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carbonylation, and protein nitration in mitochondrial mem-
branes; decreased mitochondrial free radical production; 
enhanced the content of GSH in mitochondria; rescued 
mitochondrial membrane potential—MMP) and blocked 
MG-triggered cell death by a mechanism dependent on the 
activation of the extracellular-related kinase (Erk1/2) and 
consequent upregulation of Nrf2. PB increased the levels of 
GPx, GR, HO-1, and mitochondrial GSH. The PB-induced 
effects were suppressed by silencing of Nrf2 with siRNA. 
Therefore, PB activated the Erk1/2–Nrf2 signaling pathway 
resulting in mitochondrial protection in SH-SY5Y cells 
exposed to MG. Our work shows that PB is a strong can-
didate to figure among mitochondria-focusing agents with 
pharmacological potential.

Keywords Pinocembrin · Mitochondria · Methylglyoxal · 
Antioxidant · Nrf2

Introduction

Pinocembrin (PB; 5,7-dihydroxyflavanone) is major com-
ponent of propolis and exhibits antioxidant, anti-inflam-
matory, and antimicrobial activities in several experimen-
tal models [1–4]. Furthermore, PB exerts neuroprotection 
in animal experimental models of cerebral ischemic injury 
[5–9] and in amyloid-β-induced neurodegeneration [10, 
11]. PB also counteracted cell death triggered by 1-methyl-
4-phenylpyridinium (MPP+) [12] and glutamate [13] in 
human neuroblastoma SH-SY5Y cells. Jin et al. [14] pub-
lished that PB induced neuroprotection by the activation 
of the nuclear factor erythroid 2-related factor 2/antioxi-
dant response element (Nrf2/ARE) axis in SH-SY5Y cells 
exposed to 6-hydroxydopamine (6-OHDA). Recently, Zhou 
et al. [3] also reported that PB abrogated lipopolysaccharide 
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(LPS)-elicited inflammatory response in BV2 microglial 
cells by a mechanism involving the inhibition of the phos-
phoinositide 3-kinase/Akt/nuclear factor-κB (PI3K/Akt/
NF-κB) signaling pathway.

Redox impairment takes a central role in several human 
pathologies, including neurodegeneration, cancer, and car-
diovascular diseases [15–24], as well as in the aging pro-
cess [25, 26]. Increased generation of reactive oxygen spe-
cies (ROS) and reactive nitrogen species (RNS) may lead 
to cellular stress by widespread damage to biomolecules, 
such as proteins, lipids, DNA, and RNA [27]. ROS and 
RNS may also inactivate enzymes, causing inhibition of 
detoxification reactions and bioenergetics deficits in mam-
malian cells [28–30]. Moreover, intermediates of lipid per-
oxidation, for example, have been viewed as toxic agents 
involved in the amplification of the pro-oxidant insult, lead-
ing to a vicious cycle that culminates in cell death [31–33]. 
On the other hand, ROS and RNS exert physiological roles 
mediating cellular signaling and the defenses against micro-
organisms [26, 27]. The mitochondria are the major source 
of free radicals in mammalian cells due to the activity of 
the oxidative phosphorylation (OXPHOS) system [34–36]. 
In this context, disruption of the mitochondrial function 
favors increased generation of reactive species and the trig-
gering of cell death due to the release of pro-apoptotic fac-
tors, such as cytochrome c and the apoptosis-inducing fac-
tor (AIF), to the cytosol and consequent activation of the 
apoptosome [37]. Actually, mitochondrial dysfunction has 
been associated with neurodegeneration in in vitro [38–40] 
and in in vivo [41–44] experimental models, as well as in 
patients suffering from Alzheimer’s disease (AD) [45, 46], 
Parkinson’s disease (PD) [47, 48], and Huntington’s disease 
(HD) [16, 49, 50], and diabetes mellitus (DM) [51–53]. 
Furthermore, exposure to chemical stressors impairs mito-
chondrial function and enhances production of ROS and 
RNS by the organelle [54–59]. A growing body of evidence 
points to mitochondrial protection by natural compounds as 
an interesting pharmacological strategy in order to alleviate 
neurodegeneration [60–66]. In spite of this, the complete 
mechanism underlying the mitochondrial benefits elicited 
by natural compounds remains to be fully understood.

Therefore, we aimed to investigate here whether and 
how PB would protect mitochondria of SH-SY5Y cells 
exposed to methylglyoxal (MG), which is derived from 
glycolysis and induces redox impairment and cell death in 
mammalian cells through autoxidation [67] and by causing 
mitochondrial dysfunction [68–70]. Additionally, advanced 
glycation end products (AGEs) derived from MG have 
been detected in samples obtained from the brain and cer-
ebrospinal fluid of AD patients [71–73]. Hence, the experi-
mental model using MG as a stressor is excellent in linking 
redox impairment, mitochondrial dysfunction, metabolic 
disturbances, and neurodegeneration.

