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and protein markers had markedly decreased. Addition-
ally, the ERK and AKT signaling pathway played a key 
role in the neural differentiation of DPSCs stimulated with 
bFGF + NGF. These results suggested that manipulation of 
the ERK and AKT signaling pathway may be associated 
with the differentiation of bFGF and NGF treated DPSCs. 
Our date provided theoretical basis for DPSCs to treat neu-
rological diseases and repair neuronal damage.
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Introduction

The treatment of neurological diseases caused by irreversi-
ble neuronal cell damage, loss of neuronal cells or necrosis, 
is a world-wide problem [1]. In recent years, many attempts 
have been made to address this problem by cell transplanta-
tion and gene therapy. Dental pulp stem cells (DPSCs) are 
multipotent stem cells. DPSCs in regenerative medicine is 
anticipated, due to highly proliferative cells capable of self-
renewal and be induced to differentiate into several lineages 
including chondrogenic, adipogenic, neurogenic, osteo-
genic and myogenic [2, 3]. DPSCs were the most widely 
used seed cells in the field of neural regeneration and bone 
tissue engineering, due to their easily isolation, lack of ethi-
cal controversy, low immunogenicity and low rates of trans-
plantation rejection [4–6]. Moreover, numerous researches 
have demonstrated that DPSCs are able to differentiate into 
neuron-like cells in  vitro via genetic manipulation, where 
various factors and chemical agents are adopted to induce 
DPSCs differentiation into neuron-like cells.
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Basic fibroblast growth factor (bFGF) and nerve growth 
factor (NGF) are powerful mitogens that improve the nutri-
tion of neural stem cells and precursor cells present in the 
mature nervous system [7]. bFGF is often considered as a 
growth factor and differentiation inducer within the stem 
cell research field. Furthermore, bFGF has previously been 
demonstrated to maintain mesenchymal stem cells (MSCs) 
differentiation potential and increase their telomere length 
in various culture systems [8, 9]. bFGF has been reported 
to be a potent mitogenic factor for neural stem and progeni-
tor cells both in vitro and in vivo. Studies have showed that 
cultured hippocampal neural progenitor cells divide only 
in response to bFGF [10]. NGF is a homodimeric peptide. 
NGF can regulate cell growth and promote neural differ-
entiation by supporting the survival and growth of neural 
cells in the nervous system. Moreover, NGF shows nerve 
injury healing ability in clinical therapy [11]. NGF can 
induce bone marrow MSCs differentiation into neural cells, 
via generating neuropeptide signals and receptors [12]. In 
some reports, DPSCs showed better neural stem cell prop-
erties than bone marrow derived MSCs [13]. It has been 
shown that human dental pulp cells expressed and secreted 
NGF [6]. NGF combinated other neurotrophic factors were 
added into serum-free low glucose DMEM/F-12 medium 
to induce the neurogenic differentiation of DPSCs [14].

Silent information regulator protein 1 (Sirt1) is most 
homologous to the founding member of the Sir2 family 
from yeast [15]. It is a nicotinamide adenosine dinucleo-
tide (NAD)-dependent deacetylase and a class III histone 
deacetylase participated in immune reactions, inflamma-
tion, cell differentiation, cell survival and cell metabolism 
[16–20]. Recent studies have demonstrated that Sirt1 acti-
vation plays an important role against age-related diseases 
because because its neuroprotective effects correlated with 
its functions in metabolism, stress resistance, and genomic 
stability [21, 22]. There is increasing evidence that Sirt1 
activation has an important effect on neuronal architec-
ture by stimulating axon elongation and neurite outgrowth 
[23–25]. Cytoplasmic Sirt1 down-regulated mTOR and 
stimulated neurite outgrowth, which indicated the role 
of Sirt1 in neuronal differentiation and the structural fea-
tures of neuronal cells [24, 25]. Sirt1 activation has been 
reported to induce the neuronal differentiation and has ben-
eficial effects on neurodegenerative diseases [22, 23, 26]. 
Previous reports have been suggested to promote neurite 
outgrowth and the subcellular localization of this deacety-
lase is critical for its function [22]. Recently, it was shown 
that MSCs could be effectively differentiated into neurons 
by Sirt1 activator treatment combined with neuronal induc-
tion media [27]. These data suggest that Sirt1 may play a 
key role in the induction of neuronal differentiation.

