEAs previously coated with poly-L-lysine (Sigma, 
0.1 mg/ml) and matrigel (Sigma, 0.2 mg/ml), resulting in 
a cell density of about 3000 cells/mm2.After the cells were 
adhered onto the MEAs, the liquid was replaced by DMEM 
containing10% equine serum (Hyclone), and half of the 
medium was changed every 2 days. All cells were placed in 
a humidified incubator (5% CO2, 95% air, 37 °C).

Acute GABA Treatment

The acute GABA treatment protocol was similar to that 
describe previously [35]. Briefly, at 21 DIV, the culture 
medium in each MEA was kept at 1 ml before treatment. 
The GABA mother solutions were prepared using DMEM 
to achieve the correct target concentrations (GABA con-
centrations: 1.25, 2.5, 5, and 10  μM). Before the cortical 
culture was treated with GABA, 200  μl of the cultured 
medium was pipetted out, mixed with a small amount (1 μl) 
of the GABA mother solution, and then carefully returned 
to the original medium to avoid osmotic or hydrodynamic 
stress.

Electrophysiology Recordings

The recording system and the MEAs were custom-made in 
our laboratory as reported previously [36, 37]. The record-
ing system had 32 channels, including an amplifier, a NI 
USB-6259 data acquisition card, and software developed 
by LabVIEW (National Instruments, USA). The MEAs 
were made using indium tin oxide (ITO) glass, and the 
electrodes were electroplated using platinum. Each MEA 
had a large ground electrode and 59 microelectrodes 
(30 μm diameter, 200 μm inter-electrode distance).

Before recording, each MEA was placed in the record-
ing system for 10 min to avoid shifts of neural activity from 
the MEA movement. Neural activity was then recorded for 
10 min. All of the recordings were performed in a humidi-
fied incubator (37 °C with 5% CO2 and 95% air).

Spike Detection

Spike detection was performed using an Offline Sorter 
(Plexon, Inc.). Baseline shifts and high-frequency noise 
were removed using a band-pass filter (200–5000 Hz). The 
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spike detection threshold was set at five standard deviations 
of the background signal. Further analysis was carried out 
using Neuroexplorer(NexTechnologies, Inc.) and MAT-
LAB (The Mathworks).

Burst Detection

Burst detection was performed using Neuroexplorer, as 
described in the literature [38]. Briefly, the spike train 
detection parameters were set as follows: minimum burst 
interval of 0.1  s, minimum burst duration of 0.1  s, and a 
minimum of five spikes per burst.

Network Burst Detection

A network burst consists of a fast sequence of spikes and 
can usually be observed in many channels simultaneously. 
A network burst represents the synchronous activity of a 
neural culture and provides information regarding interac-
tions between neurons. The algorithm used to detect net-
work bursts was the same as that reported previously [39]. 
Briefly, a network burst must be detected in at least four 
active channels within 250  ms, and each active channel 
must record at least three spikes within 100 ms. The onset 
and the end of a network burst were defined as the first and 
the last spike timestamp of the network burst respectively. 
“Tiny” network bursts were excluded from analysis. Thus, 
only network bursts with more than eight active channels 
(>3 spikes in 100 ms) were selected for further connection 
analysis.

Cross‑covariance Method of Connection Determination

Functional connectivity was used to assess functional inter-
actions between neurons in the neural network [40]. The 
evaluation of functional connectivity in neural cultures has 
been attempted using many different methods [26, 27, 30, 
39–42]. However, there is no gold standard method for the 
optimal estimation of neural functional connectivity.

The algorithm used to estimate functional connectivity 
was based on one reported in the literature [27], with small 
modifications. Briefly, we calculated the cross-covariance 
sequence Φxy(m) between spike trains of two channels dur-
ing a network burst using the equation below:

where Φxy(m) represents a similarity evaluation between 
vector x and vector y after vector x shifts m time bins, E {} 
is an expected value operator, and μxand μy are the mean 
values of vector x and vector y, respectively. In this study, 
vector x and vector y represents vectors that collect the 
numbers of spikes within each time bin (1 ms) during a net-
work burst.