Experimental Procedures

Materials

We obtained plastic materials used in cell culture from 
Corning, Inc (NY, USA) and Beckton Dickson (NJ, USA). 
Culture analytical grade reagents and MG were pur-
chased from Sigma–Aldrich (MO, USA). Erk1/2 inhibitor 
(PD98059) was achieved from Santa Cruz (Dallas, TX, 
USA). All other chemicals and assay kits we utilized here 
have been acquired as described below in details.

Cell Culture and Treatment

The human neuroblastoma SH-SY5Y cells were acquired 
from the American Type Culture Collection (ATCC; 
Manassas, VA, USA) and further cultured in Dulbecco’s 
modified Eagle’s medium (DMEM)/F-12 HAM nutrient 
medium (1:1 mixture) supplemented with 10% fetal bovine 
serum (FBS) and 2 mM l-glutamine in a 5% CO2 humidi-
fied incubator at 37 °C. The SH-SY5Y cell line was plated 
at an appropriate density according to the different experi-
mental protocols utilized in the herein presented work. The 
results were achieved by performing three or five independ-
ent experiments each done in triplicate. In order to induce 
cellular impairment and mitochondrial dysfunction, we uti-
lized methylglyoxal (MG) at 500 µM, i.e. a concentration 
that causes a 50%-decrease in cell viability, as previously 
reported by our research group [74] and others [75]. The 
cells were treated with PB (dissolved in DMSO) at varying 
concentrations (1–25 µM) for 4 h before administration of 
MG for further 24 h, in agreement with the protocol of each 
experiment. More detailed information, i.e. concentrations 
and incubation time of treatments, are described in the fig-
ure legends.

Analyses of Cellular Viability, Cytotoxicity, 
and Apoptosis-Related Parameters

We examined cell viability by using the 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
assay, as previously described [76]. Cytotoxicity was evalu-
ated by utilizing the lactate dehydrogenase (LDH) leakage 
assay according to the manufacturer instructions (Cyto-
Tox 96-NonRadioactive Cytotoxicity Assay, Promega). 
Quantification of caspase-3 and caspase-9 enzyme activi-
ties were measured by utilizing commercial kits following 
the instructions of the manufacturer (Abcam, MA, USA; 
Ex/Em = 400/505  nm). DNA fragmentation was assessed 
by using a commercial ELISA kit in which 5′-bromo-2′-
deoxy-uridine (BrdU) is used to label nuclear DNA (Roche, 
Germany). We measured the levels of cytoplasmic BrdU-
labeled DNA fragments according to the instructions of 
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the manufacturer, because it is a marker of apoptosis. After 
specific treatments, the samples were read (450  nm) in a 
plate reader (Molecular Devices, CA, USA). The immuno-
contents of Bcl-2, Bax, and cytochrome c (mitochondrial 
and cytosolic) were measured by using ELISA assay kits 
following the instructions of the manufacturer (Abcam, 
MA, USA).

Mitochondrial Isolation

In order to obtain viable mitochondria, the cells were 
washed and re-suspended, after each treatment, in a buffer 
with 250  mM sucrose, 20  mM HEPES - pH 7.4–10  mM 
KCl, 1  mM EGTA, 1  mM EDTA, 1  mM MgCl2, 1  mM 
dithiothreitol, 1 mM phenylmethylsulphonyl floride, 1 mM 
benzamidine, 1  mM pepstatin A, 10  mg/mL leupeptin, 
and 2 mg/mL aprotonin [77]. Then, the cells were homog-
enized and nuclei, unbroken cells, as well as cell debris 
were achieved after centrifugation at 1000 × g for 10 min at 
4 °C. The supernatant obtained in the previous centrifuga-
tion was centrifuged once again (13,000 × g, 20 min, 4 °C) 
in order to isolate cytosolic fraction. The final supernatant 
was utilized as the cytosolic fraction and the final pellet 
contained the mitochondria.

Quantification of Reduced Glutathione (GSH)

The quantification of GSH in mitochondria was per-
formed according to the protocol of a commercial kit 
using the Thiol Green Indicator (Abcam, MA, USA) in a 
fluorescence plate reader (Molecular Devices, USA; Ex/
Em 490/520 nm). We utilized this same assay kit to quan-
tify the protein thiol content in mitochondrial membranes 
obtained from SH-SY5Y cells after extraction of submito-
chondrial membranes, as described below.

