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Introduction

Proper development and functioning of the neocortex criti-
cally depends on the coordinated production and migration 
of excitatory and inhibitory neurons [1–3]. Representing 
10–25% of total number of cortical neurons, GABAergic 
interneurons expressing parvalbumin (PV+) and somatosta-
tin (SOM+) are the main source of inhibition. GABAergic 
interneurons control the activity of pyramidal neurons [4, 
5] and play a crucial role in shaping cortical maturation at 
various stages of development [4]. Disruptions of cortical 
GABAergic circuitry at several stages of development con-
tribute to various neurodevelopmental disorders [6] includ-
ing autism [7, 8], epilepsy [1, 9, 10] and schizophrenia [8, 
11].

During in utero development, GABAergic interneuronal 
system is vulnerable to several agents including prenatal 
ethanol exposure [12–14]. Prenatal ethanol exposure can 
alter the migration of GABAergic interneurons [14–16] 
which might represent a potential mechanism by which pre-
natal ethanol exposure can lead to the postnatal behavioral 
and cognitive dysfunctions encountered with Fetal Alcohol 
Spectrum Disorders (FASDs). The exact molecular mech-
anisms by which prenatal ethanol exposure can affect the 
GABAergic interneurons during their cortical migration 
are still unclear. This article discusses different molecular 
mechanisms by which prenatal ethanol exposure can alter 
GABAergic interneuronal cortical migration.

Embryology of GABAergic Interneurons

There are three distinct classes of GABAergic interneu-
rons in the rodent neocortex according to the molecular 
markers they express: PV+, somatostatin (SOM+), and 
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5-hydroxytryptamine 3A receptor positive (5-HT3AR+) 
cells [17, 18]. The vast majority of murine GABAergic 
interneurons in the neocortex are derived from the subpal-
lium [19], in which PV+ and SOM+ cells originate from 
medial ganglionic eminence (MGE) [19] whereas most 
5-HT3AR+ cells originate from the caudal ganglionic emi-
nence (CGE) [18] and preoptic area (POA) [20, 21].

MGE is the primary source of GABAergic cortical 
interneurons, accounting for 50–60% of cortical GABAe-
rgic interneurons [22, 23]. Following a tangential migra-
tion pattern, inhibitory GABAergic interneurons migrate 
throughout the developing telencephalon to reach the cor-
tex [24, 25]. Migratory pathways followed by CGE- and 
POA-derived interneurons to reach their cortical destina-
tion are largely distinct from those used by MGE-derived 
interneurons. Whereas MGE-derived cells migrate toward 
the rostrocaudal regions of the neocortex [26], CGE-
derived and POA-derived cells primarily migrate toward 
the caudal pole [27, 28], and rostral region of the neocor-
tex [20] respectively. This suggests that interneurons born 
in the CGE and POA respond, at least in part, to a differ-
ent set of guidance cues [29].The migration of GABAer-
gic interneurons generated from MGE commences around 
embryonic day 9.5 (E9.5) with a peak at E13.5 -E16.5 [30] 
followed by the migration of neurons generated in other 
areas. GABAergic interneurons start reaching the cortex by 
E14. Upon reaching the cortex, GABAergic interneurons 
integrate themselves in an “inside-out” pattern where ear-
lier coming older interneurons lie deeper to the newly com-
ing younger ones [31–33]. MGE-derived interneurons are 
expected to reach their adult brain-like maturation by post-
natal days 16–21 [31]. In humans, neuronal migration takes 
place predominantly between 12 and 20 weeks of gestation 
[34].

The migration of neurons from the subpallial origins 
to the cerebral cortex is a complicated process involv-
ing the activity of various motogens, chemotactic factors, 
transcription factors, as well as neurotransmitters [35, 
36]. Chemical cues such as semaphorines and ephrins are 
expressed as gradients in the brain and serve as attracting 
or repelling signals for migrating cells [37, 38]. Several 
prenatal factors including stress [39] and pharmacological 
agents [40] can disrupt the GABAergic interneuronal sys-
tem. This review will only focus on the effect of prenatal 
ethanol exposure on GABAergic interneuronal migration.

