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oxidative stress by decreasing the levels of ROS and MDA 
and increasing the expression of MnSOD. Co-administra-
tion of GW9662 also significantly decreased the EGCG-
mediated neuroprotective effect evidenced by the increase 
in oxidative stress and inflammatory markers. The thera-
peutic efficacy of EGCG in AD may be derived from the 
up-regulation of PPARγ mRNA and protein expressions.
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Abbreviations
AD	� Alzheimer’s disease
Aβ	� β-Amyloid peptides
APP	� Amyloid precursor protein
BACE1	� β-Site amyloid precursor protein-cleaving 

enzyme 1
PPARγ	� Peroxisome proliferator activated receptor-γ
PIG	� Pioglitazone

Introduction

Alzheimer’s disease (AD) is the most common cause of 
dementia characterized by cognitive and memory impair-
ment [1]. Increasing evidence indicates that excessive 
production and deposition of β-amyloid peptides (Aβ) as 
senile plaques, may initiate the process of neurodegenera-
tion in AD brains [1, 2]. Aβ is generated by the sequen-
tial cleavage of amyloid precursor protein (APP) via 
APP cleaving enzyme 1 (BACE1) and γ-secretase [3, 4]. 
BACE1 is crucial for Aβ generation and is a major drug 
target for AD [5, 6]. According to the amyloid cascade 
hypothesis, aggregated Aβ in the forms of Aβ oligomers 
plays a pivotal role in the pathogenesis of AD [7]. This 
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hypothesis indicates that Aβ oligomers which more read-
ily aggregates into amyloid plaques, can elicit a multistep 
cascade that disrupts neuronal homeostasis and causes 
the aberrant activation of kinases. These alterations in 
kinase activities ultimately result in neurofibrillary tangle 
formation and neuronal loss [8, 9]. Studies have shown 
that oxidative stress and inflammatory promote AD pro-
gression, and may play akey role in Aβ-mediated neuro-
toxicity [10–12].

The peroxisome proliferator activated receptor-γ 
(PPARγ) is a transcription factor with well-characterized 
functions in restoring insulin sensitivity in type 2 diabetes 
[3, 13]. It has been proved that PPARγ is able to protect 
cells from apoptosis through its strong anti-inflammatory 
and antioxidant effects [14, 15]. Accumulating evidence 
indicate that PPARγ agonists have been shown not only 
to repress oxidative stress and inflammation in AD model 
mice [16, 17] but also to decrease Aβ production through 
the negatively regulation of BACE1 both in  vivo and 
in  vitro [18, 19]. PPARγ deficiency has been shown to 
be involved in the pathological development of AD [20]. 
PPARγ-null mice showed cognitive impairment, along with 
increased BACE1level, NF-κB activity, oxidative stress 
and inflammation [21]. The pharmacological PPARγ ago-
nist, pioglitazone (PIG), which has been approved for the 
treatment of type 2 diabetes patients, can enhance memory 
ability in Tg2576 APP mouse model, and suppress BACE1 
expression and Aβ deposits [22]. These observations indi-
cate that PPARγ is a promising therapeutic target for the 
treatment of AD.

Current drugs for AD treatment show limited benefits 
and are unable to arrest the progression of the disease. Epi-
gallocatechin gallate (EGCG) is a highly active catechin 
found in green tea. Several lines of evidence shows that 
EGCG protects against Aβ and N-methyl-4-phenyl-1,2,3,6-
tetrahydroxynurenine (MPTP) induced neuronal degenera-
tion and injuries, exerting antioxidant, anti-inflammation, 
inhibition of tau phoshorylation and anti-apptopsis func-
tions [23–25]. EGCG can increase the levels of enzymes 
related to oxidative stress, such as heme oxygenase-1 (HO-
1) via PPARα activation in cultured cancer cells [26]. In 
addition, Dragicevic et  al. [27] demonstrate that EGCG 
reduces amyloid-induced mitochondrial dysfunction and 
Aβ production both in vitro and in vivo. However, the role 
of EGCG on PPARγ is still unknown, and precise mecha-
nism that EGCG suppresses Aβ production and its neuro-
protective function need to be further explored.

To determine the therapeutic potential of EGCG to 
AD, we investigated the inhibition of Aβ generation, anti-
oxidative stress and anti-inflammatory effects of EGCG 
in N2a-APP695 cells, a widely used in vitro model of Aβ 
production by amyloidogenesis pathway. The underlying 
mechanism involved in PPARγ was also studied.

