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Introduction

With the development of cancer diagnoses and treatments, 
the life expectancy of cancer patients has been markedly 
increased. However, cancer-induced bone pain (CIBP) is a 
challenging medical problem that considerably influences 
cancer patients’ quality of life [1–3]. It has been reported 
that more than one-third of patients with advanced-stage 
cancer will undergo skeletal metastases and experience 
severe CIBP [4, 5]. Currently, about 45% of patients with 
CIBP have inadequate pain control because current thera-
pies are lack of efficacy or associate with dose-limiting side 
effects [6, 7]. Thus, understanding the potential molecular 
and cellular mechanisms underlying CIBP is necessary for 
the development more effective therapies to conquer CIBP.

Recent studies indicated that several chemokines and 
chemokine receptors were involved in modulating pain 
responses [8, 9]. CC chemokine receptor 5 (CCR5) is one 
of the chemokine receptors, which belongs to the family 
of seven-transmembrane G protein coupled receptor. The 
RANTES (regulated on activation normal T cell expressed 
and secreted; also named as CCL5) is a major ligand for 
CCR5. Our previous work has proved that the antinoci-
ceptive effects of triptolide correlated with inhibition of 
spinal RANTES expression in a rat model of CIBP [10]. 
The analgesic effects of triptolide also have been proved 
in inflammatory and neuropathic pain models [11, 12]. 
The established mechanical allodynia could be attenuated 
by intrathecal injection of anti-RANTES neutralizing anti-
body in CIBP rats [13]. These results indicated that spi-
nal RANTES might participate in the CIBP processing. 
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However, the potential mechanism of CCR5 in the mainte-
nance of CIBP remains unknown.

In vitro study has shown that CCR5 can be coupled to 
Gαq, Gas, and Ga12/13 protein [14]. Gaq activates the 
phospholipase C-γ, leading to the activation of protein 
kinase C (PKC). Activation of Gas is able to activate PKA 
signaling pathway through increased adenylyl cyclase 
activity. Ga12/13 can activate RhoA/Rho kinase (ROCK) 
signaling pathway. A few researches have indicated that 
involvement of spinal PKC pathway in inflammatory and 
neuropathic pain [15–17]. If spinal CCR5 participates in 
the maintenance of CIBP, whether its downstream PKC 
signaling pathway is also involved in the CIBP still remains 
unknown. In the current study, we attempted to investigate 
whether spinal CCR5/PKCγ pathway is involved in the 
maintenance of CIBP.

Methods

Animals

All animal studies were approved by the Animal Care 
and Use Committee of the Jiangsu University, and com-
plied with the National Institutes of Health guidelines for 
Care and Use of Laboratory Animals. Female Wistar rats, 
weighing 150–180  g, were used in this study. Rats were 
kept in a temperature- controlled room (22 ± 2 °C) with free 
access to food and water.

Drug Application

DAPTA (D-Ala-peptide T-amide), a specific antagonist of 
CCR5, and recombinant rat RANTES, an agonist of CCR5 
were obtained from R&D Systems (Minneapolis, USA). 
GF109203X was purchased from Sigma-Aldrich (Shang-
hai, China), and dissolved in 1% DMSO. The dosage of 
drugs was determined by the results of pilot experiments.

A Rat Model of CIBP

A rat model of CIBP was conducted as described previ-
ously [18]. In brief, under anesthesia with sodium pento-
barbital (50 mg/kg, i.p), the toe pinch test was performed 
to ensure an adequate state of anesthesia for animal. The rat 
was placed with the supine position, and the left tibia was 
prepared for inoculation. After iodine disinfection, a small 
incision was cut on the anterior-medial surface to expose 
the tibial plateau. The needle of 23-gauge was used to drill 
a hole in the tibial plateau, then, Walker 256 mammary 
gland carcinoma cells (10 μl, 1 × 105 cells, supplied by the 
Soochow University) or heat-killed cells (for sham group) 
was inoculated into the intramedullary space of the tibia. 

After inoculation, the medical glue was used to close the 
hole. Finally, the incision was dusted with penicillin pow-
der and sutured using silk thread. After fully awake, the rats 
returned to their individual cages.

Intrathecal Cannula Implantation

Intrathecal cannula implantation was carried out 3 days 
after inoculation [19]. Under anesthesia, a PE-10 tube was 
inserted through the L5 and L6 space, and the tip of the 
catheter was put near the lumbar enlargement. The position 
of the catheter was identified by intrathecal administration 
of lidocaine (2%, 10 μl).