Fetal Alcohol Spectrum Disorders (FASDs)

Prenatal ethanol exposure results in neurodevelopmental 
deficits and lifelong disability in offspring [41]. FASDs, 
which encompasses fetal alcohol syndrome, alcohol-related 
birth defects, and alcohol-related neurodevelopmental 

disorder, are estimated to affect at least 1% of all births 
in the United States [42]. In pregnant women, the preva-
lence of any alcohol use and binge drinking in the past 
30 days was 10.2 and 3.1%, respectively [43]. Animal stud-
ies showed that binge-like drinking patterns in pregnant 
females are particularly dangerous to fetal brain develop-
ment, even if the total amount of ethanol consumed is less 
than that consumed in a more continuous drinking pattern 
[44]. Children with FASDs are often described as hyper-
active, distractible, impulsive, with short attention spans, 
impaired cognitive functions and learning difficulties [45, 
46]. Epidemiological studies have suggested that alcohol 
use problem of parents might be related to the hyperactiv-
ity or inattention symptoms in their children [47]. Prenatal 
ethanol exposure in experimental animals results in hyper-
activity [48] and impaired executive functions [49]. The 
mechanism by which prenatal ethanol exposure contribex-
posure contributes to such myriad of symptoms is not fully 
understood.

Prenatal Ethanol Exposure Impacts GABAergic 
Interneuron Cortical Migration

Prenatal ethanol exposure results in profound effects on 
cortical neuronal migration [50, 51]. Several studies have 
suggested that abnormal migration of GABAergic corti-
cal interneurons is involved in FASDs (Table  1). Mon-
keys exposed prenatally to ethanol once per week for 4 or 
24 weeks starting from the first week of gestation showed 
reduced GABA expressing neurons in somatosensory 
cortex [52]. In guinea pigs, ethanol administered through 
almost the whole pregnancy (from day 2 until the day 
before delivery) was associated with reduced expression of 
glutamic acid decarboxylase (GAD), the protein marker for 
GABAergic neurons, in layers II–III of somatosensory cor-
tex [53]. The involvement of superficial cortical layers (lay-
ers II–III) suggested that chronic prenatal ethanol treatment 
seems to affect mostly the late-generated GABAergic cells 
[16]. In rats, the offspring of pregnant females exposed to 
ethanol over the whole gestation showed 45% fewer PV+ 
neurons in the anterior cingulate cortex [54]. Over all, it 
has been suggested that chronic prenatal ethanol consump-
tion may result in reduced GABAergic cell density in spe-
cific cortical regions.

A different set of experiments came up with differ-
ent conclusions. Prenatal ethanol exposure for 14  days 
(E0.5–E14.5) in mice resulted in increased density of 
GABAergic interneurons in all cortical layers of medial 
prefrontal cortex (mPFC) at E14.5 which was proposed 
to be due to increased tangential migration of GABAergic 
interneurons [14]. Sukorput et  al. showed that gestational 
ethanol exposure during the peak of tangential migration 
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of GABAergic interneurons (E13.5–E16.5 in mice cor-
responding to mid-first trimester in humans) resulted in 
increased density of GABAergic interneurons in layer V 
of mPFC. This was associated with significant electro-
physiological and behavioral consequences. Mice exposed 
prenatally to ethanol during such critical period showed 
dysregulated neuronal excitability in the form of increased 
GABA-mediated inhibitory drive over pyramidal neu-
rons. Behavioral deficits in the form of hyperactivity and 
long-term PFC-dependent executive dysfunction were also 
observed in these mice [15]. In another study done in mice, 
ethanol exposure between E11 and E14 produced mosaic 
abnormal distribution of GABA expressing cells in the 
somatosensory cortex at P10 and a tendency, though non-
significant, for increased GABA expressing cells at P180 
[16] which may suggest that alcohol may also alter cortical 
organization of already migrated GABAergic interneurons.

In summary, it seems that the type of exposure (chronic 
versus acute) could account for the differences observed in 
various models [16]. However, the mechanisms by which 
prenatal ethanol exposure can influence the programmed 
GABAergic migratory process is still poorly understood. 
This review proposes that ethanol can alter one or more of 
the factors regulating GABAergic interneuronal migration 
process which include neurotransmitters such GABA and 
dopamine, epigenetic and trophic factors.