Φxy(m) = E{(xn+m − �x)(yn − �y)}

The cross-covariance values of the spike trains may 
increase with firing rate [43]. The cross-covariance values 
cannot simply be regarded as functional interaction or func-
tional connectivity weights. This is to avoid the confound-
ing caused by random spiking. Thus, a shuffling procedure 
was applied to compare the differences in cross-covariance 
between neural activity and surrogate neural activity. In this 
manner, real neural functional connections could be distin-
guished from functional connections due to chance. Briefly, 
recording spike trains were randomly shuffled and were 
used as surrogates to real neural activity in calculations of 
the cross-covariance sequence. This step was repeated 100 
times. A z-score was then used to normalize the difference 
between the cross-covariance of the real neural activity 
and that of the surrogate data. The z-score equation is as 
follows:

where ΦS
xy
(m) is cross-covariance value of surrogate pairs 

and �S
xy
(m) is the standard deviation of the cross-covari-

ance surrogate values set at ΦS
xy
(m). 

Zmax = max (Z(m))(m ≠ 0) was used as the connectivity 
weight.

In this study, we produced a 32 × 32 connectivity weight 
matrix for each selected network burst. Determination of 
the presence of a connection was based on two threshold 
schemes. The networks were computed across a range of 
absolute thresholds (0.05–1.0, in steps of 0.05) for basic 
functional connectivity metrics (degree and network den-
sity). A range of proportional thresholds (2–40% maximum 
network density, in steps of 2%) was also used to construct 
a network. The largest connected components were then 
evaluated and used to compute complex topological met-
rics, such as small-worldness.

Graph Metrics

Graph metrics were selected to assess the functional net-
works of the neural cultures. To evaluate the similarities in 
functional networks during a recording episode, pairwise 
Spearman correlation was used to compute the two upper 
triangles of the 32 × 32 connectivity weight matrices. The 
connection strength of the functional network represents 
the mean value of all of the connection weights in all 
selected connection weight matrices. Network density was 
defined as the percentage of all possible connections that 
were realized. The degree was the number of connections 
linked with other nodes. Nodes to which no other nodes 
were linked were defined as having a degree of 0.Small-
worldness [44, 45] was used to measure the presence of 

Z(m) =
Φxy(m) − ΦS

xy
(m)

�S
xy
(m)
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small-world organization. If C*Lrandom/Crandom*L > 1, then 
the network has a small-world organization. C and Crandom 
represent the average clustering coefficients, and L and 
Lrandom represent average path lengths of the target network 
and the surrogate network, respectively. The surrogate net-
work was constructed using the Brain Connectivity Tool-
box [25] using the same size and degree distributions as 
those in the original network (100 iterations).

Statistical Analysis

All data are expressed as means ± standard errors of the 
mean. Four neural cultures on MEAs were used in this 
paper. We used statistics software SAS (version 9.0) to per-
form the statistical analyses. A one-way analysis of vari-
ance (ANOVA) with Tukey’s studentized range (HSD) test 
and a two-way ANOVA with a Bonferroni post-hoc test 
were used to evaluate the data. A p-value < 0.05 was con-
sidered significant.

Results

Primary cortical tissues were prepared from embryonic day 
17–18 SD rats. Mixtures of neurons and astroglia were iso-
lated and seeded on MEA chips. Neurons can attach onto 
the MEAs and develop into a mature neuronal network [46, 
47]. Cortical neurons were cultured on MEAs for about 
3 weeks and then treated with GABA at 21 DIV, as showed 
in Fig.  1a. Neural activities on MEAs were recorded 
by MEA recording system and functional connectivity 
changes were analyzed by graph theory (Fig. 1b).

Spiking Activities of Cultured Neural Networks During 
Acute GABA Treatment

The neural network was mature at 21 DIV. At this point, 
the neural activity was characterized by synchronized 
bursts and random spikes. In order to explore the effects of 
acute GABA treatment on the neural cultures, cortical neu-
ral cultures were treated with GABA gradually in a cumu-
lative manner (1.25, 2.5, 5, and 10 μM). The recorded neu-
ral activities at each concentration of GABA are shown as 
raster plots in Fig. 2.