Pain Behavior

Mechanical allodynia was assessed by von Frey hairs 
[19]. In brief, animals were put in individual acrylic boxes 
(15 × 20 × 25  cm) with a metal mesh floor and permitted 
30 min to acclimatize to the chamber. A series of von Frey 
hairs with logarithmically incremental force was tested on 
the plantar surface of left hind-paw to measure the paw 
withdrawal threshold (PWT). Paw flinching or quick with-
drawal was defined as a positive response. The investiga-
tors for behavioral test were blinded to the experimental 
protocol.

Immunohistochemistry

Rats were transcardially perfused with 0.9% normal saline 
followed by 200 ml of 4% paraformaldehyde under deeply 
anesthesia with pentobarbital sodium. Spinal dorsal horns 
(L4 and L5) were quickly removed on ice and postfixed 
with the same fixative for 24  h. The tissues were sec-
tioned at 30  μm and every fifth section was collected in 
PBS. The sections were incubated for 60 min in blocking 
buffer (0.3% Triton X-100 and 2% goat serum), then incu-
bated with one of the following primary antibodies over-
night at 4 °C: anti-CCR5 antibody (1:500; Abcam, USA), 
anti-GFAP antibody (a marker for astrocyte; 1:500; Abcam, 
USA), anti-OX42 antibody (a marker for microglia; 1:500; 
Abcam, USA), and anti-NeuN antibody (a marker for neu-
ron; 1:500, Abcam, USA). The DyLight® 488 or 594 con-
jugated secondary antibodies (1:500, Abcam, USA) were 
used for detection. In double label immunofluorescence 
experiments, the sections were incubated with a cocktail of 
two primary antibodies and the corresponding secondary 
antibodies. Finally, images in laminae I and II were cap-
tured by a fluorescence microscope. The Image J software 
was used to measure the staining intensity. The average 
intensity from four rats was presented as group data.
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Western Blot

The tissue samples (dorsal horn of L4-L5) were solubi-
lized in ice-cold RIPA buffer plus phosphatase inhibitors, 
and centrifuged at 10,000g for 30 min at 4 °C. The Brad-
ford method was used to determine the protein concentra-
tions in the supernatant. Fifty micrograms of proteins were 
loaded for each lane, separated using 12% SDS–PAGE gel, 
and electrophoretically transferred onto PVDF membrane 
(Millipore, USA). Then, the blots were incubated with 
anti-CCR5 antibody (1:1000; Abcam, USA), anti-phospho 
PKCγ antibody (1:1000; Abcam, USA) or anti-PKCγ anti-
body (1:1000; Abcam, USA) overnight at 4 °C, and then 
for 1 h with HP-conjugated secondary antibody. The blots 
were visualized by the ECL detection system. Expression 
of CCR5 and p-PKCγ was normalized to the β-actin.

Statistical Analysis

All data are expressed as mean ±SEM. Repeated-measures 
(RM) ANOVA followed by Bonferroni test was used to 
analyze the behavioral data. One-way ANOVA followed 
by Bonferroni test was used to analyze western blot and 
immunofluorescence data. p < 0.05 was considered signifi-
cant. Statistical analysis was carried out with the SPSS16.0 
software.

Results

Pain Behavior Over Time

The baseline PWT values were not statistically different 
between sham and CIBP rats (n = 8, p > 0.05). Compared 
with sham rats, the PWT values of the ipsilateral hind paw 
were markedly reduced from day 6 to day 15 in inoculated 
rats (p < 0.05 or 0.01; Fig.  1), suggesting the progressive 
development of mechanical allodynia. However, within the 
15-day observation time, the PWT values of contralateral 
hind paw kept relatively unaltered.

Upregulation of Spinal CCR5 and p‑PKCγ Expression 
in CIBP Rats

To examine whether CCR5 participates in the maintenance 
of CIBP, CCR5 expression levels were checked by immu-
nohistochemistry and Western blot. The results of immu-
nostaining showed that CCR5 expression in the ipsilateral 
spinal dorsal horn was markedly increased at days 6, 12, 
and 15 in inoculated rats (Fig.  2a–d). From day 6 to day 
15 after inoculation, a statistically significant increase 
in the intensity of CCR5 was found (Fig.  2k). Moreover, 
progressively increased protein expression levels of CCR5 

(Fig.  2m) and p-PKCγ (Fig.  2n) were found by Western 
blot analysis in inoculated rats.