Materials and Methods

Reagents

EGCG (E4143) purchased from Sigma-Aldrich (St. Louis, 
MO, USA) was of high purity (98.0%) as determined by 
HPLC analysis. PPARγ agonist, pioglitazone, was obtained 
from Ping Min Pharmaceutical Co., LTD (ShanDong, 
China), and GW9662, which is a specific PPARγ antago-
nist, was obtained from Sigma-Aldrich (St. Louis, MO, 
USA). DMEM/Opti-MEM (1:1, v/v) was obtained from 
Gibco Inc. (GrandIsland, NY, USA). DNA staining Hoechst 
33258 and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium-bromide (MTT) were from Invitrogen (Carlsbad, 
CA). Rabbit polyclonal anti-BACE1, rabbit polyclonal 
anti-β-C-terminal fragment (β-CTF), and rabbit monoclo-
nal anti-PPARγ antibody were obtained from Santa Cruz 
(Santa Cruz, CA). Rabbit polyclonal anti-cleaved Cas-
pase-3, Bax, NF-κBp65, phospho-p65 antibodies were Cell 
Signaling (Shanghai, China). Rabbit polyclonal anti-man-
ganese superoxide dismutase (anti-MnSOD) was obtained 
from Sigma-Aldrich (St. Louis, USA). β-Actin was 
obtained from Abcam (Cambridge, MA, USA). Secondary 
antibodies (HRP-conjugated goat anti-mouse, anti-rabbit) 
were obtained from Santa Cruz (Santa Cruz, CA).

Cell Culture and Treatments

Murine neuroblastoma N2a cells which were stably trans-
fected with the human APP695 were obtained from Profes-
sor Huaxi Xu (Xiamen University, China). N2a-APP695 
cells were maintained in DMEM/Opti-MEM (1:1, v/v; con-
taining 200 μg/ml G418.5% FBS, 100 units/ml penicillin, 
100  mg/ml streptomycin) and kept at 37 °C in humidified 
5% CO2. N2a/wt cells were incubated in DMEM media, 
supplemented with 10% fetal bovine serumin 5% CO2 at 
37 °C. The cellswere passaged every 3 days when growing 
up to 80% confluence. Some of the cells were incubated 
with varied doses of EGCG (5–100 μM) or PPARγ agonist 
pioglitazone (10 μM) for 24 h to detect the effect of EGCG 
in N2a-APP695 cells. In some experiments, to evaluate the 
mechanism of EGCG action, a PPARγ antagonist GW9662 
(30  μM) was co-administered with EGCG for the 24-h 
pretreatment.

Assessment of Cell Viability

MTT is absorbed into cells and transformed into formazan, 
which directly reflects the activity of mitochondria. Cells 
were plated in 96-well plates, cultured, and treated accord-
ing to the methods described above. A total of 50  μl of 
2 mg/ml MTT was added to 200 μl medium in each well. 
The final concentration of MTT was 0.5 mg/ml. Then the 
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medium containing MTT was removed from each well, and 
the formazancrystals were dissolved by addition of 150 μl 
dimethylsulfoxide (DMSO). Formazan absorbance was 
assessed at awavelength of 570 nm by a 550 Bio-rad micro-
plate reader. The experiment was repeated five times.

Hoechst 33258 Staining to Assess Cell Apoptosis

Cell apoptosis was assessed by nuclear DNA staining with 
Hoechst 33258. Neurons plated on coverslips were washed 
twice with PBS, fixed with 4% paraformaldehyde in PBS 
for 10 min, washed twice in PBS, and stained with Hoechst 
33258 (1 μg/ml) for 5 min. Stained cells were then washed 
twice with PBS and mounted under glass coverslips with 
Mowiol (slides). Nuclei were visualized using a fluorescent 
microscope. The percentage of Hoechst-positive cells was 
estimated in five randomly selected fields covering at least 
50 cells.

Aβ ELISA Assay

Conditioned media from cultured cells were collected. 
The concentrations of Aβ1–40 and Aβ1–42 were meas-
ured using a sandwich ELISA kit (Invitrogen, Carlsbad, 
CA) according to the manufacturer’s instructions. Aβ lev-
els were normalized to total protein content in the sam-
ples. Aβ1–40 and Aβ1–42 levels are expressed in pg/mg of 
protein. The optical densities in each well were measured 
using a plate reader at 450 nm.