Quantification of Mitochondrial Membrane Potential 
(MMP)

Mitochondrial membrane potential (MMP) was measured 
by using a commercial kit that utilizes tetraethylbenzimi-
dazolylcarbocyanide iodine (JC-1), a lipophilic cationic dye 
that accumulates in functional mitochondria according to 
its membrane potential (Abcam, MA, USA). JC-1 is pre-
dominantly a monomer that yields green fluorescence at 
low ΔΨm (emission of 530 ± 15  nm). On the other hand, 
JC-1 aggregates at high ΔΨm rendering a red to orange flu-
orescence (emission of 590 ± 17.5 nm). The cells (1.5 × 104) 
were stained with 20 µM JC-1 in dilution buffer for 10 min 
at 37 °C. Then, SH-SY5Y cells were washed twice with 
dilution buffer. The treatments were applied and incubated 
for specific periods. The samples were read (excitation at 
485 nm, emission at 40 and 590 nm, and cut-off at 530 nm) 

in a fluorescence plate reader (MolecularDevices, USA) 
[74, 78, 79]. FCCP was used as positive control in order to 
elicit loss of ΔΨm (data not shown).

Extraction of Submitochondrial Particles (SMP)

After cell culture reaching 80%-confluence, the medium 
was removed and the treatments were added. After each 
specific period of incubation, we homogenized the cells in 
specific buffer (230 mM mannitol, 70 mM sucrose, 10 mM 
Tris–HCl and 1 mM EDTA—pH 7.4) to isolate SMP. Mito-
chondria were freeze and thaw (three times) to generate 
superoxide dismutase-free SMP, that were washed (twice) 
with another buffer (140 mM KCl, 20 mM Tris–HCl—pH 
7.4) resulting in Mn-SOD release from the organelles. This 
protocol was used to measure O2

−⋅ generation and to exam-
ine the consequences of the treatments on the contents of 
malondialdehyde (MDA), protein carbonylation, protein 
thiol content, and 3-nitrotyrosine in the membranes of the 
organelles.

Quantification of Superoxide Anion Radical (O2
−⋅) 

Production in SMP

Mitochondrial O2
−⋅ production was measured in SMP iso-

lated from the SH-SY5Y cells in a reaction medium with 
230 mM mannitol, 70 mM sucrose, 10 mM HEPES-KOH 
(pH 7.4), 4.2  mM succinate, 0.5  mM KH2PO4, 0.1  µM 
catalase, and 1  mM epinephrine, and the increase in the 
absorbance (that represents the autoxidation of adrenaline 
to adrenochrome) was read in a plate reader (Molecular 
Devices, CA, USA; 480 nm at 32 °C), as described [80–82].

Analyses of the Levels of ATP

In this work, we quantified the levels of ATP by using a 
commercial kit (Abcam, MA, USA). Briefly, SH-SY5Y 
cells (1 × 106 cells) were re-suspended in specific ATP 
assay buffer and homogenized. Then, the cells were centri-
fuged (13,000 × g for 2  min at 4 °C) and the supernatants 
were collected and transferred to another tube. These sam-
ples were deproteinizated, centrifuged again (13,000 × g 
for 2  min at 4 °C), and the supernatants utilized to meas-
ure ATP levels. After the reaction of the samples with 
ATP probe, the samples were read in a fluorescence plate 
reader (Molecular Devices, USA) as indicated: excitation at 
535 nm and emission at 590 nm [78, 79, 83].

Measurement of Lipid Peroxidation and Protein 
Carbonylation in Mitochondrial Membranes

We quantified lipid peroxidation (using malodialde-
hyde—MDA—as an index of oxidative damage in lipids) 
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and protein carbonylation in the samples by using com-
mercial kits according to the instructions of the manufac-
turer (Abcam, MA, USA). After specific reactions, MDA 
and DNP hydrazones were read in a plate reader (Molec-
ular Devices, CA, USA) at 532 and 375 nm, respectively.

Measurement of 3-Nitrotyrosine, GCLM (Modifier 
Subunit), GCLC (Catalytic Subunit), GPx, GR, 
and HO-1 by Enzyme-Linked Immunosorbent Assay 
(ELISA)

We utilized an indirect ELISA assay in order to quantify 
such parameters, as previously described [74, 78, 79, 83, 
84]. Briefly, the levels of 3-nitrotyrosine in SH-SY5Y 
cells were examined by using a polyclonal antibody to 
3-nitrotyrosine [diluted 1:2000 in phosphate-buffered 
saline (PBS) containing 5% albumin, pH 7.4] (Calbio-
chem, Germany). The polyclonal antibodies (Abcam, 
MA, USA) used to detect GCLM, GCLC, GPx, GR, 
and HO-1 were diluted 1:1000 in PBS with 5% albumin. 
Microtiter plates (96-well flat-bottom) were coated for 
24 h with the samples (30 µg protein). Plates were then 
washed (four times) with wash buffer (PBS containing 
0.05% Tween-20), and each specific antibody was added 
to the plates for 2  h (room temperature). After washing 
(four times), the samples were incubated with anti-rabbit 
antibody peroxidase conjugated (diluted 1:1000) during 
1 h at room temperature. Then, after adding the substrates 
(hydrogen peroxide and 3, 3′, 5, 5′-tetramethylbenzi-
dine 1:1 v:v), the samples were read at 450 nm in a plate 
reader (Molecular Devices, CA, USA).