GABAergic Pathway of Ethanol‑Induced 
Abnormal GABAergic Interneuron Migration

There are two main categories of GABA receptors, the 
ionotropic GABA receptors, GABAA and GABAc, and the 
metabotropic GABAB receptors. Activation of GABAA 
receptors causes the opening of a channel formed at the 
center of the receptor complex, allowing the diffusion of 

chloride ions across the cell membrane [55]. GABAB recep-
tors are coupled to K+ and/or Ca2+ channels via a G-protein 
mediated pathway or in a membrane delimited manner [56, 
57]. There is clear evidence for the involvement of GABAA 
and GABAB receptors in neurodevelopmental disorders 
[57, 58]. Migration of GABAergic interneurons are largely 
controlled by GABAergic signaling [59, 60]. Reduc-
ing ambient GABA activity results in improper migration 
process with the accumulation of interneurons at the cor-
ticostriatal junction [61]. Migrating interneurons express 
GABAA and GABAB receptors, and their GABA respon-
siveness increases with the progression of the migration 
process [62]. In line with this, diazepam, a benzodiazepine 
which augments the activation of GABAA receptors, sub-
stantially increased the motility rate of migrating GABAer-
gic interneurons [63]. The tangentially migrating GABAe-
rgic interneurons in the marginal zone of neonatal mice are 
also impaired after inhibition of GABAA receptors in vivo 
[63] demonstrating the important influence of endogenous 
GABA on the tangential migration.

It was suggested that tangentially migrating GABAer-
gic neurons are themselves a source for GABA [59] which 
might constitute a promigratory signal autoactivating 
GABA receptors [64]. It has been shown that GABA can 
affect the migration process in a dose and receptor depend-
ent manner and the differential role of GABA receptors on 
neuronal migration might differ according to type of tar-
geted neuron [64–68]. Acting on GABAergic interneurons, 
GABA can have a selective action at individual layers, 
being able to generate action potentials in layers V–VI but 
not in layers II–III [69]. Overall, GABA seems to affect the 
migration and function of GABAergic interneurons.

GABAergic signaling is a well-known target of alcohol. 
Alcohol potentiates GABA-mediated signaling through dif-
ferent mechanisms including increasing GABA release and 
increasing GABAA receptor activity [70–72]. It has been 

Table 1   Effect of prenatal ethanol exposure on the migration of GABAergic interneuron migration in experimental animals

Species Prenatal ethanol exposure Effect on GABAergic interneurons Brain region affected References

Guinea pigs Chronic, throughout gestation (4 g/
kg/day)

Decrease in the number of GAD-
immunopositive neurons

Layers II/III of somatosensory cortex [53]

Monkeys Intermittent (once per week) for 4 
or 24 weeks starting from the first 
week of gestation

Reduced GABA expressing neurons Somatosensory cortex [52]

Rats Chronic ethanol over from G0–G21: 
ethanol comprised 35% of the total 
calories

Fewer PV+ neurons Anterior cingulate cortex [54]

Mice Ethanol exposure for 14 days (E0.5–
E14.5) (1 or 2% (w/v)

Increased density of GABAergic 
interneurons

All cortical layers of medial prefron-
tal cortex

[14]

Mice Acute binge like ethanol exposure 
(E13.5–E16.5)

Increased density of GABAergic 
interneurons

Layer V of mPFC [15]

Mice Ethanol exposure (E11 and E14) Abnormal distribution of GABA 
expressing cells

Somatosensory cortex [16]
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proposed that alcohol can increase the tangential migration 
by augmenting GABA signaling. In utero ethanol expo-
sure elevated the ambient level of GABA and increased the 
sensitivity of MGE-derived cells to GABA promoting pre-
mature migration [14]. As different neurons respond differ-
ently to GABA, ethanol mimicking GABA action through 
the activation of GABAA could target preferentially the 
neurons that are more sensitive to GABA mediated depo-
larization i.e. layer V which might explain why prenatal 
ethanol exposure increased the migration to this particu-
lar cortical layer [15]. However, neurons less sensitive to 
GABAA-mediated depolarization i.e. layers II–III might be 
modulated by alcohol through metabotropic GABA recep-
tors producing an opposite effect on migration [53].