Western Blot Analysis

The treated cells were washed with ice-cold PBS and then-
were lysed in cell lysis buffer containing (50 mM Tris-HCl, 
pH 6.8, 1  mM PMSF, 1  mM EDTA, 150  mM NaCl, 1% 
NP–40, 1  mM Na3VO4, 10  mM NaF, 1  µg/ml aprotinin, 
1 µg/ml pepstain, 1 µg/ml leupeptin). Then the cell lysates 
were centrifuged at 14,000g for 10  min at temperature 
4 °C. The protein concentrations in the supernatants were 
determined by the BCA kit (Pierce, Rockford, IL, USA). 
20 µg protein lysate were loaded on a SDS polyacrylamide 
gel (10%) and transferred onto polyvinylidene difluoride 
(PVDF) membrane. After blocking with TTBS (TBS with 
0.1% Tween-20) containing a 5% nonfat dry milk for 2 h. 
The membranes were incubated overnight at 4 °C with the 
appropriate primary antibodies, including anti-cleaved Cas-
pase-3 (1:500), anti-PPARγ (1:500), anti-MnSOD (1:500), 
anti-NF-κBp65 (1:500), anti-phospho-p65 (1:500) anti-
Bax (1:500), anti-BACE1 (1:500), anti-β-CTF (1:500), and 
β-actin (1:1000).

After washing three times for 10  min in TBS, mem-
branes were incubated for 1  h with HRP-conjugated goat 
anti-rabbit secondary antibody (Invitrogen, Eugene, OR) at 

room temperature. Following the post-secondary washes, 
immunolabeled proteins were detected using an ECL+ 
detection kit (Amersham Pharmacia Biotech). The blot was 
visualized by exposures to Kodak film and the densities of 
the bands were determined using Bandscan 5.0 software 
(ProZyme Inc, USA).

Real‑Time Quantitative PCR

Total RNA was isolated from cells using TRIzol reagent 
(Invitrogen). RNA concentration was measured using a 
spectrophomometer. RNA samples were then reverse-
transcripted into cDNA using Revert Aid™ First Strand 
cDNA Synthesis kit (Fermentas, St. Leon-Rot, Ger-
many). Specific primers were designed: BACE1: [for-
ward, 5′-GCATGATCATTGGTGGTATC-3′, reverse, 
5′-CCATCTTGAGATCTTGACCA-3′]; PPARγ: [forward, 
5′-CCACCAACTTCGGAATCA-3′, reverse, 5′-TTTGTG 
GATCCGGCAGTTA-3′]; GAPDH: [forward, 5′-ACA 
GCCGCATCTTCTTGTGC-3′, reverse, 5′-CACTTTGC 
CACTGCAAATGG-3′]. The relative mRNA levels of 
the individual samples were calculated using the 2−ΔΔCT 
method.

Detection of Reactive Oxygen Species (ROS)

Intracellular production of ROS was measured as described 
previously Sun et  al [31]. In brief, cells were incubated 
with 30 μMDCF-DA at 37 °C for 30 min and treated with 
modified Krebs solution (135  mM NaCl, 5.9  mM KCl, 
1.5  mM CaCl2, 1.2  mM MgCl2, 11.5  mM glucose, 11.6 
mM HEPES, pH 7.4) at 37 °C for another 30  min. After 
chilling on ice, cells were washed with ice-cold PBS in 
darkness, detached from the dishes, and re-suspended in 
10  mM EDTA containing PBS. The intracellular oxidant 
productions were measured. Mean intensity of DCF fluo-
rescence for randomly selected 3 fields were measured 
and analyzed by Image J 1.41o software (NIH, USA). The 
experiment was repeated five times.

Malondialdehyde Determination

Malondialdehyde (MDA) level was a marker of lipid perox-
idation and was assessed by high-performance liquid chro-
matography. Cells were homogenized and centrifuged, and 
the supernatants collected and stored on ice. Samples were 
hydrolyzed by boiling in diluted phosphoric acid. MDA, 
one of the low-molecular weight end products formed by 
lipid-peroxidation, reacted with thiobarbituricacid (TBA) 
to form MDA-TBA adducts which were eluted with metha-
nol-phosphate buffer to be quantified by spectrophotometry 
at 532 nm.
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Statistical Analysis

The data from all procedures were expressed as the means 
± SEM (n = 5 in every independent experiment). Statisti-
cal differences between values were estimated by analy-
sis of variance (ANOVA) followed by Duncan’s multiple 
range test. For all statistical tests p < 0.05 was considered 
significant.