Isolation of Cell Nucleus

Nuclei were isolated with a Nuclear Extraction Kit, which 
was acquired from Cayman Chemical (MI, USA). Briefly, 
1 × 107 cells (after reaching 80–90% confluence) were 
suspended in phosphate buffered saline (ice-cold). After 
centrifuging the samples at 300 × g for 5  min at 4 °C, 
the cells were pelleted and then resuspended in ice-cold 
hypotonic buffer (responsible for inducing swelling of 
the cells). Then, 10% Nonidet P-40 was added in order to 
dissolve the cell membranes in order to access the cyto-
plasmic fraction while conserving nuclear membrane. 
Another centrifugation (13,000 × g for 30  s at 4 °C) was 
done, resulting in isolate nuclei. The pelleted nuclei were 
lysed in ice-cold extraction buffer. A final centrifugation 
(14,000 × g for 10 min at 4 °C) was performed generating 
nuclear extracts, which were utilized in the measurements 
of Nrf2 translocation to the cell nucleus.

Quantification of Nrf2 Immunocontent in Nuclear 
Samples

Quantification of the nuclear immunocontent of Nrf2 
was performed after nuclear extraction by using an 
ELISA assay kit following the instructions of the manu-
facturer (Active Motif, CA, USA). The samples (30  µg 
protein) were added into the wells, which contain an 
Nrf2 specific-monoclonal capture antibody. Then, a 
detection antibody specific for Nrf2 was added to each 
well. A horseradish peroxidase labeled anti-rabbit IgG 
was pipetted into the wells after washing. Finally, a sub-
strate solution (TMB) was added, leading to color gener-
ation, which was read in a microplate reader (Molecular 
Devices, CA, USA) at 450 nm.

Nrf2 Silencing by Transfection with siRNA

Silencing of Nrf2 was obtained by the utilization of siRNA 
targeting Nrf2, as previously described [74, 78, 79, 83].

Statistical Analyses

Statistical analyses were performed by using the Graph-
Pad 5.0 software. Data are presented as the mean ± stand-
ard error of the mean (SEM) of three or five independent 
experiments each done in triplicate; p values were consid-
ered significant when p < 0.05. Differences in experimental 
groups were determined by one-way ANOVA followed by 
the post hoc Tukey’s test.

Results

PB Affords Cytoprotection in SH-SY5Y Cells Exposed 
to MG

We have previously reported that 500  µM MG caused a 
50% loss of cell viability and induced cytotoxicity in SH-
SY5Y cells [74]. Therefore, we examined here the concen-
tration of PB that efficiently counteracted the MG-induced 
cytotoxic and pro-apoptotic effects. A treatment with PB at 
1–25 µM for 4 h prior exposure to MG for additional 24 h 
significantly prevented loss of cell viability (Fig. S1A) and 
cytotoxicity (Fig. S1B) in SH-SY5Y cells. We next tested 
whether PB would be able to suppress MG-triggered cell 
death regarding the mitochondria-related parameters in this 
experimental model. Pretreatment with PB at 25 µM abro-
gated the mitochondria-related pro-apoptotic effects trig-
gered by MG (Fig.  1). MG decreased the levels of Bcl-2 
protein (Fig.  1a) and increased the Bax protein contents 
(Fig. 1b), leading to an increase levels of cytochrome c in 
the cytosol (Fig.  1c) and a decrease in the mitochondrial 
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content of this protein (Fig. 1d). Consequently, we observed 
that MG treatment enhanced the activities of caspase-9 
(Fig. 1e) and caspase-3 (Fig. 1f). In this context, exposure 
to MG caused an increase in DNA fragmentation (Fig. 2), 
a hallmark of apoptosis [37]. A pretreatment with PB at 
25  µM for 4  h abrogated these pro-apoptotic alterations 
associated with mitochondria (Fig. 1a–f), alleviating MG-
induced DNA fragmentation (Fig. 2).

PB Attenuated the MG-Induced Mitochondrial 
Dysfunction and Redox Impairment

We next investigated whether PB would prevent mitochon-
drial dysfunction elicited by MG in SH-SY5Y cells. There-
fore, we quantified MMP in SH-SY5Y cells exposed or not 
to PB and/or MG. PB at 25 µM blocked the MG-dependent 
loss of MMP in this experimental model (Fig.  3a). Addi-
tionally, PB alleviated the effects of MG on O2