In present study, we explored the possibility and value of 
using NGF and bFGF in combination to promote neuronal 

differentiation of human DPSCs. We also analyzed the role 
of the Sirt1 for the first time in vitro, and our aim is to pro-
vide theoretical basis for further research in vivo.

Materials and Methods

Cell Cultures

Normal human impacted third molars were collected from 
patients 16–23 years of age (n = 9) after giving the informed 
consents which were approved by the Ethics Committee of 
the Affiliated Hospital of Nantong University. All subjects 
were free of carious lesions and oral infection. We isolated 
DPSCs by cleaning the tooth surface, cutting around the 
cement-enamel junction using sterilized dental fissure burs 
and then opening to reveal the pulp chamber. The pulp was 
digested in a solution of 3 mg/ml collagenase type I for 1 h 
at 37 °C. Single-cell suspensions were obtained by pass-
ing the digested tissues through a 70-µm cell strainer (BD 
Falcon). Cell suspensions of dental pulp were seeded into 
25 cm2 culture dishes and cultured in low glucose Dulbecco 
modified Eagle medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/
ml streptomycin at 37 °C in 5% CO2. The medium was 
changed every 3 days. Cells were passaged at the ratio of 
1:3 when they reached 85–90% confluence. The specific 
cell markers of DPSCs were characterized by flow cytomet-
ric analysis, with highly positive for CD29 and CD105, but 
negative for CD31 and CD34 [28]. All experiments were 
conducted on DPSCs cultured in passage 3 (P3) [3, 29].

Neurogenic Differentiation of DPSCs

To induce neurogenic differentiation, DPSCs were seeded 
into 24-well plates at a density of 1,000 cells/well and 
cultured in serum-free low glucose DMEM/F-12 medium 
containing 2% B27, 2% N2 (both PAA Laboratories, Coe-
lbe, Germany), 25 ng/ml brain-derived neurotrophic factor 
(BDNF, R&D Systems), 100 ng/ml NGF (R&D Systems) 
and 25 ng/ml bFGF (R&D Systems) for 7 days. Differen-
tiation media were changed after 3 days. Four groups con-
tain serum-free low glucose DMEM/F-12 medium contain-
ing 2% B27, 2% N2, 25  ng/ml BDNF. Four groups were 
analyzed with the following stimuli added to the culture: 
(1) DPSCs stimulated with normal saline as a control; 
(2) DPSCs stimulated with NGF; (3) DPSCs stimulated 
with bFGF; (4) DPSCs stimulated with NGF and bFGF. 
Nicotinamide (NAM; 100  µM; Sigma), a Sirt1 inhibi-
tor, was added to serum-free DMEM/F-12 medium for 4 
days. Subsequent procedures were performed as above-
described. Three groups contain serum-free low glucose 
DMEM/F-12 medium containing 2% B27, 2% N2, 25 ng/
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ml BDNF. Three groups were analyzed with the follow-
ing stimuli added to the culture: (1) DPSCs stimulated 
with normal saline as a control; (2) DPSCs stimulated with 
NGF + bFGF; (3) DPSCs stimulated with Sirt1 inhibi-
tor + NGF + bFGF. The levels of neural lineage mark-
ers in the induced cells from DPSCs were assessed using 
western blot, RT-PCR analysis and immunofluorescence 
staining. Three groups contain serum-free low glucose 
DMEM/F-12 medium containing 2% B27, 2% N2, 25 ng/
ml BDNF. Three groups were analyzed with the following 
stimuli added to the culture: (1) DPSCs stimulated with 
normal saline as a control for 7 days; (2) DPSCs stimulated 
with NGF + bFGF for 7 days; (3) DPSCs were incubated 
with 1  µM resveratrol for 12  h. DPSCs stimulated with 
NGF + bFGF for 7 days.

