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BA induced the mitochondrial apoptotic pathway in differ-
entiated PC12 cells through ROS.
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Introduction

Betulinic acid (BA), a natural pentacyclic triterpene in 
abundant resources, can be extracted from the white birch 
tree, triphyophyllum peltatum and the jujube tree [1–3]. 
In  vitro and in  vivo studies have indicated that BA has 
extensive biological capabilities as anti-viral, anti-inflam-
matory, anti-lipogenic, anti-malarial and anticancer [2, 
4–8]. Among these properties, its anticancer activity has 
long been a focus of interest.

Recent researches have shown that BA is capable of 
inducing apoptosis in multiple tumor types, such as mela-
noma, ovarian cancer, lung cancer and neuroectodermal 
tumors including neuroblastoma, medulloblastoma and 
glioblastoma [9–13]. The cytotoxic effect of BA on neuroe-
ctodermal tumors has been reported to occur via a direct 
effect on mitochondria [13]. Some other studies have found 
that the generation of reactive oxygen species (ROS), the 
activation of caspases and the upregulation of Bax are 
involved in the nerve tumor apoptosis induced by BA [10, 
14, 15]. Studies on the mechanisms underlying BA-induced 
cancer cell apoptosis suggest that several signaling path-
ways and pro-apoptotic factors are involved, such as the 
MAPK pathway, endoplasmic reticulum stress, and TNF-
alpha [16–18]. Furthermore, BA-induced apoptosis is inde-
pendent of the p53 status in human breast tumor cell lines 
and human melanoma cells [19, 20].
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The cytotoxicity of BA is considered to be selective for 
tumor cells and not normal cells [17, 21], which makes 
it possible to be a promising antitumor agent. However, 
recent studies have suggested that BA also induces erypto-
sis in human red blood cells [22] and tissue-damaging ROS 
generation within the CNS [23]. Since BA has a great cyto-
toxic effect on nervous system tumors [10, 13, 14, 24] and 
has the potential for application in the treatment of brain 
tumors, it is necessary to consider the influence of this 
agent on normal neuronal cells.

In the present study, we aimed to investigate the effect 
of BA on normal neuronal cells, using the PC12 cell line, 
which is derived from pheochromocytoma and broadly 
used as an in  vitro model for neurotoxicity research [25]. 
This study explored whether BA could induce PC12 cell 
apoptosis. Moreover, we further explored the mechanism of 
BA-induced PC12 cell apoptosis and searched for the criti-
cal factor of the cytotoxicity.

Materials and Methods

Cell Culture

Animal experiments were approved by the Administration 
Committee of Experimental Animals, Nanjing Medical 
University. Primary cortical neurons were obtained from 
the cortices of embryonic day 18 Sprague-Dawley rats. 
First, the cells (3 × 105 cells/mL) were maintained in poly-
l-lysine (Sigma, USA) coated plates in DMEM medium 
supplemented with 10% heat-inactivated fetal bovine 
serum. After 4 h of culture, the cells adhered to the wall. 
Then, the culture medium was replaced by Neurobasal 
medium supplemented with 2% B27, 0.5  mM glutamine 
and 1% streptomycin/penicillin at 37 °C with 5% CO2. Half 
of the medium was changed every 3 days.

PC12 cells were cultured in RPMI 1640 medium supple-
mented with 10% heat-inactivated horse serum, 5% heat-
inactivated fetal bovine serum and 1% streptomycin/peni-
cillin in a humidified atmosphere with 5% CO2 and 95% air 
at 37 °C. Two days after seeding in the growth medium, the 
medium was changed to differentiation medium (DMEM 
supplemented with 1% horse serum, 1% streptomycin/peni-
cillin, 50 ng/mL NGF) for 3 days, and the culture medium 
was replaced with fresh medium every other day.