−⋅ produc-
tion, as assessed in SMP obtained from SH-SY5Y cells 
(Fig.  3b). PB also significantly abrogated the decrease in 
ATP levels elicited by MG (Fig. 3c).
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Fig. 1  The effects of a treatment with pinocembrin (PB; 1–25  μM 
for 4 h) prior exposure to Methylglyoxal (MG; 500 µM for additional 
24 h) on the contents of a Bcl-2, b Bax, c cytosolic cytochrome c (cyt 
c), d mitochondrial cyt c, and on the activities of e caspase-9 and f 
caspase-3 in human neuroblastoma SH-SY5Y cells. Data are pre-

sented as the mean ± SEM of three or five independent experiments 
each done in triplicate. One-way ANOVA followed by the post hoc 
Tukey’s test, *p < 0.05 different from control cells, #p < 0.05 different 
from MG-treated cells
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PB pretreatment efficiently prevented lipid peroxida-
tion (Fig.  4a), protein carbonylation (Fig.  4b), forma-
tion of 3-nitrotyrosine (Fig.  4c), and oxidation of protein 
thiol groups (Fig.  4e) in the membranes of mitochondria 
obtained from MG-treated SH-SY5Y cells. PB also 

enhanced the levels of GSH in the mitochondria and pre-
vented loss of GSH induced by MG in this experimental 
model (Fig. 4e).

PB Upregulated Antioxidant Enzymes

In order to verify whether the PB-induced increase in the 
mitochondrial levels of GSH were associated with upregu-
lation of enzymes involved in GSG synthesis, we examined 
the changes in GCLM and GCLC subunits of the γ-GCL 
enzyme, the rate-limiting step in the synthesis of GSH 
[85]. We found that PB at 25 µM induced a time-dependent 
(0–24 h) increase in the contents of both GCLM (Fig. S3A) 
and GCLC (Fig. S3B). Furthermore, PB elicited a similar 
effect on the levels of GPx (Fig. S3C) and GR (Fig. S3D). 
Thus, it is very likely that the increase in the mitochondrial 
levels of GSH is related to a PB-induced upregulation in 
the levels of the subunits of γ-GCL enzyme, as well as in 
the contents of GR, which is responsible for regenerates 
GSH from GS-SG (oxidized glutathione) by consuming 
NADPH [86]. In addition, PB caused an increase in the 
levels of HO-1 enzyme (Fig. S4), which has been viewed 
as an important antioxidant and anti-inflammatory agent in 
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several experimental models involving disturbances in the 
redox biology of mammalian cells [87].

PB Treatment Activates the Nrf2 Transcription Factor 
Through an Erk1/2-Dependent Mechanism

Nrf2 is the master regulator of the expression of antioxi-
dant enzymes, such as GPx, GR, γ-GCL, and HO-1 [26, 27, 
85]. Nrf2 activation involves the interaction of electrophiles 
agents with the complex KEAP1-Nrf2 in the cytosol and 
consequent release of Nrf2 to the cell nucleus [88]. Moreo-
ver, phosphorylation by several protein kinases leads to 
activation and translocation of the Nrf2 transcription factor 

to the cell nucleus [89]. As depicted in Fig. S5A, expo-
sure to PB caused a dose-dependent increase in the nuclear 
contents of Nrf2. PB at 25 µM triggered a time-dependent 
activation of Nrf2, as assessed through the quantification 
of Nrf2 in the nucleus of SH-SY5Y cells (Fig. S5B). Thus, 
we investigated whether the activation of Nrf2 would be 
associated with protein kinases that are well-known regula-
tors of this transcription factor [89]. SH-SY5Y cells were 
pretreated with protein kinase inhibitors for 1  h before 
exposure to PB at 25 µM for additional 12 h (in which we 
found a peak of Nrf2 in the cell nucleus). In this context, 
we found that inhibition of the Erk1/2, but not of other pro-
tein kinases, suppressed the translocation of Nrf2 to the cell 
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Fig. 4  The effects of a treatment with pinocembrin (PB; 1–25  μM 
for 4 h) prior exposure to methylglyoxal (MG; 500 µM for additional 
24  h) on the levels of a lipid peroxidation, b protein carbonylation, 
c protein nitration, d protein thiol groups, and e intramitochondrial 
GSH in human neuroblastoma SH-SY5Y cells. Data are presented as 

the mean ± SEM of three or five independent experiments each done 
in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, 
*p < 0.05 different from control cells, #p < 0.05 different from MG-
treated cells
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nucleus (Fig. 5). Hence, it is very likely that Erk1/2 protein 
kinase mediated the Nrf2 activation and consequent trans-
location to the cell nucleus.

PB Upregulates Antioxidant Enzymes 
Levels and Mitochondrial GSH Content 
by an Erk1/2-Dependent Mechanism

We then measured the levels of antioxidant enzymes in 
PB-treated SH-SY5Y cells exposed to protein kinases 
inhibitors (Fig. 6). We observed that only the inhibition of 
Erk1/2 protein kinase caused a blockade in the PB-depend-
ent increase in the contents of GCLM (Fig.  6a), GCLC 
(Fig.  6b), GPx (Fig.  6c), and GR (Fig.  6d). Additionally, 
Erk1/2 protein kinase inhibition also blocked the PB-
induced increase in HO-1 levels in SH-SY5Y cells (Fig. 7). 
Erk1/2 protein kinase activation also mediated the effects 
of PB on the mitochondrial content of GSH, as depicted in 
Fig. 8.