GABAB receptors have been identified in the developing 
cerebral cortex [73] with particularly high density in tan-
gentially orientated neurons in the lower intermediate zone 
(LIZ) of the cortex [74]. Several lines of evidence suggest 
that GABAB receptors activation might play an important 
role in cortical development. Pharmacological studies indi-
cate that GABAB receptors activation stimulates migration 
of neurons in immature cortical regions [75]. Blockade of 
GABAB receptors with a specific antagonist, CGP52432, 
resulted in a concentration-dependent accumulation of 
these tangentially migrating neurons in the ventricular/
sub-ventricular zones of the cortex and fewer cells were 
observed in the cortical plate/marginal zone and LIZ indi-
cating an important modulatory role of GABAB receptors 
in the migration of cortical interneurons [76]. The role of 
GABAB receptors in mediating effect of prenatal ethanol 
exposure on GABAergic interneuronal migration is to be 
identified.

Dopaminergic Pathway of Alcohol‑Induced 
Abnormal GABAergic Interneuron Migration

Another possible mechanism by which ethanol can influ-
ence the migration of GABAergic interneuron is modula-
tion of dopaminergic transmission. Dopaminergic signaling 
has been shown to modulate the migration of GABAergic 
interneurons which express D1 and D2 receptors. D1 recep-
tor normally functions to promote cortical interneuron 
migration while D2 receptor knockouts possess increased 
migratory capability [77]. The dopaminergic system is 
known to be significantly influenced by ethanol [78, 79] 
including prenatal ethanol exposure [80]. Ethanol enhanced 
dopaminergic signaling mediated through D1 [81]. Prena-
tal ethanol exposure led to the persistent abnormal synap-
tic plasticity via disturbing the balance between D1 and D2 
mediated signaling, allowing more D1 over D2 activity [82]. 
Theoretically, altered dopaminergic signaling may provide 
a potential mechanism by which ethanol can influence the 

GABAergic interneurons migration. As dopamine recep-
tors are widely distributed in the central nervous sys-
tem, it might be difficult to use pharmacological agents to 
understand their contribution to prenatal ethanol-induced 
abnormal interneuronal migration. Selective knock down 
of dopamine receptors in migrating GABAergic neurons 
might be a more useful strategy in this context.

Prenatal Alcohol Exposure and Epigenetic Factors

Epigenetic regulation of gene expression has been shown to 
play a pivotal role in developmental processes. Recent stud-
ies have demonstrated epigenetic alterations in the etiology 
of FASDs [83]. Hyperactivity has been shown in offsprings 
of male mice exposed to preconception ethanol which may 
refer to the involvement of epigenetic factors [84]. Prenatal 
alcohol exposure caused altered DNA methylation pattern 
[84–86] and changed the expression of key epigenomic reg-
ulators e.g. DNA methyltransferase 1 (DNMT1), DNMT3a, 
and methyl CpG binding protein 2 (MeCP2) [87]. MeCP2 
is a transcriptional regulator that binds to methylated 
DNA. MeCP2 regulates the expression of Brain-Derived 
Neurotrophic Factor (BDNF). BDNF is known to influ-
ence GABAergic interneuronal migration (see below), thus 
MeCP2 might be involved in the regulation of GABAergic 
interneuron maturation indirectly by regulating BDNF [88, 
89]. MeCP2 regulates the transcription of DLX5, a tran-
scription factor critical for the migration and maturation 
of PV+ interneurons [90]. Thus, it is possible that ethanol 
influences the GABAergic interneuron migration through 
an altered DNA methylation-MeCP2-BDNF/DLX5 
pathway.

MicoRNAs (miRNAs) are small noncoding RNAs that 
regulate gene expression by binding to the 3′ untrans-
lated region (3′UTR) of mRNA leading to its breakdown 
or translational repression. It has been shown that dys-
regulated miRNA mediated activity significantly influence 
GABAergic neuronal development and migration [91]. 
In  vivo and in  vitro studies showed that prenatal alcohol 
exposure resulted in several miRNA alterations both in 
the mother and the developing fetus [92, 93]. Alterations 
in miRNA expression were also found in primary neuronal 
cultures from the cortex of mice (E15) following chronic 
intermittent ethanol exposure and withdrawal [94]. Rats 
exposed to prenatal ethanol show altered miRNA expres-
sion in amygdala and striatum [95]. miRNAs have been 
implicated in the development of brain damage in response 
to prenatal ethanol exposure [96]. Experimental evidence 
indicates that the expression of miRNAs is altered follow-
ing exposure to alcohol during development, and this may 
be one of the mechanisms underlying alcohol-related tera-
togenesis [97, 98]. miRNAs disrupted by ethanol exposure 



1283Neurochem Res (2017) 42:1279–1287	

1 3

during critical periods, can affect neuronal migration by 
regulating several biological pathways regulating interneu-
ronal migration such as BDNF [92].