Results

Effect of EGCG on the Survival of N2a Cells

N2a/wt and N2a-APP695 cells were incubated with EGCG 
at different doses (5–100 μM) for 24 h. Cell viability was 
measured using the MTT assay. For the N2a/wt cells, 
EGCG (5–100  μM) appeared not to alter cell viability 
(Fig. 1a). For the N2a/APP695 cells, cell survival increased 
in a dose-dependent manner following exposure to EGCG, 
from 10 μM onwards (p < 0.05), reaching a plateau at the 
concentration of 40  μM (p < 0.001, Fig.  1b). Therefore, 
40 μ MEGCG was selected as the optimal concentration for 
subsequent experiments.

It has been reported that pioglitazone (PIG), a special 
pharmacological PPARγ agonist, used to treat patients with 
type 2 diabetes, plays an important role in cell survival 
[28]. To better elucidate the neuroprotective mechanism of 
EGCG, PIG was used as a positive control. As shown in 
Fig.  1c, the cell viability of N2a/APP695 cells incubated 
with10 μM PIG was also obviously increased. To investi-
gate the influence of EGCG on apoptosis, Hoechst 33258 
staining was used to assess cell apoptosis. The apoptosis 
rate ofN2a/APP695 cells was higher than N2a/wt cells, 
however, EGCG treatment decreased the apoptosis of N2a/
APP695 cells (Fig. 1d).

EGCG Decreased Bax and Cleaved Caspase‑3 
Expressions

To further determine the effect of EGCG on apoptosis, the 
expressions of apoptosis-related proteins (Bax and cleaved-
caspase-3) were assessed by western blot analysis. In com-
parison to N2a/WT cells, N2a/APP695 cells showed a sig-
nificant elevation in Bax (p < 0.001) and cleaved caspase-3 
(p < 0.001) expressions. Interestingly, both EGCG (40 μM) 
and PIG (10 μM) significantly decreased the levels of Bax 
and cleaved caspase-3 (Fig. 2).

EGCG Reduced Aβ Level in N2a/APP695 Cells

The extracellular accumulation of Aβ in the form of 
plaques is a hallmark pathological feature of AD [1]. 

ELISA assay was used to determine the effect of EGCG 
treatment on Aβ level in N2a/APP695 cells. We found 
that Aβ1–40 (p < 0.001, Fig.  3a) and Aβ1–42 (p < 0.001, 
Fig. 3b) levels were significantly increased in N2a/APP695 
cells compared with N2a/wt cells. Interestingly, a lower 
levels of Aβ1–40 and Aβ1–42 were found in N2a/APP695 
cells incubated with both EGCG (p < 0.001 for Aβ1–40 
and Aβ1–42) and PIG (p < 0.01, p < 0.001 for Aβ1–40 and 
Aβ1–42 respectively) compared with the control-treated 
group (Fig.  3). These data indicate that EGCG may sup-
press the secretion of Aβ1–42 and Aβ1–40.

EGCG Suppressed the mRNA and Protein Expressions 
of BACE1 in N2a/APP695 Cells

BACE1 is the rate limiting enzyme for Aβ peptide gen-
eration and is a major drug target for AD. Real-time PCR 
(Fig. 4a) and western blot analysis (Fig. 4b, c) respectively 
revealed increased levels of BACE1 mRNA and protein in 
N2a/APP695 cells, in comparison with those in N2a/wt 
cells. In addition, pretreatment of N2a/APP695 cells with 
EGCG or PIG markedly attenuated the mRNA and protein 
expressions of BACE1 (Fig. 4).

EGCG Reduced β‑CTF Protein Level in N2a/APP695 
Cells

β-CTF is the soluble C-terminal fragment generated by 
cleavage of APP at the BACE-1 cleavage site, and is the 
direct precursor of Aβ. Western blot was used to deter-
mine the protein level of β-CTF and APP. As shown in 
Fig. 5a, b, the expressions of β-CTF (p < 0.001) and APP 
(p < 0.001) in N2a/APP695 cells were increased than that 
of N2a/WT cells. However, both EGCG (40 μM) and PIG 
(10 μM) significantly decreased the protein levels of β-CTF 
and APP in N2a/APP695 cells. Moreover, neither EGCG 
nor PIG treatment changed the level of APP protein in N2a/
APP695 cells (Fig. 5a, c). We also used western blot to fur-
ther explore the effect of EGCG on native APP production 
and procession in N2a/WT cells. As shown in (Fig. 5c–e) 
EGCG had no influence on the expressions of APP and 
β-CTF in N2a/WT cells. These results indicated that EGCG 
may inhibit the activity of BACE1 to reduce Aβ production 
in N2a/APP695 cells.