Statistical analysis indicates that the activities of the 
neural cultures were significantly inhibited by GABA in 
firing rate (F = 60.56, p < 0.0001, Fig.  3a), bursting rate 
(F = 31.13, p < 0.0001, Fig.  3b), and bursting duration 
(F = 26.57, p < 0.0001, Fig.  3c). Spike frequencies of the 
bursts did not change after treatment with GABA when 
compared to the initial state (Fig. 3d).

Network Burst Dynamic of Neural Cultures During 
Acute GABA Treatment

Typical network burst activity obtained without GABA 
treatment is shown in Fig. 4a. Network burst activity dur-
ing treatment with 5 µM GABA is shown in Fig. 4b. It is 
suggested that during exposure to GABA concentrations 
under 5 µM, neural cultures display fewer spikes in a net-
work burst. The statistical analysis of network burst rates 
indicated that the decrease was significant with treatments 
of 1.25, 2.5, 5, and 10 μM GABA (Fig. 4c). Acute GABA 
treatment (10  µM) completely inhibited network burst 
activity.

Fig. 1   The experimental proce-
dure: a GABA was added to the 
culture medium in a concentra-
tion-accumulating manner. All 
cultures were stabilized for ten 
minutes before recording. b The 
protocol for the functional con-
nectivity analysis
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Network Topology Following Acute GABA Treatment

To explore the influence of acute GABA treatment on 
functional connectivity of neural cultures, we focused on 
the synchronous activity known as the network burst. We 
used lagged inter-channel cross-covariance analysis for 
each GABA treatment condition over each network burst. 
A shuffling procedure [48, 49] was used to normalize the 
differences in connectivity weight between real neural data 
and surrogate data. The spatiotemporal structures of func-
tional connectivity, evaluated by Spearman correlations 
between 50 randomly selected network bursts (for each 
recording), suggested a good similarity (0.5–0.7) between 

cultures treated with 0, 1.25, and 2.5  µM GABA. How-
ever, when the concentration of GABA reached 5 µM, the 
similarity was significantly decreased (Fig. 5a). Compared 
to the control (0 µM), application of GABA did not affect 
connectivity strength (Fig. 5b).

To compare the network topologies of the neural cul-
tures during acute treatment with different concentrations 
of GABA, two threshold schemes were used to describe 
the changes in network topology. First, to compare net-
work densities and the sizes of the largest components, 
functional networks of neural cultures were constructed 
across a range of absolute thresholds (0.5–10, in steps of 
0.5; calculated for each network burst). Our data indicated 

Fig. 2   The raster plotting of neural activity during treatment with different concentrations of GABA: a 0 µM, b 1.25 µM, c 2.5 µM, d 5 µM, and 
e 10 µM
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that GABA treatment influences network density (two-way 
ANOVA, F = 0.31, p = 0.0326, Fig. 6a) and the size of the 
largest component (two-way ANOVA, F = 1.25, p < 0.0001, 
Fig.  6b) of functional networks of cortical neural cul-
tures. Second, a range of proportional thresholds (2–40% 

maximum network density, in steps of 2%) were used to 
construct a functional network used to calculate small-
worldness. Using no GABA exposure (0 µM) as a control, 
we found that small-worldness was unaffected by 1.25, 2.5, 
and 5  µM GABA exposure (two-way ANOVA, F = 0.69, 
p = 0.1283, Fig. 6c) and that small-world organization was 
robust in the face of GABA treatment.

Discussion

The effects of acute GABA exposure on cortical neural 
cultures were investigated by graph theory. Activity param-
eters, functional connectivity, and functional network 
topology were compared during the treatment with differ-
ent concentrations of GABA. It was shown that while some 
activity parameters were influenced by GABA as expected, 
the connectivity and the network topology of cortical 
neural cultures were also found to be sensitive to GABA 
treatment.