Prenatal Alcohol Exposure and Neurotrophic 
Factors

The guidance of GABAergic interneurons from the sub-
pallium to the developing cortex relies on multiple factors 
[99, 100]. Several neuronal growth factors such as Hepat-
ocyte Growth Factor (HGF) [101], BDNF [102] and glial 
cell line-derived neurotrophic factor (GDNF) [103, 104] 
regulate the migration of cortical GABAergic interneurons. 
By stimulating TrkB-mediated pathways, BDNF strongly 
influences tangential interneuronal migration in the devel-
oping nervous system [102]. GDNF, through its receptor, 
GFRalpha, mediated signaling has been implicated in the 
development of GABAergic interneurons. GFRalpha sign-
aling guides the development of a subset of PV+ express-
ing GABAergic interneurons in specific cortical regions 
[103]. HGF serves as an important molecular cue for the 
dispersion of ganglionic eminence-generated interneurons 
to their appropriate locations in the dorsal telencephalon. 
HGF receptor, MET, expression was evident in a polarized 
pattern on migrating cells  from GE explants and its exog-
enous ligand disrupts normal cell migration [101].

Prenatal alcohol exposure has been found to influ-
ence the expression or the levels of these factors [105, 
106] which may impact GABAergic interneuron migra-
tion. However, the effect of ethanol on the expression of 
these growth factors and their receptors is rather complex 
and there is clear deficit in our knowledge regarding their 
role in mediating the effects of prenatal alcohol exposure. 
Although adult mice showed reduced BDNF in response to 
prenatal ethanol exposure, neonatal rats that were exposed 
to ethanol throughout gestation [105] did not show change 
in BDNF levels in their cortex [107]. Other studies showed 
also that ethanol may reduce TrkB expression [108] thus 
indirectly influencing BDNF-mediated effects. The effect 
of alcohol on GDNF is also poorly understood. Alcohol 
increased expression of GDNF in ventral tegmental area 
[109] and cortex [105]. It reduced the expression of GDNF 
mRNA expression in neuronal progenitor cells generated 
from telencephalic tissue derived from E15–17 [106].

Currently, we cannot conclusively establish which of the 
different factors mentioned above (neurotransmitters, epi-
genetic regulators or trophic factors) and possibly others, 
are the major players linking prenatal alcohol exposure to 
abnormal GABAergic interneuronal migration (Fig. 1). The 
most probable is a complex interplay, with some of these 
factors being regulated in a maladaptive manner resulting 
in FASDs [16]. Despite the accumulating evidence about 
the involvement of GABAergic interneurons in the FASDs, 

Fig. 1   Factors that might be 
involved in mediating the effect 
of prenatal ethanol exposure 
on GABAergic interneuronal 
migration
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it has been shown that prenatal exposure to alcohol during 
early pregnancy (E0–E8) i.e. before the critical period of 
tangential migration can still produce persistent behavioral 
dysfunction [110], which suggests the multifactorial nature 
of FASDs. In addition, the prolonged inhibitory effect 
related to ethanol can develop due to enhanced postsyn-
aptic GABA signaling [111], which renders the functional 
and electrophysiological impact of ethanol on GABAergic 
signaling more complex.

Conclusion and Future Directions

Prenatal ethanol exposure affects the cortical migration 
of GABAergic interneurons which impacts cortical func-
tion and development. Understanding the mechanisms by 
which prenatal alcohol exposure can influence GABAergic 
interneuronal migration process is not an easy task. First, 
the process of GABAergic interneuronal migration is a 
complex phenomenon controlled by precisely orchestrated 
pathways and several important aspects of which are not 
fully understand. Second, alcohol can affect several molec-
ular pathways and neurotransmitter systems on almost 
every neuronal cell-type. Although alcohol-free pregnancy 
is the best choice for the mother and the newborn, it might 
be difficult to achieve, this necessitates clear understanding 
of the mechanism by which alcohol can cause a permanent 
neuroanatomical and functional impairment for the possi-
ble generation of a safe “antidote” that might be successful 
in preventing or at least minimizing ethanol’s teratogenic 
effects.
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