EGCG Increased PPARγ mRNA and Protein 
Expressions in N2a/APP695 Cells

To explore the mechanism(s) underlying the inhibi-
tory effect of EGCG on Aβ production, we investigated 
the expression PPARγ, an important transcription fac-
tor presented in the BACE1 promoter, reduces the activ-
ity of BACE1. As shown in Fig.  6, there was a distinct 



472	 Neurochem Res (2017) 42:468–480

1 3

reduction of PPARγ mRNA (p < 0.001, Fig. 6a) and pro-
tein (p < 0.001, Fig.  6b, c) levels in N2a/APP695 cells 
compared with N2a/WT cells and that of EGCGtreated-
N2a/APP695 cells was markedly increased in comparison 
with the levels of the control-treated group.

EGCG Inhibited Expression of BACE1 via PPARγ

In the result above, we found that 40  μM EGCG for24 h 
significantly regulated expressions of BACE1 and PPARγ, 
as well as level of secreted Aβ. To determine whether 

Fig. 1   Effects of epigallocatechin gallate (EGCG) on the cell via-
bility and apoptosis of N2a cells. a The cell viability was assessed 
by MTT reduction assay. N2a/wt cells were incubated with differ-
ent concentrations of EGCG (5–100 μM), and the cell viability was 
not changed. b EGCG increased N2a/APP695 cell viability in a 
dose-dependent manner, from 10 μM onwards, reaching a plateau at 
the concentration of 40  μM. c Both pioglitazone (PIG 10 μM) and 
EGCG (40  μM) significantly increased the cell viability of N2a/

APP695. d Hoechst 33258 Staining (×200) was used to assess cell 
apoptosis. The red arrow heads show nuclear fragmentation, indicat-
ing that cell apoptosis. e The percent of apoptosis was increased in 
N2a/APP695 cells in comparison to N2a/wt cells, however, EGCG 
(40 μM) treatment inhibited apoptosis in N2a/APP695 cells. The data 
are expressed as the mean ± SEM *p < 0.05, **p < 0.01, ***p < 0.001 
compared with the control group; ###p < 0.001 compared with N2a/
APP695 control group



473Neurochem Res (2017) 42:468–480	

1 3

PPARγ is involved in the effect of EGCG on the expres-
sion level of BACE1 protein in N2a/APP695 cells, the 
cells were incubated with the PPARγ antagonist GW9662 
(30 μM) 1 h prior to EGCG treatment for 24 h. As shown 
in Fig.  7, GW9662 pretreatment markedly reversed the 
EGCG-induced suppression of BACE1 mRNA (p < 0.05, 
Fig. 7a) and protein (p < 0.01, Fig. 7b, c) expressions com-
pared with the EGCG only treatment group. These results 
indicate that, EGCG may be a PPARγ agonist to enhance 
the transcription and translation of PPARγ, by suppressing 
the activity of BACE1 and inhibiting Aβ production.

EGCG Inhibited NF‑κB Activity in N2a/APP695 Cells

NF-κB is reported as a downstream molecule of PPARγ 
[29], and is a transcription factor known as a central 
regulator of inflammation. NF-κB activity was studied 
by western blot analysis, using antibodies against active 
subunitp-p65. As shown in Fig. 8, compared with that of 
N2a/wt cells, the protein level of p-p65 in N2a/APP695 
cells was higher, and that of EGCG-treated N2a/APP695 
cells was markedly decreased when in comparison with 

the level of the control-treated group, without affecting 
total expression of p65. The effect of EGCG was obvi-
ously blocked by GW9662, indicating the involvement of 
PPARγ signal transduction.

EGCG Attenuated Oxidative Stress in N2a/APP695 
Cells

Oxidative stress has been implicated in pathological pro-
gress of AD, and is associated with Aβ mediated neuro-
toxicity. To evaluate the antioxidant activity of EGCG, 
several biochemical and protein expression of oxidative 
stress markers were estimated. We detected an increase of 
ROS and MDA levels compared to N2a/wt cells in N2a/
APP695 cells (Fig.  9a, b). Moreover, we also observed 
notable decrease of MnSOD protein expression (Fig. 9c, 
d) in N2a/APP695 Cells, demonstrating an oxidative 
stress induction. As expected, EGCG treatment sig-
nificantly reduced ROS and MDA levels, and increased 
MnSOD protein expression, however, GW9662prevented 
EGCG’s effect (Fig. 9).