Cell Viability Assay

Cell viability was measured by the Cell Counting Kit-8 
(CCK-8) (Dojindo, Japan) according to the manufacturer’s 
instructions. Briefly, primary cortical neurons and PC12 
cells were seeded in 96-well plates with 1 × 104 cells/well, 
and allowed to attach overnight at 37 °C. The cells were 

treated with various concentrations of BA for 24  h. Then 
100 μl CCK-8 was added to each well. The cells were then 
incubated at 37 °C for 2 h, and the absorbance was detected 
at 450  nm by a microplate reader (Thermo Scientific, 
USA). Cell proliferation was expressed as the mean optical 
density at 450 nm [±SEM (n = 3)].

Assessment of Apoptosis

Flow cytometry using Annexin V-FITC/PI detection kit 
was used to assess the apoptosis of the PC12 cells. Briefly, 
the cells were plated in 6-well culture plates at a density of 
3 × 106/well, then cultured with 50 μM BA for 24 h. After 
that, the cells were trypsinized, rinsed with PBS and re-
suspended in 400 μl of 1× binding buffer. Then, the cells 
were stained with 5 μl annexin V-FITC and 5 μl PI in dark-
ness for 20  min at room temperature. Immediately after 
Annexin-V/PI staining, the samples were analyzed by flow 
cytometry (Beckman Coulter, USA). The viable cells were 
annexin V−/PI−, earlyapoptotic cells were annexin V+/
PI−, late apoptotic cells were annexin V+/PI+ and the cell 
debris was annexin V−/PI+.

Nuclear Morphological Observation

The nuclear morphological changes in BA-treated PC12 
cells were evaluated using the Hoechst 33342 stain. In 
brief, the treated cells were incubated with 50 μM BA in 
a 6-well plate for 24 h. After washing with phosphate buff-
ered saline (PBS), the cells were stained for 10  min with 
Hoechst 33342 at a concentration of 10 μg/ml in the dark. 
The cultures were washed twice more with PBS, and the 
fluorescence was visualized using a fluorescence micro-
scope (Leica DMI3000B, Germany).

Measurement of Mitochondrial Membrane Potential

The mitochondrial membrane potential (MMP) was ana-
lyzed by flow cytometry using the JC-1 assay kit (Beyo-
time, China). JC-1 exhibits potential-dependent accumula-
tion in mitochondria, indicated by a fluorescence emission 
shift from green (530 nm, FL-1 channel) to red (590 nm, 
FL-2 channel). In summary, the loss of MMP was indicated 
by a decrease in the red/green mean fluorescence intensity 
ratio. After different treatments, the PC12 cells were incu-
bated in 0.5 mL JC-1 working solution for 25 min at 37 °C, 
then washed and re-suspended in staining buffer and ana-
lyzed by a flow cytometer.

Detection of Intracellular ROS Concentration

The formation of intracellular ROS was evaluated using 
a fluorescent probe, 2′, 7′-dichlorofluorescin diacetate 
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(DCFH-DA). PC12 cells were seeded in 6-well cell culture 
plates, then incubated with 50  μM BA for 0, 15, 30, and 
60 min. The cells were treated with 10 μM of DCFH-DA 
for 30 min. After washing with PBS, the DCF fluorescence 
of the cells was measured by flow cytometry.

Preparation of Mitochondrial and Cytosolic Proteins 
of PC12 Cells

Mitochondria and cytosol were isolated from PC12 cells 
using the Mitochondrial/cytosol Fractionation Kit (Beyo-
time, China). The cells were re-suspended and homog-
enized in isolation buffer. The homogenates were centri-
fuged at 1000×g for 5  min at 4 °C to remove the nuclei. 
After that, the mitochondria were pelleted by centrifuging 
the supernatant at 11,000×g for 10 min at 4 °C. Then, the 
pellet was re-suspended in lysis buffer for 30  min to dis-
solve the mitochondrial proteins in the lysis buffer. The 
supernatant was transferred to another Eppendorf tube and 
further centrifuged at 12,000×g for 15  min to obtain the 
cytosolic proteins. The proteins of the mitochondria and 
cytosol were analyzed by Western blot to detect the release 
of cytochrome c.