Western Blot

Cells were lysed in buffer consisting of 50  mM TRIS, 
150 mM NaCl, 2% sodium dodecyl sulfate (SDS) and a pro-
tease inhibitor mixture. After centrifugation at 12,000 rpm 
for 12  min, protein concentrations were determined by 
using the Bradford assay (Bio-Rad). The resulting superna-
tant (50 μg protein) was subjected to SDS polyacrylamide 
gel electrophoresis (PAGE). The separated proteins were 
transferred onto polyvinylidene difluoride membranes at 
350 mA for 2.5 h in a blotting apparatus (BioRAD, Calif., 
USA). Membranes were blocked with 5% nonfat milk and 
incubated with primary antibodies (1:400) at 4 °C over-
night and subsequently with anti-rabbit horseradish per-
oxidase- conjugated secondary antibodies (1:1000) for 2 h 
at room temperature. Concomitantly, D-glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was run as a refer-
ence protein. We simply detected endogenous GAPDH 
with an antibody. The following primary antibodies were 
used: GAPDH (anti-rabbit, Santa Cruz), Nestin (anti-rab-
bit, Sigma), MAP-2 (anti-rabbit, Sigma), βIII-tubulin (anti-
rabbit, Sigma), GFAP (anti-rabbit, Sigma), Sirt-1 (anti-
rabbit, Sigma), Akt (anti-rabbit, Cell Signaling), and p-Akt 
(anti-rabbit, Cell Signaling), ERK (anti-rabbit, Cell Signal-
ing) and p-ERK (anti- rabbit, Cell Signaling).

Immunofluorescence Staining

DPSCs were fixed with 4% paraformaldehyde (PFA) for 
1  h at 7 days after induction, washed with PBS contain-
ing 0.1% Triton X-100 (PBST), and the cells were blocked 
in 1% bovine serum albumin (Sigma–Aldrich, St. Louis) 
for 30 min. The cells were then incubated with the one of 
the following primary antibodies overnight at 4 °C: Nes-
tin (anti-rabbit, Sigma), MAP-2 (anti-rabbit, Sigma), βIII-
tubulin (anti-rabbit, Sigma), GFAP (anti-rabbit, Sigma), 
Sirt-1 (anti-rabbit, Sigma). After washing with PBS, the 

cells were incubated with the following secondary antibod-
ies for 2 h at room temperature in the dark: goat-antirabbit 
(cy3)-conjugated antibodies (1:300, ICN Cappel, USA), 
and goat-antimouse FITC-conjugated antibodies (1:300, 
Dako, USA). Nuclei were counterstained with DAPI 
(1:800, Santa Cruz). After being washed and mounted, the 
cells were examined with a fluorescence microscope.

Reverse Transcription‑Polymerase Chain Reaction 
(RT‑PCR) Analysis

Total cellular RNA was isolated from cells and reverse 
transcribed using conventional protocols. PCR ampli-
fication was performed using the following primer 
sets: GAPDH 5′-TCCATGACAACTTTGGTATCG-3′, 
5′-TGTAGCCAAATTCGTTGTCA-3′; GFAP 5′-GCTTC-
CTGGAACAG CAAAAC-3′, 5′-GGCTTCATCT-
GCTTCCTGTC-3′; Nestin 5′-CTC TGACCTGTCA-
GAAGAAT-3′, 5′-CCCACTTTCTTCCTCATCTG-3′; 
MAP-2 5′-CTGGGTCTACTGCCATCACTC-3′, 
5′-CCCCTTTAGGCT GGTATTTGA-3′; βIII-tubulin 
5′-GGGCCAAGTTCTGGGAAGTC-3′, 5′-ATCCGCTC-
CAGCTGCAAGT-3′; Sirt-1 5′-GGAAGCGTTTTTTTC 
GAGTAC-3′, 5′-CCGAATCCAAACTATAATATC-
TACG-3′. All the primer sequences were determined using 
established GenBank sequences. The primers were used to 
amplify the duplicate PCRs. Each sample was analyzed in 
triplicate and GAPDH was used as a control.