Fig. 2   EGCG decreased Bax and cleaved caspase-3 protein expres-
sions. a Western blot was used to detect the Bax and cleaved cas-
pase-3 protein expressions. b The corresponding histogram showed 
that both PIG and EGCG decreased the normalized level of Bax. c 
The corresponding histogram showed that both PIG and EGCG 

decreased the normalized level of cleaved caspase-3. The data are 
expressed as the mean ± SEM. ***p < 0.001 compared with the N2a/
wt control group; ##p < 0.01, ###p < 0.001 compared with the N2a/
APP695 control group
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Discussion

In our present experiment, we first demonstrated that 
EGCG attenuated Aβ generation in N2a/APP695 cells like 
the PPARγ agonist, pioglitazone, via suppressing transcrip-
tion and translation of BACE1, and that its effect was atten-
uated by PPARγ inhibitor GW9662. Intriguingly, EGCG 
significantly reinforced the activity of PPARγ by promoting 
its mRNA and protein expressions in N2a/APP695 cells. 
Moreover, EGCG also decreased pro-apoptotic protein 
(Bax, caspase-3) expressions, reduced anti-inflammatory 
agent NF-κB activity, and inhibited oxidative stress, and 
that its effect is likely mediated by PPARγ activation.

EGCG, derived from green tea, exerts a crucial role in 
protecting neuronal cells from β-amyloid induced neuro-
toxicity and oxidative injury [30, 31]. EGCG can signifi-
cantly promote anti-apoptotic molecule (Bcl-2) production, 
increase cell survival, and attenuate Aβ1–42-induced tau 
phosphorylation [32]. In the present study, we employed 
APP-transfected N2a cells to investigate the neuroprotec-
tive mechanisms of EGCG in  vitro. Consistent with pre-
vious studies [30, 32], herein, we revealed that EGCG 
increased cell viability in a concentration-dependent man-
ner and inhibited cell apoptosis in N2a/APP695 cells. Cas-
pase-3 cascade and Bax family members are key mediators 
for the apoptotic signaling transduction [33]. Our present 

Fig. 3   EGCG reduced Aβ 
level in N2a/APP695 cells. a 
Both PIG and EGCG decreased 
Aβ1–40 level; b both PIG and 
EGCG decreased Aβ1-42 level. 
The data are expressed as the 
mean ± SEM. ***p < 0.001 
compared with the N2a/
wt control group; ##p < 0.01, 
###p < 0.001 compared with the 
N2a/APP695 control group
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study demonstrated that incubation with EGCG for 24  h 
resulted in an apparently reduction of Bax and caspase-3 
expressions in N2a/APP695 cells.

Deposition of β-amyloid peptides as senile plaques, 
which closely correlates with cognitive function of AD 
patients, is one of the pathological hallmarks of AD [2]. 
The leading candidate explanation for the molecular basis 
of AD pathology is the amyloid cascade hypothesis [34]. 
This states that the Aβ protein initiates the disease process, 
activating downstream neurotoxic mechanisms includ-
ing oxidative stress, inflammation, dysregulation of tau 
and eventually cell apoptosis [35]. In this study, consistent 
with prior research conclusions [13, 36], N2a/APP695 cells 
show decreased cell viability, increased cell apoptosis as 
well as pro-apoptotic protein expressions, and higher level 
of secreted Aβ in comparison with N2a/wt.

Aβ peptides, existing as two main species, Aβ1–40 and 
Aβ1–42, derive from the sequential proteolysis of APP via 
BACE1, the canonical β-secretase, and γ-secretase [4]. 
BACE1initiates the amyloidogenic pathway by secreting 
the soluble APPβ fragment (sAPPβ) and generating the 
membrane bound C-terminal fragment β (β-CTF or C99) 
[6]. β-CTF is then cleaved by γ-secretase, generating the 
Aβ peptide. BACE1 appears to be the key enzyme for Aβ 
production, as BACE1-deficient mice do not generate Aβ 
[37]. Thus, BACE1 is an important drug target for AD [37, 
38]. Our current study reveals that the levels of BACE1 and 
β-CTF in N2a-APP695 cells are higher than those in N2a-
WTcells. EGCG treatment of N2a/APP695 cells decreased 

the generation of Aβ1–42 and Aβ1–40 by inhibiting tran-
scription and translation of BACE1, but did not change 
APP protein level. Interestingly, a previous study has been 
reported that EGCG can negatively regulated BACE1 
activity [39], however the underlying mechanism needs to 
be explored.