To investigate the cellular distribution of CCR5 in spinal 
dorsal horn, double immunostaining was used. The images 
showed that CCR5 was mainly colocalized with OX-42 
(microglial marker; Fig. 2h), but not with NeuN (neuronal 
marker; Fig. 2g) or GFAP (astrocytic marker; Fig. 2f), sug-
gesting expression of CCR5 by microglia. Compared with 
CIBP 6 d group (Fig.  2i), the number of CCR5/OX-42 
double positive cells was markedly increased in CIBP 15 
d group (Fig. 2h, l). Taken together, these results suggested 
that the close relationship between the number of microglia 
and CCR5 expression level.

Intrathecal of DAPTA Attenuated Mechanical 
Allodynia and Decreased CCR5 and p‑PKCγ 
Expression Levels in CIBP Rats

To further check the roles of CCR5 in the maintenance 
of CIBP, DAPTA (5 or 10  μg, a CCR5 antagonist) was 
injected intrathecally in CIBP rats at 15 days after inocu-
lation. Intrathecal DAPTA could significantly decrease the 
PWT values at 1, 2, and 3 h in a time- and dose-dependent 
manner (p < 0.05 or 0.01). Intrathecal RANTES (0.2  μg, 
a CCR5 ligand) had no effects on the values of PWT. 

Fig. 1   Mechanical allodynia was induced by Walker 256 cells 
intramedullary inoculation. Compared with sham rats, the paw with-
drawal threshold (PWT) values of the ipsilateral hind paw were mark-
edly reduced on days 6, 12 and 15 at the same time-point in inocu-
lated rats. The baseline PWT values were not statistically different 
between sham and CIBP rats. Within the 15-day observation time, 
the PWT values of contralateral hind paw kept relatively unaltered. 
(▲p < 0.05, ▲▲p < 0.01 versus baseline, *p < 0.05, **p < 0.01 versus 
sham group. Data were expressed as the mean ± SEM, each group 
contained eight rats.)



566	 Neurochem Res (2017) 42:563–571

1 3



567Neurochem Res (2017) 42:563–571	

1 3

However, the anti-allodynia effects of DAPTA (10 μg) was 
reversed by pre-intrathecal injection of RANTES (0.2 μg) 
15  min before intrathecal DAPTA (Fig.  3a). These data 
suggested that CCR5 might play a key role in the mainte-
nance of CIBP.

To examine the effects of intrathecal DAPTA on the 
spinal CCR5 and p-PKCγ expression levels, the Western 
blot analysis was used. The tissues of spinal dorsal horn 
were harvested at 3 h after intrathecal injection. Compared 
with sham group, the CCR5 and p-PKCγ expression levels 
were higher in the NS group of inoculated rats. Intrathecal 
DAPTA (10 μg) could significantly attenuate spinal CCR5 
and p-PKCγ levels in inoculated rats (Fig. 3b).

Intrathecal of GF109203X Attenuated Mechanical 
Allodynia and Reduced p‑PKCγ Expression in CIBP 
Rats

To further check whether PKCγ is a downstream molecule 
of CCR5 for maintenance of CIBP, GF109203X, an inhibi-
tor of PKC, was chosen to verify this hypothesis. The results 
showed that intrathecal injection of GF109203 × (0.18 and 
0.36 μg) could dose-dependently attenuate mechanical allo-
dynia at 15 days in inoculated rats. The peak effect was at 
the 1.5 h after intrathecal administration (p < 0.01, Fig. 4a). 
Meanwhile, intrathecal GF109203 × (0.36  μg) could sig-
nificantly attenuate spinal p-PKCγ expression (p < 0.01). 
However, intrathecal administration of GF109203X had no 
effects on the expression of spinal CCR5 (Fig. 4b). Taken 
together, these findings suggested that PKC was an impor-
tant downstream molecule of CCR5 in the maintenance of 
CIBP in rats.

Compared with sham rats, the expression of OX-42 
was higher in NS group. Intrathecal DAPTA (10  μg) or 
GF109203 × (0.36  μg) could significantly attenuate spinal 

OX-42 expression level (p < 0.01). The results indicated 
that a positive correlation between microglial activation 
and the expression level of CCR5 or p-PKCγ.