Statistical Analysis

The data are represented as mean ± standard deviation 
(SD) of three or more independent experiments. Statisti-
cal comparisons between groups were made using an inde-
pendent t-test. P-values < 0.05 were considered statistically 
significant.

Results

bFGF and NGF Promoted Neural Differentiation 
of DPSCs

bFGF and NGF are powerful mitogens that promote the 
nutrition of neural stem cells and precursor cells present 
in the mature nervous system. To investigate the influ-
ence of bFGF and NGF on neural differentiated DPSCs, 
DPSCs were treated with bFGF and NGF for 7 days alone 
or in combination during differentiation. We examined the 
expressions of neuronal markers Nestin (a neural stem cell 
marker), MAP-2 (neurons), βIII-tubulin (a neuronal specific 
tubulin) and GFAP (astrocytes) to determine the neural dif-
ferentiation potential of DPSCs. As shown in Fig.  1a, b, 
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bFGF and NGF increased neural differentiation of DPSCs 
synergistically, compared with bFGF and NGF alone 
(P < 0.05). When levels of neuron lineage markers includ-
ing Nestin, βIII-tubulin, MAP-2 and GFAP were analyzed 
by RT-PCR, and Western blot, we found an increase of the 
markers when compared to GAPDH. Both the mRNA and 
protein levels increased in the presence of the differentia-
tion factors (Fig. 1c, d).

Expression of Sirt1 Increased in DPSCs Stimulated 
with bFGF and NGF During Differentiation

Since Sirt1 activation has been reported to induce the neu-
ronal differentiation and has beneficial effects in neuro-
degenerative diseases [27]. To determine whether bFGF 
and NGF have an effect on Sirt1 expression, we ana-
lyzed Sirt1 protein and mRNA levels. Compared with the 
control group, Sirt1 protein levels in bFGF-treated and 

NGF-treated groups significantly increased especially in 
co-treated groups (Fig. 2a, b). The mRNA changes of Sirt1 
were similar to that observed in the protein levels. Sirt1 
mRNA levels in co-treated groups were significantly higher 
compared with bFGF and NGF-treated groups (Fig.  2c, 
d). The Sirt1 expression was confirmed using immuno-
fluorescence staining. The up-regulation of these proteins 
was observed for both bFGF-induced and NGF- induced 
DPSCs especially in co-treated group (Fig.  2e, f). These 
results suggested that bFGF and NGF signifiantly up-regu-
lated the levels of Sirt1.

ERK and AKT Signaling were Highly Active in bFGF 
and NGF Induced DPSCs and Reversed by Sirt1 
Inhibitor

MAPK has a significant role in the growth and differen-
tiation of MSCs. In this study, western blot was used to 

Fig. 1   bFGF and NGF promoted neural differentiation of DPSCs. a 
After treatment with bFGF and NGF alone or in combination, expres-
sions of Nestin, MAP-2, βIII-tubulin and GFAP were analyzed by 
Western blot; cells in neural differentiation medium for 7 days were 
as control. b Quantification of Nestin, MAP-2, βIII-tubulin and GFAP 

protein levels. *P < 0.05. c Total RNA was isolated at 7 days after 
induction of differentiation, followed by RT-PCR analysis. d Quan-
titation of PCR products. The quantity of amplified product was ana-
lyzed by an image analyzer. *P < 0.05
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examine the protein expression levels of ERK and AKT in 
the various groups. As shown in Fig. 3, the expression lev-
els of p-AKT and p-ERK were increased in the bFGF and 
NGF induced groups, and was the highest in co-induced 
groups. These results indicated that the MAPK pathway 
may manipulate the neural differentiation of DPSCs. To 
investigate the effect of Sirt1 on bFGF and NGF induced 
neural differentiation of DPSCs, we used Sirt1 inhibitor. 