PB Exerted Antioxidant Effects on Mitochondria 
by an Erk1/2-Dependent Manner

Erk1/2 protein kinase inhibition suppressed the antioxidant 
effects elicited by PB, in mitochondria of cells exposed to 

MG, regarding lipid peroxidation (Fig. 9a), protein carbon-
ylation (Fig. 9b) in mitochondrial membranes, and produc-
tion of O2

−⋅ by the organelles (Fig. 9c).

PB Counteracted the Effects of MG on Mitochondrial 
Function and Cell Viability by an Erk1/2-Dependent 
Mechanism

We next examined whether Erk1/2 would participate in the 
preventive effects elicited by PB regarding mitochondrial 
function and cell viability (Fig. 10). We found that Erk1/2 
protein kinase inhibition blocked the protective effects 
resulting from exposure to PB prior administration of MG 
in SH-SY5Y cells in relation to MMP (Fig. 10a) and cell 
viability (Fig. 10b).

PB Upregulated Antioxidant Enzymes Levels 
and Mitochondrial GSH Content by an Nrf2-Dependent 
Manner

In order to confirm the role of Nrf2 in mediating the upreg-
ulation of antioxidant enzymes in PB-treated cells, we 
utilized siRNA targeting Nrf2 in SH-SY5Y cells exposed 
to PB. Nrf2 knockdown abolished the increase in GCLM 
(Fig.  11a), GCLC (Fig.  11b), GPx (Fig.  11c), and GR 
(Fig.  11d) elicited by PB. Nrf2 silencing also abrogated 
the PB-induced effects on HO-1 enzyme, as demonstrated 
in Fig.  12. The levels of GSH in the mitochondria were 
increased by PB by an Nrf2-dependent fashion, since 
knocking down of this transcription factor reduced the lev-
els of GSH in PB-treated cells (Fig. 13).

PB Rescued Mitochondrial Function and Cell Viability 
by an Nrf-2-Dependent Mechanism

We tested the efficiency of siRNA against Nrf2 regard-
ing the translocation of this transcription factor to the cell 
nucleus. Nrf2 silencing abrogated the PB-induced translo-
cation of Nrf2 to the nucleus of SH-SY5Y cells, as demon-
strated in Fig. S2. We next verified whether the PB-induced 
Nrf2 activation would really affect mitochondrial function 
in MG-treated SH-SY5Y cells. We found that Nrf2 silenc-
ing blocked the preventive effects elicited by PB regarding 
mitochondrial function (Fig. 14). Furthermore, PB exerted 
anti-apoptotic effects by activating Nrf2, since the knock-
down of Nrf2 abolished the protective role of PB regarding 
DNA fragmentation, a hallmark of apoptosis, in SH-SY5Y 
cells exposed to MG (Fig. 15a). Consequently, silencing of 
Nrf2 also suppressed the cytoprotective effects elicited by 
PB in this experimental model (Fig. 15b).
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Fig. 5  The effects of protein kinases inhibitors on the levels of the 
transcription factor Nrf2 in the nucleus of human neuroblastoma SH-
SY5Y cells exposed to pinocembrin (PB) at 25 µM for 12 h. The cells 
were exposed to each protein kinase inhibitor for 1  h prior admin-
istration of PB. We used each inhibitor at the concentrations as fol-
lows: 20  µM PD98059 (Erk1/2 inhibitor), 10  µM SP600125 [c-jun 
N-terminal kinase (JNK) inhibitor], 10 µM SB203580 (p38 inhibitor), 
10  µM LY294002 (PI3K/Akt inhibitor). Data are presented as the 
mean ± SEM of three or five independent experiments each done in 
triplicate. One-way ANOVA followed by the post hoc Tukey’s test, 
a p < 0.01 vs the control group, b p < 0.01 vs the cells that received 
only PB
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Discussion

In the herein presented work, we found that PB, a major fla-
vonoid found in propolis, activated the Erk1/2–Nrf2 signal-
ing pathway causing mitochondrial and cellular protection 
in cells exposed to MG, a toxic derivative from the glyco-
lysis [67–69]. Flavonoids exert antioxidant and cytoprotec-
tive effects by the activation of several signaling pathways 