Discussion

More recent studies have indicated that a few chemokines 
and chemokine receptors were involved in central sensi-
tization in CIBP models [20–22]. RANTES, which is the 
main ligand for CCR5, is a member of the CC chemokine 
subfamily. In addition to RANTES, other CC chemokines, 
such as CCL3 and CCL4, may also contribute to the CCR5 
activation [23]. Recently, some studies have confirmed that 
CCL3/CCR5 or CCL4/CCR5 signaling pathway might par-
ticipate in neuropathic pain [24–26]. Our previous study 
verified that RANTES was involved in the alleviation of 
nociceptive responses of triptolide in the CIBP rats [10]. 
The established mechanical allodynia could be abolished 
by intrathecal injection of anti-RANTES neutralizing 
antibody in inoculated rats [13]. In the present study, the 
results showed that inhibition of spinal CCR5 expression 
was associated with the attenuated mechanical allodynia 
in CIBP rats. These results suggested that RANTES/CCR5 
signaling pathway might contribute to the maintenance of 
CIBP. Lee and colleagues found that CCR5 knockout mice 
to chemical and inflammation stimuli were significantly 
attenuated, and intracerebroventricular infusion of DAPTA 
could markedly reduce chemical and inflammatory pain 
responses in wild-type mice [27]. Peritoneal administration 
of Met-RANTES, a CCR5 antagonist, could reduce nocic-
eptive responses in a partial sciatic nerve ligation (PSNL) 
model [28]. Similarly, oral administration of RAP-103, 
a CCR2 and CCR5 antagonist, could attenuate mechani-
cal allodynia and thermal hyperalgesia in PSNL rats [29]. 
Taken together, CCR5 may play an important role in the 
modulation of nociceptive perception.

The peak effect of DAPTA was at 2 h after intrathecal 
administration. However, the effects of intrathecal admin-
istration of DAPTA on the expression levels of CCR5 and 
p-PKCγ were measured at 3  h after intrathecal, owing to 
the fact that variation of protein expression lags behind pain 
behavioral changes. In pharmacology, a receptor antagonist 
is defined as a molecule binding to the specific receptor can 
inhibit the function of the agonist or inverse agonist to its 
receptor, which has affinity but no efficacy for its cognate 
receptor. The efficacy of a receptor depends on its expres-
sion level [30]. DAPTA, a specific antagonist of CCR5, can 
reduce the efficacy of the CCR5. So, decrease of the CCR5 
expression level was observed after intrathecal of DAPTA.

CCR5/PKC signaling pathway has been proved in 
some studies [14, 31]. PKC is a family of serine/threonine 
kinases, which comprises more than ten members. PKCγ 

Fig. 2   Upregulation of CCR5 and p-PKCγ expression in CIBP rats. 
a–d The results of immunostaining showed that the CCR5 expres-
sion in the ipsilateral spinal dorsal horn was markedly increased at 
days 6, 12, and 15 in inoculated rats. The intensities of immunostain-
ing were calculated in laminae I and II of the ipsilateral spinal dorsal 
horn. e Control tissues that were immunostained only with secondary 
antibody. Scale bar 100 μm. The images of double immunostaining 
revealed that CCR5 (green) was mainly colocalized with microglial 
marker OX-42 (h and i, yellow, white arrows), but not colocalized 
with the astrocytic marker GFAP (red, f) or neuronal marker NeuN 
(red, g). Scale bar 25 μm. j The white box indicates the location of 
panel I on the lower power image. Scale bar 200 μm. Compared with 
CIBP 6 d group, the number of CCR5/OX-42 double positive cells 
was markedly increased in CIBP 15 d group (i, h, and l). From day 
6 to day 15 after inoculation, a statistically significant increase the 
intensity of CCR5 was found (k). Moreover, progressively increased 
protein expression levels of CCR5 (m) and p-PKCγ (n) were found 
by western blot analysis in inoculated rats. (*p < 0.05, **p < 0.01 ver-
sus sham rats. Data were presented as mean ± SEM, each group con-
tained four rats.) (Color figure online)

◂
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Fig. 3   Intrathecal administration of DAPTA attenuated mechani-
cal allodynia and decreased CCR5 and p-PKCγ expression in 
CIBP rats. a Intrathecal DAPTA could significantly increase the 
PWT values at 1, 2, and 3 h in a time- and dose-dependent manner 
(p < 0.05 or 0.01). Intrathecal RANTES (0.2  μg, a CCR5 ligand) 
had no effects on the values of PWT. However, the anti-allodynia 
effects of DAPTA (10  μg) was reversed by pre-intrathecal injection 
of RANTES (0.2  μg) 15  min before intrathecal DAPTA.NS group 
indicates intrathecal administration of normal saline. (*p < 0.05, 