After treatment of Sirt1 inhibitor, the expression levels of 
p-AKT and p-ERK were decreased (Fig. 3c, d), suggesting 
that Sirt1 enhanced the phosphorylation of AKT and ERK. 
Resveratrol (trans‑3,5,4‑trihydroxystilbene, RSV), a natural 
polyphenolic phytoalexin, is highly concentrated in grapes 
and red wine. There is increasing evidence that resveratrol, 
a Sirt1 activator, plays a pivotal role in neuroprotection and 
neuronal differentiation. The RSV-dMSCs showed a higher 

Fig. 2   Expression of Sirt1 increased in DPSCs stimulated with bFGF 
and NGF during differentiation. a After treatment with bFGF and 
NGF alone or in combination, western blot analysis of Sirt1, cells in 
neural differentiation medium for 7 days were as control. b Quanti-
fication of Sirt1 protein levels. *P < 0.05. c Total RNA was isolated 
at 7 days after induction of differentiation, followed by RT-PCR 

analysis. d Quantitation of PCR products. The quantity of amplified 
product was analyzed by an image analyzer. *P < 0.05. e Immuno-
cytochemisry of Sirt1 (Blue, DAPI. original magnification: ×200). 
Scale bar = 50 μm. f Quantification of Sirt1 positive cells. The Sirt1-
positive cell ratio was counted by using phase-contrast microscopy 
(*P < 0.05). (Color figure online)
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expression of the neuronal marker proteins, Nestin and 
NF-M [27]. Our data showed that after treatment of Sirt1 
activator-RSV, the expression levels of p-AKT and p-ERK 
were increased, suggesting that Sirt1 enhanced the phos-
phorylation of AKT and ERK (Fig. 3e, f).

Sirt1 Promoted bFGF and NGF Induced Neural 
Differentiation of DPSCs

In the present study, after treatment of Sirt1 inhibi-
tor, the expression levels of p-AKT and p-ERK were 

Fig. 3   ERK and AKT signaling were highly active in bFGF and 
NGF induced DPSCs and reversed by Sirt1 inhibitor. a DPSCs were 
treated with bFGF and NGF alone or in combination, AKT, p-AKT, 
ERK, and p-ERK expression was determined by Western blot anal-
ysis. b Quantification of AKT, p-AKT, ERK, and p-ERK protein 
levels. *P < 0.05. c DPSCs were cultured in neural differentiation 
medium containing bFGF and NGF in combination or Sirt1 inhibitor 

and bFGF, NGF for 7 days. The p-AKT and p-ERK expressions were 
analyzed by Western blot. d Quantification of p-AKT and p-ERK pro-
tein levels. *P < 0.05. e DPSCs were cultured in neural differentiation 
medium containing bFGF and NGF in combination or Sirt1 activa-
tor-RSV and bFGF, NGF for 7 days. The p-AKT and p-ERK expres-
sions were analyzed by Western blot. f Quantification of p-AKT and 
p-ERK protein levels. *P < 0.05
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decreased,western blot analysis showed that Sirt1 pro-
moted the phosphorylation of AKT and ERK, furthermore 
ERK and AKT signaling were highly active in bFGF and 
NGF induced DPSCs, then we considered that whether 
Sirt1could enhance bFGF and NGF induced neural differ-
entiation of DPSCs. Western blotting detected the protein 
expression levels of Nestin, MAP-2, βIII-tubulin and GFAP 
in the various groups. Notably, relative protein expression 
levels were lower in the Sirt1 inhibitor group, as compared 
with the bFGF and NGF co-induced group (Fig.  4a, b). 
When levels of neuronal markers mRNA were analyzed by 
RT-PCR, the increase in neuronal markers protein secretion 

correlated with the accumulation of neuronal markers 
mRNA (Fig.  4c, d). After treatment with Sirt1 inhibitor, 
the immunofluorescence staining showed that the number 
of positive cells had markedly decreased (Fig.  4e). These 
observations require that Sirt1 may promote bFGF and 
NGF induced neural differentiation of DPSCs.