During the process of BACE1 transcriptional regulation, 
a number of transcription factor binding sites, including 
various inflammation-related transcription factors such as 
PPARγ, NF-κB and PGC-1are involved [40–42]. Regulat-
ing of Aβ production and metabolism by PPARγ has been 
explored in many recent studies [22]. The nuclear recep-
tor PPARγ is a newly recognized therapeutic target for 
the treatment of AD [20]. In AD models, the PPARγ ago-
nists were demonstrated to improve impaired memory and 
reduce BACE1 activity and Aβ generation [43]. In PPARγ-
null mice, the expression of the BACE1 increased, parallel-
ing the cognitive impairment as well as the development of 
inflammation in the cortex [21]. Some studies have shown 
that the binding site of PPARγ in the BACE1 promoter 
region is functional and that PPARγ has direct effects on 
BACE1 transcription and Aβ generation [3, 44]. Collec-
tively, these studies supported that PPARγ agonist may rep-
resent new drugs to treat AD by reducing Aβ generation.

PPARγ is a type II nuclear receptor whose primary 
action is to regulate lipid and energy metabolism in restor-
ing insulin sensitivity in type 2 diabetes. Clinical and 
epidemiological evidence suggest that type 2 diabetes is 
now a known risk factor for AD. Pioglitazone (PIG), the 

Fig. 4   EGCG suppressed the mRNA and protein expressions 
of BACE1 in N2a/APP695 Cells. a Real-time PCR revealed the 
BACE1mRNA level; b western blot revealed the BACE1protein 
level; c the corresponding histogram of BACE1normalized protein 

level. The data are expressed as the mean ± S.E.M. ***p < 0.001 
compared with the N2a/wt control group; #p < 0.05, ##p < 0.01, 
###p < 0.001 compared with theN2a/APP695 control group
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Fig. 5   EGCG reduced β-CTF protein level in N2a/APP695 cells. a 
Western blot was used to detect the β-CTF and APP protein expres-
sions; b the corresponding histogram indicted that both PIG and 
EGCG decreased β-CTF protein level; c neither EGCG nor PIG 
changed the level of APP protein in N2a/APP695 cells; d, e, and f 
western blot was used to further explore the effect of EGCG on native 

APP production and procession in N2a/WT cells. EGCG had no 
influence on the expressions of β-CTF (e) and APP (f) in N2a/WT 
cells. The data are expressed as the mean ± S.E.M. ***p < 0.001 com-
pared with the N2a/wt control group; ###p < 0.001 compared with the 
N2a/APP695 control group

Fig. 6   EGCG increased the 
mRNA and protein expressions 
of PPARγin N2a/APP695 cells. 
a Real-time PCR revealed the 
PPARγ mRNA level; b western 
blot revealed the PPARγ protein 
level; c the corresponding 
histogram of PPARγ normal-
ized protein level. The data are 
expressed as the mean ± S.E.M. 
***p < 0.001 compared with the 
N2a/wt control group; #p < 0.05, 
###p < 0.001 compared with the 
N2a/APP695 control group
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pharmacological PPARγ agonists, has been shown not only 
to suppress chronic cerebral inflammation in AD, but also 
to decrease Aβ1–42 level by inhibiting BACE1 expres-
sion [44, 45]. Consistently, our experiment indicated that 
PIG, used as a positive control, reduced BACE1 mRNA 
and protein expressions, paralleling with the decreased Aβ 
generation in N2a/APP695 cells. Notably, EGCG treatment 
of N2a/APP695 cells dramaticlly resulted in up-regulation 
of PPARγ mRNA and protein expressions. As expected, 
GW9662, an inhibitor of PPARγ, significantly blocked the 
beneficial role of EGCG on BACE1 expression. Thus, we 
can conclude that EGCG’s inhibitory effect on BACE1 may 
be mediated by PPARγ activation, which resulted in reduc-
tion of BACE1 expression and Aβ levels.