Generally, small-world [27] and rich-club [29] organiza-
tions of neural cultures emerge during development with-
out any external intervention. However, it has been reported 
that the topologies of neural cultures were influenced when 
the neural cultures were constructed as models of epilepsy 
by glutamate [26] and ischemic model by the combina-
tion of 4-aminopyridine and bicuculline [28]. Small world 
organization is a very important to neurosciences. In fact, 
“small-worldness” was found in multiple species and scales 

Fig. 3   Changesinactivity 
parameters of cortical neural 
cultures after acute treat-
ment with increasing doses of 
GABA: a firing rate, b bursting 
rate, c burst duration, and d 
spike frequency of the bursts. 
***p < 0.0001, comparison 
between acute GABA-treated 
cultures and cultures before 
GABA treatment

Fig. 4   Network burst dynamics during GABA treatment: raster plots 
of network bursts during a 0 µM and b 5 µM GABA treatment. c Net-
work burst frequencies during treatment with different concentrations 
of GABA. **p < 0.01, comparison between activity of acute GABA-
treated culture and activity of culture before GABA treatment
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from structural and functional MRI studies of large-scale 
brain networks to MEA recordings of cellular networks 
[26–29] and intact animals [50, 51]. It was believed that a 
brain network with small-world structure had denser local 
clustering connection and could arrange some long-range 
connections to process information efficiently and eco-
nomically. The rich-club topology refers to the tendency of 
nodes with high degree to form tightly-interconnected com-
munities. They were found in the human brain, cultured 
neural and the other neural networks. Neural rich clubs 
have been hypothesized to act as a central high-capacity 
backbone for global communication [52] and integration 
[53] in the brain.

In our study, the “small-worldness” of neural culture 
was not influenced by 0~5 μM GABA treatments. In fact, 

there were inhibitory or excitory synapse and neurons in 
neural cultures. However, inhibitory synapse input would 
inhibit excitory neurons’ activities. As a consequence, neu-
rons, which are regulated by these excitory neurons, would 
be inhibited for lacking of input from excitory neurons. 
On the other hand, inhibitory synapse input would inhibit 
inhibitory neurons’ activities. Therefore the neurons that 
regulated by these inhibitory neurons activity would be 
increased. There is an excitation-inhibition balance in neu-
ral cultures, which is critical for proper development and 
function of the central nervous system [54]. Hence, we 
speculate that this excitation-inhibition balance would be 
broken when neural cultures were added with GABA, but a 
new balance would emerge to fight against the extra amount 
of GABA. In this new balance, the firing rates of neural 

Fig. 5   Increasing concentrations of GABA induced changes in func-
tional connectivity in cultured cortical networks. a Functional con-
nectivity varied across network bursts within a recording episode. 
Five µM GABA may cause this similarity to decrease. b Functional 

connectivity strengths of neural cultures seemed to not be affected 
by 1.25, 2.5, or 5 µM GABA when compared to control. ** p<0.01, 
comparison between the activity of acute GABA-treated culture and 
that of the culture before GABA treatment

Fig. 6   Increasing concentra-
tions of GABA induced changes 
in the network metrics of the 
network density (a), the size of 
the largest component (b), and 
small-worldness (c)
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cultures were significantly decreased, but the connectivity 
weight and the “small-worldness” may not be affected.

We also discovered that the similarities between func-
tional networks during a recording episode decreased by 
the acute GABA treatment. Based on the data, GABA was 
verified to be involved in the regulation of the communica-
tions. However, the functional weight seemed to be unaf-
fected by GABA treatment.

Network density, the size of the largest component, 
and the small-worldness of the cortical cultures were also 
found to be influenced by GABA exposure. Network den-
sity and the size of the largest component are reduced fol-
lowing GABA treatment. This means that GABA leads 
to a decrease in the connections within a neural network. 
However, small-worldness was not found to be influenced 
by an acute GABA treatment. Specifically, small-world-
ness remained above 1, which means that the small-world 
organization of the neural cultures was not interrupted by 
GABA.

It is known that GABA inhibits the excitability of indi-
vidual neurons. However, it is unclear how GABA influ-
ences the global interactions of neural networks. Using 
graph theory, we can evaluate the connectivity of the whole 
neural network to acquire a better understanding of neural 
network functions. These functions include interactions 
between neurons and whole network dynamic properties. In 
addition, in  vitro studies may help to improve our under-
standing of the functional network organization.
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