Discussion

Currently, cell therapy for neurological diseases has been 
analyzed using MSCs derived from bone marrow, adipose 

Fig. 4   Sirt1 promoted bFGF and NGF induced neural differen-
tiation of DPSCs. a DPSCs were cultured in neural differentiation 
medium containing bFGF and NGF in combination or Sirt1 inhibi-
tor and bFGF, NGF for 7 days, expressions of Nestin, MAP-2, βIII-
tubulin and GFAP were analyzed by Western blot. b Quantification 
of Nestin, MAP-2, βIII-tubulin and GFAP protein levels. *P < 0.05. 

c Total RNA was isolated at 7 days after induction of differentiation, 
followed by RT-PCR analysis. d Quantitation of PCR products. The 
quantity of amplified product was analyzed by an image analyzer. 
*P < 0.05. e Immunofluorescence staining of Nestin, MAP-2, βIII-
tubulin and GFAP (original magnification: ×200). Scale bar = 50 μm
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tissue, embryonic stem cells, and neural stem cells [30]. 
The nervous system consists of two types of cells, neurons 
and glial cells. The underlying repair mechanisms of cell 
therapy for neurological diseases are the secretion of neu-
rotrophins from seed cells, and ultimately the differentia-
tion of seed cells into neurons and glial cells. Therefore, the 
identification of a suitable seed cell that secretes neurotro-
phins and be easily to be induced the neuronal differentia-
tion is important for the treatment of neurological diseases 
and for the repair of neuronal damage.

DPSCs have the advantage of convenience sampling, 
easy expansion, and possess the ability to differentiate 

into neurons; therefore, DPSCs are regarded as a promis-
ing seed cell in tissue engineering for the treatment of neu-
rological diseases [31, 32]. The transplantation of human 
DPSCs was demonstrated to improve motor capacity in 
a mouse spinal cord injury model, and stem cells from 
human exfoliated deciduous teeth promoted locomotor 
recovery following transection of rat spinal cords [6, 33]. 
bFGF and NGF are important neurotrophins, which pos-
sess superior properties, when compared with other types 
of neurotrophic factors, in the maintenance of neuronal 
survival, anti-apoptotic function in neurons, and promo-
tion of MSCs differentiation into neuron-like cells in vitro 

Fig. 4   (continued)
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[7]. In this study, we evaluated the potential of DPSCs to 
differentiate into multiple types of neural cells. Analysis 
of differentiated cells by western blot and RT-PCR proved 
that DPSCs + bFGF and NGF alone or combination could 
indeed differentiate into Nestin+ neural stem cell, MAP-2+ 
neurons, βIII-tubulin+ neurons and GFAP+ astrocytes. We 
identified that the levels of Nestin, MAP-2, βIII-tubulin and 
GFAP the most highest in the DPSCs + bFGF + NGF group 
compared with the other groups.

Previous study found that NGF treatment induced Sirt1 
gene and protein expression of the PC12 cells in the low 
glucose DMEM [34]. There is increasing evidence that 
Sirt1 activation has a key role on neuronal architecture by 
stimulating axon elongation and neurite outgrowth [23–25]. 
Previous studies have shown that resveratrol (a Sirt1 acti-
vator) treatment, along with the use of neuronal induction 
media, effectively stimulates neuronal cell differentiation 
of bone marrow MSCs [27]. Glial cells play pivotal roles 
in neuronal development, activity and plasticity [35]. It 
is well known that glial cells are also involved in provid-
ing neurotrophic signals to neurons required for their sur-
vival, proliferation, and differentiation. GFAP is expressed 
in the central nervous system in astrocytes. It is involved 
in many important CNS processes, including cell commu-
nication and functioning of the blood–brain barrier [36]. 
These studies suggest that the Sirt1 activation is critical for 
inducing neural differentiation of MSCs. In this study, we 
found Sirt1 protein and mRNA levels in bFGF-treated and 
NGF-treated groups significantly increased especially in 
co-treated groups.