In addition to repressing Aβ production, due to its anti-
inflammation and antioxidant functions, PPARγ may also 
regulate different aspects of AD [46–48]. For example, 

PPARγ acts as a key regulator of a broad array of anti-
inflammatory factors, i.e., IL-6, IL-2, iNOS, NF-κ Band 
Cox-2 [48]. Of these factors, NF-κB is known as a central 
regulator of inflammation, to stimulate apoptotic signal-
ing, and its activity is tightly regulated by PPARγ [47, 49]. 
Pascual et  al. [49] revealed that PPARγ might exert anti-
inflammatory effects by interfering with NF-κB activity 
innerve cells. Interestingly, a previous study indicates that 
the transcription factor NF-κB can also positively regu-
late BACE1 transcription, as a downstream molecule of 
PPARγ [12]. As mentioned above, EGCG can enhance 
the expression of PPARγ, therefore, we hypothesize that 
EGCG protects against inflammation by decreasing NF-κB 
activity. As expected, EGCG attenuates phosphorylation of 
NF-κB p65 and this effect is prevented by PPARγ antago-
nist GW9662. Moreover, as illustrated in the previous data, 
EGCG has also been shown to suppress inflammatory 
mediators including IL-6, IL-2 and NF-κB [50]. This indi-
cates that, not only PPARγ but also NF-κB may be involved 
in EGCG’s regulation on BACE1.

Evidence suggests that oxidative stress is a promi-
nent early feature of AD and plays an important role in 

Fig. 7   PPARγ antagonist GW9662 blocked the inhibitive role of 
EGCG on BACE1mRNA and protein expressions. a Real-time 
PCR revealed that GW9662 prevented EGCG induced the reduc-
tion of BACE1 mRNA level; b western blot and c the correspond-
ing histogram revealed that the decreased protein level of BACE1 
by EGCG was reversed by GW9662. The data are expressed as the 
mean ± S.E.M. ***p < 0.001 compared with the N2a/wt control 
group; ##p < 0.01, ###p < 0.001 compared with theN2a/APP695 con-
trol group; +p < 0.05, ++p < 0.01 compared with EGCG treated group

Fig. 8   EGCG inhibited NF-κB activity in N2a/APP695 cells. a 
Western blot and b the corresponding histogram revealed that the 
level of p-p65 was significantly reduced in EGCG treated group com-
pared to N2a/APP695 control group, without affecting total level of 
p65. The effect of EGCG was obviously blocked by GW9662. The 
data are expressed as the mean ± S.E.M. ***p < 0.001 compared 
with the N2a/wt control group; ###p < 0.001 compared with theN2a/
APP695 control group; +++p < 0.001 compared with EGCG treated 
group
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amyloidogenesis and Aβ deposition [51]. Aβ induced 
neurotoxicity is mediated by oxidative stress and keep 
down oxidative stress processes can improve neurodegen-
eration in AD [7, 9]. Oxidative stress is due to the imbal-
ance between ROS and anti-oxidative system. MnSOD is 
a possible antioxidant defense system that can scavenge 
ROS to prevent cell damage, and MDA is the marker of 
lipid peroxidation [10]. Interestingly, a previous study 
has shown that EGCG can inhibit oxidative stress via 
increased HO-1 expression involvement of PPARα acti-
vation in cultured cancer cells [26]. Herein, we inves-
tigated the role of EGCG on oxidative stress and found 
that EGCG evidently enhance MnSOD protein expres-
sion, decreased the level of MDA production and the 
accumulation of ROS. However, the PPARγ antagonist, 
GW9662 blunts the EGCG’s effect above. Increasing evi-
dence has shown PPARγ activation diminished the dam-
age of oxidative stress [17, 28]. A previous data indicate 
that some inflammatory mediators such as NF-κB, IL-1β 
and IL-6 may involve in PPARγ-mediated antioxidant 
effect [28]. Additionally, it has been reported that EGCG 
could protect cardiomyocytes from doxorubicin-induced 
oxidative stress by attenuating ROS production [30, 31]. 
Consistently, our present study reveals that EGCG inhibit 

oxidative stress in N2a/APP695 cells, which was obvi-
ously blocked by GW9662, indicating the involvement of 
PPARγ signal transduction.

In conclusion, in this study, we investigated the neu-
roprotective effects and potential molecular mechanisms 
of EGCG in cultured N2a/APP695. For the first time, we 
present the evidence that EGCG significantly suppresses 
BACE1 mRNA and protein expressions as well as the 
subsequent Aβ production, and reduces inflammation, 
oxidative stress and eventually cell apoptosis. These find-
ings provide new insights into the neuroprotective role of 
EGCG and its possible beneficial therapeutic value for AD 
pathology.
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