Western Blot Analysis

After different treatments, the PC12 cells were rinsed thrice 
with ice-cold PBS and lysed in pre-cooled lysis buffer 
(KeyGEN, China) supplemented with 1% PMSF. After 
incubation on ice for 30 min, the cells were centrifuged at 
4 °C at 12,000×g for 15 min and the supernatant was stored 
at −20 °C. The protein concentration was determined by the 
BCA method (Pierce, USA). Equal amounts of protein per 
sample was loaded in each well, separated on a 12% SDS-
PAGE gel, and transferred to PVDF transfer membranes 
(Merck Millipore, USA). The membranes were blocked 
with 5% nonfat milk for 2  h, washed with Tris-buffered 
saline-Tween20 solution (TBST) and then incubated with 
primary antibodies overnight at 4 °C. After washing three 
times with TBST, the membranes were incubated with anti-
rabbit or anti-mouse horseradish peroxidase-conjugated 
secondary antibodies for 2 h at room temperature. Then, the 
protein bands were detected using enhanced chemilumines-
cent substrate (Pierce, USA). The density of the respective 
bands was detected and analyzed by the ChemiDocXRS 
system with Image Lab software (Bio-Rad, USA).

Statistical Analysis

Data were presented as the mean ± SEM for three sepa-
rate experiments. Statistical analyses were performed by 
one-way ANOVA followed by Tukey’s multiple compari-
son test to compare values among various groups or by the 

Student’s t test to compare values between two groups with 
the use of SPSS statistical software 20.0. In all cases, the 
difference between groups was considered statistically sig-
nificant at P < 0.05.

Results

BA Reduced Cell Viability of Primary Cortical Neurons 
and PC12 Cells as well as Induced PC12 Cell Apoptosis

Cell viability was measured by the CCK-8 assay to evalu-
ate the cytotoxic effects of BA on primary cortical neu-
rons and PC12 cells. The cells were treated with different 
final concentrations (0–100 μM) of BA for 24 h. The pri-
mary cortical neuron viability was significantly reduced to 
89.79 ± 0.93, 86.59 ± 1.42, 74.33 ± 1.41, 55.68 ± 1.99, and 
37.39 ± 0.33% at 5, 10, 25, 50, and 100  μM respectively 
(Fig. 1a).The PC12 cell viability was significantly reduced 
to 89.96 ± 1.52, 87.20 ± 2.27, 71.76 ± 1.64, 46.82 ± 1.82, 
and 29.09 ± 1.83% at 5, 10, 25, 50, and 100  μM respec-
tively (Fig.  1b). These results showed that BA treatment 
led to a significant decrease in cell viability in a dose-
dependent manner. The estimated IC50 values of both pri-
mary cortical neurons and PC12 cells were approximately 
50 μM. To further investigate the mechanism by which BA 
reduced normal neuronal cell viability, we used differenti-
ated PC12 cells as the model. First, we studied the effect 
of BA on apoptosis in PC12 cells using annexin V-FITC/
PI double staining followed by flow cytometry analysis. 
The cells were treated with 50 μM BA or 50 μM DMSO 
for 24 h. Early apoptotic cells were defined as annexinV+/
PI− and late apoptosis cells were defined as annexinV+/
PI+. As seen in Fig. 1c, the proportions of apoptotic cells 
(the summation of early apoptotic cells and late apoptotic 
cells) were 3.06 ± 0.66 and 33.77 ± 0.58% in the control 
group and BA-treated group, respectively. BA treatment 
significantly induced PC12 cell apoptosis (P < 0.05).