[90]. Actually, Wang et al. [91] first demonstrated that PB 
activates Erk1/2 protein kinase in SH-SY5Y cells. Also, 
Jin et al. [14] reported that PB activated Nrf2 in the same 
cell line. However, it was not previously studied whether 
Erk1/2 activation would be involved in the upregulation 
of Nrf2 mediated by PB. Moreover, it was not examined 
whether the activation of the Erk1/2–Nrf2 axis by PB 
would induce mitochondrial and cellular protection against 
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Fig. 6  The effects of protein kinases inhibitors on the levels of a 
glutamate-cysteine ligase modifier subunit (GCLM), b glutamate-
cysteine ligase catalytic subunit (GCLC), c glutathione peroxidase 
(GPx), and d glutathione reductase (GR) in human neuroblastoma 
SH-SY5Y cells exposed to pinocembrin (PB) at 25  µM for 24  h. 
The cells were exposed to each protein kinase inhibitor for 1 h prior 
administration of PB. We used each inhibitor at the concentrations as 

follows: 20 µM PD98059 (Erk1/2 inhibitor), 10 µM SP600125 [c-jun 
N-terminal kinase (JNK) inhibitor], 10 µM SB203580 (p38 inhibitor), 
10  µM LY294002 (PI3K/Akt inhibitor). Data are presented as the 
mean ± SEM of three or five independent experiments each done in 
triplicate. One-way ANOVA followed by the post hoc Tukey’s test, 
a p < 0.01 vs the control group, b p < 0.01 vs the cells that received 
only PB
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chemical stressors. Therefore, we found here a causa-
tive link between Erk1/2 activation and the posterior Nrf2 
translocation to the cell nucleus, consequently triggering 
the expression of antioxidant enzymes responsible for the 
amelioration observed in redox parameters associated with 
mitochondria, including prevention of oxidative and nitro-
sative damage in mitochondrial membranes and upregula-
tion of the GSH levels in the organelles.

MG is a derivative from the glycolysis and a potent 
inducer of protein carbonylation [67, 68]. This reactive 
aldehyde may play a crucial role in the pathogenesis of dia-
betes mellitus and AD [71–73]. Moreover, MG is a mito-
chondrial toxicant, since impairs mitochondrial function 
causing bioenergetics impairments in several mammalian 
cells [68–70]. In this regard, MG activates the intrinsic 
apoptotic pathway, which is closely related to mitochon-
drial function and dynamics, enhancing cell death and dis-
rupting tissue function [72, 73]. Therefore, investigating 
strategies that would prevent the MG-elicited effects and 
the mechanisms underlying the cytoprotective action of 
natural compounds is interesting in order to deal with the 
consequences of exposure to MG.

The inhibition of the MG-induced lipid peroxidation 
by PB may mediate the anti-apoptotic effect exerted by 

this flavonoid in this experimental model, since oxidation 
of mitochondrial lipids favor the release of cytochrome c 
from the organelles [27, 37]. Moreover, downregulation 
of Bax by PB is very likely to decrease the formation of 
the mitochondrial permeability transition pore (MPTP), 
which participates in the release of cytochrome c to the 
cytosol [37]. In the other hand, the inhibitory action of 
PB on the oxidation of components of the mitochondrial 
membranes may be important to prevent loss of MMP, 
which has been used as an index of mitochondrial func-
tion (as a result of the formation and maintenance of an 
electrochemical gradient in the intermembrane space) 
and of apoptosis, depending on the extent of mitochon-
drial impairment [37]. In this context, mitochondrial pro-
tection as seen here takes a crucial role in both regulation 
of cell fate and maintenance of bioenergetics reactions in 
mammalian cells. Importantly, the PB-induced increment 
in the levels of GSH in the mitochondria is a strong can-
didate to be central in mitochondrial protection against 
MG, since GSH is the main non-enzymatic antioxidant 
agent in mammalian cells [27, 85]. At the best of our 
knowledge, this is the first work demonstrating the ability 
of PB in upregulating mitochondrial GSH and the mech-
anism underlying this effect. GSH is utilized by GPx 
in the conversion oh H2O2 to water in both cytosol and 
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Fig. 7  The effects of protein kinases inhibitors on the levels of 
heme oxygenase-1 (HO-1) in human neuroblastoma SH-SY5Y cells 
exposed to pinocembrin (PB) at 25  µM for 24  h. The cells were 
exposed to each protein kinase inhibitor for 1  h prior administra-
tion of PB. We used each inhibitor at the concentrations as follows: 
20  µM PD98059 (Erk1/2 inhibitor), 10  µM SP600125 [c-jun N-ter-
minal kinase (JNK) inhibitor], 10  µM SB203580 (p38 inhibitor), 
10  µM LY294002 (PI3K/Akt inhibitor). Data are presented as the 
mean ± SEM of three or five independent experiments each done in 
triplicate. One-way ANOVA followed by the post hoc Tukey’s test, 
a p < 0.01 vs the control group, b p < 0.01 vs the cells that received 
only PB
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Fig. 8  The effects of protein kinases inhibitors on the levels of 
reduced glutathione (GSH) in human neuroblastoma SH-SY5Y cells 
exposed to pinocembrin (PB) at 25  µM for 24  h. The cells were 
exposed to each protein kinase inhibitor for 1  h prior administra-
tion of PB. We used each inhibitor at the concentrations as follows: 
20  µM PD98059 (Erk1/2 inhibitor), 10  µM SP600125 [c-jun N-ter-
minal kinase (JNK) inhibitor], 10  µM SB203580 (p38 inhibitor), 
10  µM LY294002 (PI3K/Akt inhibitor). Data are presented as the 
mean ± SEM of three or five independent experiments each done in 
triplicate. One-way ANOVA followed by the post hoc Tukey’s test, 
a p < 0.01 vs the control group, b p < 0.01 vs the cells that received 
only PB
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mitochondria [85]. The consumption of GSH in that reac-
tion leads to the formation of GS-SG, which is recycled 
to GSH by GR in an NADPH-dependent manner [85, 86]. 
NADPH is obtained mainly from the pentose phosphate 
pathway, which consumes glucose-6-phosphate that is 
also used in the glycolysis [92]. Hence, the chemically-
induced increase in the mitochondrial GSH is crucial in 
the detoxification of H2O2, which is diffusible and may 