**p < 0.01 versus NS group. Data were presented as the mean ± SEM, 
each group contained eight rats.). b Compared with sham group, the 
CCR5 and p-PKCγ expression levels were higher in the NS group of 
inoculated rats. Intrathecal DAPTA (10 μg) could significantly attenu-
ate spinal CCR5 and p-PKCγ levels in inoculated rats. The tissues 
of spinal dorsal horn were collected at 3 h after intrathecal injection. 
(▲▲p < 0.01 versus NS group, **p < 0.01 versus sham rats. Data 
were presented as mean ±SEM, each group contained four rats.)



569Neurochem Res (2017) 42:563–571	

1 3

is widely distributed in the central nervous system (CNS). 
Immunocytochemical studies showed PKCγ was mainly 
localized in the inner part of lamina II of spinal cord [32], 
suggesting PKCγ might be involved in the modulation of 
pain processing. A reduced neuropathic pain behavior was 
observed in the mice lack of PKCγ [33]. Inflammatory 
pain induced by complete Freund’s adjuvant (CFA) could 
be attenuated by intra-arcuate nucleus injection of a PKC 
inhibitor [34]. These findings indicated that PKCγ par-
ticipated in neuropathic and inflammatory pain. However, 
CIBP is different from neuropathic and inflammatory pain, 
and has its distinguishing feature [35]. Interestingly, in the 
current study, we found that only p-PKCγ expression level 

was increased in inoculated rats, but not total PKCγ. Simi-
larly, some studies found that there was no upregulation of 
spinal PKCγ in a mouse model of CIBP [35, 36]. These 
results indicated that PKCγ participated in CIBP process-
ing through its phosphorylation. Intrathecal DAPTA could 
reduce mechanical allodynia with concomitant down-
regulation of spinal CCR5 and p-PKCγ expression at day 
15 after inoculation. Moreover, intrathecal injection of 
GF109203X could alleviate mechanical allodynia as well 
as decrease of spinal p-PKCγ expression level, but no influ-
ence on spinal CCR5 level. These findings indicated that 
CCR5/PKCγ signaling pathway was involved in the main-
tenance of CIBP.

Fig. 4   Intrathecal of 
GF109203X attenuated mechan-
ical allodynia and blocked 
PKCγ activation in CIBP rats. 
a Intrathecal GF109203 × (0.18 
and 0.36 μg) could dose-
dependently attenuate mechani-
cal allodynia at 15 days in 
inoculated rats. The peak effect 
was at the 1.5 h after intrathe-
cal administration (p < 0.01, 
Fig. 4a). (**p < 0.01 versus NS 
group. Data were expressed as 
the mean ±SEM, each group 
contained 8 rats.) b Intrathe-
cal of GF109203 × (0.36 μg) 
could significantly attenuate 
spinal p-PKCγ expression 
(p < 0.01). However, intrathecal 
administration of GF109203X 
had no effects on the expres-
sion of CCR5. Compared with 
sham rats, the expression of 
OX-42 was higher in NS group. 
Intrathecal DAPTA (10 μg) 
or GF109203 × (0.36 μg) 
could significantly attenuate 
spinal OX-42 expression level 
(p < 0.01). (▲▲p < 0.01 versus 
NS group, **p < 0.01 versus 
sham rats. Data were presented 
as mean ± SEM, each group 
contained four rats.)
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Recently, it is increasingly recognized that microglia 
plays a key role in the initiation and maintenance of CIBP 
[37, 38]. Inhibition of microglia activation by minocy-
cline could alleviate CIBP in rats [39]. Furthermore, inhi-
bition of microglia signaling pathway, such as CX3CR1/
p38 and TLR4/p38 signaling, could also attenuate CIBP 
[40, 41]. In the present study, we found CCR5 was 
mainly expressed in microglia, and intrathecal DAPTA 
or GF109203X could significantly attenuate microglial 
activation. These studies supported that spinal microglia 
might play an important role in CIBP. It was reported that 
RANTES was secreted mainly by neurons in the CNS 
[42]. So, we speculate that the RANTES-CCR5- PKCγ 
pathway may contribute to the maintenance of CIBP via 
neuronal-microglial interaction in the spinal cord.
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