BA Induced PC12 Cell Morphological Changes

The morphological change of the PC12 cell nucleus was 
detected by Hoechst 33342 stain and observed by fluores-
cence microscopy. Following BA treatment for 24  h, the 
PC12 cells exhibited an obviously apoptotic morphology, 
characterized by cell nuclei pyknosis and asymmetric chro-
matin condensation, compared with control cells (Fig. 1d). 
These results showed that BA treatment elicited charac-
teristically morphological changes of PC12 cell apoptosis. 
There was a statistically significant difference between the 
experimental and control groups regarding the percentage 
of morphologically changed cells (P < 0.05).
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BA Treatment Reduced the Mitochondrial Membrane 
Potential

To investigate whether BA altered the mitochondrial mem-
brane potential, we treated cells with 50 μM BA for 1 and 
3 h. The mitochondrial membrane potential was then inves-
tigated with the molecular probe JC-1 using a flow cytom-
eter. As seen in Fig. 2, after incubation with BA for 1 h, the 
PC12 cells did not show a significant loss of MMP. How-
ever, after incubation with BA for 3 h, the PC12 cells then 
displayed a loss of MMP. The mean fluorescence intensity 

ratio of red to green was decreased to 50.53 ± 2.09% of that 
in the control group. The results from flow cytometry sug-
gested that the mitochondrial potential of PC12 cells was 
significantly decreased with the treatment of BA for 3  h 
(P < 0.05).

BA Increased the Expression of Bax and Reduced 
the Expression of Bcl‑2

We analyzed the expression of Bax and Bcl-2 in PC12 cells 
after incubation with 50 μM BA for 0.5–3 h by Western blot 
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Fig. 1   BA reduced the viability of primary cortical neurons and 
induced apoptosis of PC12 cells. Cells were cultured in medium with 
BA (0–100 μM) for 24 h, and cell viability was measured by CCK-8 
assay (a, b). PC12 cells were treated with DMSO or 50  μM BA 
for 24  h. Cells stained with annexin V and PI were measured with 
flow cytometry (c). The effects of BA on morphological changes of 

PC12 cells were detected by treating cells with DMSO or 50  μM 
BA for 24  h. The morphological changes of the PC12 cell nucleus 
were detected by Hoechst 33342 stain and observed by fluorescence 
microscopy (×400) (d). The data are expressed as the mean ± SEM of 
three separate experiments. **P < 0.01 versus control
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analysis. As shown in Fig.  3, BA treatment increased the 
expression of Bax and decreased the expression of Bcl-2 
in a time-dependent manner. Furthermore, the expression 
of Bax and Bcl-2 were obviously changed after even 1 h of 
BA treatment (P < 0.05).

BA Induced Cytochrome c Release and Caspase‑3 
Activation

We measured the expression of cytochrome c and cleaved 
caspase-3 in BA induced programmed PC12 cell death. 
The result (Fig. 4a) showed that after exposure to BA, the 
level of cytochrome c in the mitochondria decreased in 

a time-dependent fashion, while the level of cytochrome 
c in the cytosol significantly increased at 6–24  h. 
These results indicated that BA induced the release of 
cytochrome c from the mitochondrial inner membrane 
into the cytosol.

The expression of cleaved caspase-3 increased in 
a time-dependent manner. Cleaved caspase-3 slightly 
increased following 6 h of BA treatment, and then signifi-
cantly increased at 12–24 h, as shown in Fig. 4b. These 
results suggested that the mitochondrial apoptosis path-
way was involved in the BA-induced programmed PC12 
cells death.

Fig. 2   Effect of BA on mito-
chondrial membrane potential 
loss in PC12 cells. Cells were 
incubated with BA (50 μM) for 
0–3 h. Mitochondrial membrane 
potential was detected by JC-1 
assay using flow cytometry. The 
ratio of red/green (FL2/FL1) 
fluorescence represented the 
MMP of PC12 cell. The data (% 
of control) are expressed as the 
mean ± SEM of three independ-
ent experiments. **P < 0.01 
versus control
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Effects of BA on Intracellular ROS Production

To examine the effects of BA on intracellular ROS produc-
tion in PC12 cells, we measured the level of ROS in the 
treatment and control groups by staining cells with DCFH-
DA and using flow cytometry to analyze them. As dem-
onstrated in Fig.  5, the levels of ROS were significantly 
increased when treated with BA (50  μM) for 15  min and 
continued to rise from 15 to 60 min after treatment com-
pared to the control (P < 0.05). The results suggested that 
BA may induce a significant accumulation of ROS in PC12 
cells.