As a downstream molecule of Sirt1, AKT can be modu-
lated by Sirt1 through deacetylation [23, 37]. Besides, AKT 
has multiple roles in regulating neuronal cell size and sur-
vival, accelerating axonal regeneration, and promoting axon 
elongation and branching [38–41]. A recent study revealed 
that NGF induced the neuritogenesis in dopaminergic cells 
via two distinct processes, namely, the early ERK-driven 
and transcription-dependent latency process, and the later 
ERK- and PI3K/AKT- driven and transcription-independ-
ent neurite extension process [42]. Extracellular signal-reg-
ulated kinases, a well known members of the MAP kinase 
family, act as integration points for multiple biochemical 
signals, and in addition they are involved in a wide vari-
ety of cellular processes, such as proliferation, differentia-
tion, transcription regulation, and development [43]. The 
activation of this kinase requires its phosphorylation by 
upstream kinases. It has been widely demonstrated that 
Ras GTP binding proteins are involved in the activation of 
ERKs [44]. Many different stimuli, including growth fac-
tors, cytokines, virus infection, ligands for heterotrimeric 
G protein-coupled receptors, transforming agents, and car-
cinogens, activate the ERK pathway [43]. The MAPK/ERK 
pathway is a well-known chain of proteins in the cell that 

communicates a signal from a receptor on the surface of the 
cell to the DNA in the nucleus of the cell. It is hypothesized 
that the cellular response to extracellular signaling agents, 
such as hormones and GFs, may induce stimulation or inhi-
bition of specific functions associated with some cellular 
compartments or with the nucleus. Often, the response is a 
modification of gene expression [45]. It has been reported 
exogenous factor induced differentiation of MSCs, suggest-
ing that the ERK pathway is involved in the neural differ-
entiation of MSCs [46, 47]. In addition, it is well known 
that growth factors are mitogenic polypeptides playing 
a crucial role during astroglial and neuronal cell prolif-
eration and differentiation in culture [48]. Previous study 
demonstrated that NGF and bFGF co-transfected MSCs 
exhibited an increased expression of ERK phosphoryla-
tion in MSCs, as well as increased proliferation and neural 
differentiation [7]. Similar to previous study, DPSCs were 
incubated with/without 1 µM resveratrol for 12 h. However, 
pre-induction media of previous study contained DMEM, 
10% FBS, 10 ng/mL bFGF, and 500 µM β-mercaptoethanol 
for 24  h [27]. Our data showed that after treatment of 
Sirt1 activator-RSV, the expression levels of p-AKT and 
p-ERK were increased, suggesting that Sirt1 enhanced the 
phosphorylation of AKT and ERK. The results of the pre-
sent study demonstrated that bFGF and NGF stimulated 
together exhibited increased expression levels of p-AKT 
and p-ERK, whereas the control DPSCs exhibited lower 
expression of p-AKT and p-ERK, thus suggesting that that 
ERK and AKT signaling pathway is involved in regulation 
of DPSCs neural differentiation.

In conclusion, the present study examined the effects of 
bFGF and NGF on neural differentiation of DPSCs. The 
results indicated that bFGF and NGF exerted a synergistic 
regulatory effect on DPSCs neural differentiation. Thus, the 
present study provides insight into the use of tissue engi-
neering technology for future treatment of neurological dis-
eases and for the repair of neuronal damage.
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