induce widespread redox disturbances by easily crossing 
biological membranes [26, 27].

We also observed here that PB upregulated the anti-
oxidant enzyme HO-1. This protein converts heme to bili-
verdin, iron, and carbon monoxide (CO) [93]. Biliverdin 
exhibits antioxidant capacity in several cell types [94]. CO 
is also considered an antioxidant agent in mammalian cells 
[95]. Interestingly, it was demonstrated that HO-1 may 
upregulate both SOD and CAT in an experimental model 
of diabetes [96]. HO-1 downregulates NADPH oxidase 
activity, causing a decrease in the generation of O2

−⋅ by the 
enzyme [97]. Additionally, HO-1 enhances the levels of 
GSH experimentally [98]. In this regard, HO-1 upregula-
tion may play a role in the cytoprotective effects seen here. 
Nonetheless, it remains to be fully understood whether 
HO-1 would exert a role in the mitochondria-related anti-
oxidant actions observed in the present work in PB-treated 
SH-SY5Y cells.
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of a lipid peroxidation and b protein carbonylation in mitochondrial 
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administrated at 100 µM for additional 24 h. Data are presented as the 
mean ± SEM of three or five independent experiments each done in 
triplicate. One-way ANOVA followed by the post hoc Tukey’s test, a 
p < 0.05 vs the control group, b p < 0.05 vs the cells exposed to MG 
alone, c p < 0.05 vs the PB + MG-treated cells
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Fig. 10  The effect of Erk1/2 protein kinase inhibition on a mito-
chondrial membrane potential (MMP) and b cell viability of human 
neuroblastoma SH-SY5Y cells exposed to PB. The cells were pre-
treated with the Erk1/2 protein kinase inhibitor PD98059 at 20  µM 
during 1 h before exposure of the cells to 25 µM pinocembrin (PB) 
for additional 4 h. Methylglyoxal (MG) was administrated at 100 µM 
for additional 24 h. Data are presented as the mean ± SEM of three 
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Fig. 11  The effects of silencing Nrf2 with siRNA (for 48 h) on the 
levels of a glutamate-cysteine ligase modifier subunit (GCLM), b 
glutamate-cysteine ligase catalytic subunit (GCLC), c glutathione 
peroxidase (GPx), and d glutathione reductase (GR) in human neu-
roblastoma SH-SY5Y cells exposed to pinocembrin (PB) at 25  µM 

for 24 h. Data are presented as the mean ± SEM of three or five inde-
pendent experiments each done in triplicate. One-way ANOVA fol-
lowed by the post hoc Tukey’s test, a p < 0.05 vs the control group, 
b p < 0.05 vs PB-treated cells transfected with negative control (NC) 
siRNA
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Fig. 12  The effects of silencing Nrf2 with siRNA (for 48 h) on the 
levels of heme oxygenase-1 (HO-1) in human neuroblastoma SH-
SY5Y cells exposed to pinocembrin (PB) at 25  µM for 24  h. Data 
are presented as the mean ± SEM of three or five independent experi-
ments each done in triplicate. One-way ANOVA followed by the post 
hoc Tukey’s test, a p < 0.05 vs the control group, b p < 0.05 vs PB-
treated cells transfected with negative control (NC) siRNA
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Fig. 13  The effects of silencing Nrf2 with siRNA (for 48 h) on the 
levels of reduced glutathione (GSH) in the mitochondria of human 
neuroblastoma SH-SY5Y cells exposed to pinocembrin (PB) at 
25  µM for 24  h. Data are presented as the mean ± SEM of three or 
five independent experiments each done in triplicate. One-way 
ANOVA followed by the post hoc Tukey’s test, a p < 0.05 vs the con-
trol group, b p < 0.05 vs PB-treated cells transfected with negative 
control (NC) siRNA
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In conclusion, PB activated the Erk1/2–Nrf2–GSH axis 
alleviating MG-induced cytotoxicity and mitochondrial 
impairment in SH-SY5Y cells. Further research would be 
needed in order to investigate whether PB would afford 
mitochondrial protection in experimental models of diabe-
tes mellitus and neurodegenerative disorders in which MG 
plays a role.
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