The Role of ROS in the Apoptosis of PC12 Cells 
Induced by BA

In our study, we found that the intracellular ROS generation 
was the initial event that occurred in the course of PC12 
cell apoptosis induced by BA. Therefore, we suspected that 
ROS may play a crucial role in the apoptosis. The increase 
of ROS accumulation could be completely arrested by two 
different antioxidants, N-acetyl-l-cysteine (NAC) (5  mM) 
and Trolox (500 μM), as shown in Fig. 6a. Then, we esti-
mated the impact of ROS on BA-induced PC12 cell apop-
tosis. BA was added to PC12 cells after pretreatment with 
antioxidants or solvent for half an hour. Afterwards, we 
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Fig. 4   Cytochrome c release and caspase-3 activation after treatment 
with BA. PC12 cells were treated with 50  μM BA for 0, 6, 12 and 
24  h. The mitochondrial and cytosolic fractions were extracted and 
the level of cytochrome c was detected by Western blotting analysis 

(a). For evaluating active caspase-3, whole cell protein was harvested 
followed by Western blotting analysis (b). The data are expressed as 
the mean ± SEM of three separate experiments. *P < 0.05 versus con-
trol, **P < 0.01 versus control
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found that the apoptosis rate was obviously decreased by 
both NAC and Trolox, and the antioxidants themselves 
did not have a remarkable impact on PC12 cell apoptosis 
(Fig.  6b). The results suggested that the accumulation of 
intracellular ROS had a major influence on BA-induced 
apoptosis of PC12 cells.

To further understand the mechanism of ROS on the 
apoptosis of PC12 cells induced by BA, we investigated the 

relationship between ROS and the mitochondrial apoptotic 
pathways. According to the time sequence of the mitochon-
drial apoptosis pathway, we first investigated the relevance 
of the ROS level and the loss of mitochondrial membrane 
potential. The bar chart revealed that after treatment with 
antioxidants and after the ROS levels dropped back to nor-
mal, the loss of the mitochondrial membrane potential was 
apparently alleviated (Fig. 6c). Subsequently, this investiga-
tion found that pre-incubation of PC12 cells with NAC or 
Trolox before exposure to BA for 6 h caused a significant 
decrease in cytochrome c release compared with cells with-
out antioxidant treatment, as shown in Fig. 6d. In addition, 
the Western blotting analysis showed that BA-induced cas-
pase-3 activation was markedly inhibited by treatment with 
NAC or Trolox (Fig. 6e). These finding suggested that ROS 
may trigger PC12 cell apoptosis through the mitochondrial 
apoptotic pathway, which can be significantly blocked by 
antioxidants.

Discussion

This study was carried out to investigate the influence of 
BA on normal neuronal cells. BA exerted cytotoxicity on 
both primary cortical cells and differentiated PC12 cells, 
with IC50 values of approximately 50  μM. A significant 
apoptotic phenomenon was observed when PC12 cells 
were treated with 50  μM BA for 24  h. We showed that 
BA increased the intracellular ROS levels, activated the 
mitochondrial apoptosis  pathway and triggered caspase-3 
activation.

Previous studies have shown that BA can induce pro-
grammed cell death in many types of tumors, with IC50 
values of approximately 10–30 μM [14, 15, 26]. Similarly, 
this study showed that PC12 cell apoptosis occurred after 
treatment with BA, and the IC50 value was 50  μM after 
24 h. This result suggests that BA is more toxic to tumor 
cells than neuronal cells. However, our observations indi-
cated the cytotoxicity of BA to normal neuronal cells, 
which conflicts with some previous views [21]. At the same 
time, some recent studies have also reported that BA had 
cytotoxic effects on normal cells [22, 23].

BA has been reported to directly target mitochondria 
during induced cell apoptosis [13, 26, 27]. After the mito-
chondrial membrane potential decreased, the release of sol-
uble mitochondrial proteins occurred, which then mediated 
the cytosolic caspase activation [27–29]. Thus, we inves-
tigated whether the mitochondrial apoptosis pathway was 
involved in BA-induced PC12 cell apoptosis. A significant 
loss of the mitochondrial membrane potential was observed 
3 h after exposure of PC12 cells to 50 μM BA. Addition-
ally, the Western blot analysis indicated that the release 
of cytochrome c from the mitochondrial inner membrane 
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into the cytosol occurred after treatment with BA for 6 h. 
Meanwhile, we observed that the level of cleaved caspase-3 
increased slightly, and the level of these pro-apoptotic 

proteins significantly increased 12  h after treating PC12 
cells with BA. These results suggested that the mito-
chondrial apoptosis pathway was involved in BA-induced 
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programmed PC12 cell death. In addition, we found that 
at the early stage of BA treatment, the level of Bax was 
upregulated and the level of Bcl-2 was downregulated. 
This finding is in accordance with the conclusion of previ-
ous studies that BA treatment resulting in the upregulation 
of death-promoting proteins from Bcl-2 family [15, 20]. 
However, these studies did not report the downregulation 
of Bcl-2. Further, an upregulation of Bcl-2 was observed in 
glioblastoma cells incubated with BA [15], and a suppres-
sion of Bax expression was reported in malignant head and 
neck cancer cells treated with BA [30]. These contradictory 
views suggest that Bcl-2 family proteins may have an influ-
ence on the mitochondrial apoptosis pathway, but they are 
not the determining factor in initiating the mitochondrial 
apoptotic pathway.

As classical damaging agents, ROS have been reported 
to generate not only in PC12 cell apoptosis induced by 
some cytotoxic  drugs, but also in several kinds of tumor 
cells induced by BA [14, 16, 31–34]. Studies have reported 
that the activation of caspase and the loss of the mitochon-
drial membrane potential is preceded by generation of 
ROS [15, 35–37]. Therefore, we examined the effects of 
BA on PC12 cells’ intracellular ROS. When treating PC12 
cells with 50 μM BA for 15 min, the levels of ROS were 
significantly increased by almost 100% than that of the 
control, and the increase was in a time-dependent man-
ner from 15 to 60 min. It was found that the generation of 
ROS preceded the activation of the mitochondrial apop-
totic pathway in BA-induced PC12 cell apoptosis. Thus, 
we suspected that the accumulation of ROS may play a part 
in triggering mitochondrial apoptotic way. We used NAC 
and Trolox to scavenge ROS and inhibit the ROS genera-
tion. The results showed that both NAC and Trolox could 
inhibit the PC12 cell apoptosis induced by BA. Meanwhile, 
the antioxidants significantly blocked the BA-induced loss 
of MMP, the release of cytochrome c and the activation of 

caspase-3. These results support the speculation that ROS 
triggers the mitochondrial apoptotic pathway of PC12 cell 
apoptosis. However, the mitochondrial pathway is not com-
pletely blocked by antioxidants, so we suspect that this 
pathway is also influenced by other factors independent of 
ROS.

The mechanism of ROS generation induced by BA has 
not been clarified. The source of intracellular ROS includes 
peroxisomes, NADPH oxidase and the mitochondrial elec-
tron transport chain [38–41]. Further research is needed 
to understand the mechanism between BA and ROS gen-
eration. Previous research has found that nanoderivatives 
of betulinic acid could readily and effectively cross the 
blood–brain barrier (BBB) [42]. However, the ability of BA 
to cross the BBB was not clearly demonstrated and requires 
further study and discussion for clinical application.

In conclusion, the present study was the first to note that 
BA induces the apoptosis of PC12 cells. The generation of 
ROS occurs in the early stage of PC12 cell apoptosis and 
triggers the mitochondrial apoptotic pathway. However, 
additional factors are involved in the activation of this 
pathway, and the mechanism of ROS generation induced 
by BA needs to be further determined. Our findings have 
some degree of significance and value for the continuing 
research, development and clinical application of BA.
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