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Introduction

Following exposure to a range of stressful stimuli, cells 
exhibit a highly conserved heat shock (stress) response dur-
ing which protein production is inhibited and a set of heat 
shock proteins (Hsps) is induced [1–3]. Hsps repair stress-
induced protein damage and protect cells against future 
stress [4, 5]. Stress-inducible Hsp members are expressed 
in response to physiological and environmental stimuli to 
combat protein misfolding and aggregation [5–9]. Up-regu-
lation of Hsps has been proposed as a potential therapeutic 
strategy for neurodegenerative diseases, which have been 
characterized as protein misfolding disorders [10–18]. Hsps 
represent a line of defense against misfolded, aggregation-
prone proteins [13, 16, 19].

The HSPA (HSP70) is a multi-gene family with stress-
inducible HSPA1A (HSP70-1) being the most abundant and 
widely studied member [20–32]. Comparatively little atten-
tion has been given to stress-inducible HSPA6 (HSP70B′) 
which is present in the human genome, and not found in 
the genomes of mouse and rat [33–38]. Hence current ani-
mal models of neurodegenerative diseases lack a member 
of the HSPA family that is present in the human genome. At 
present, few effective therapies for human neurodegenera-
tive diseases have been identified despite numerous clinical 
trials [19, 39, 40]. Therapeutic compounds that have been 
identified and appeared promising in animal models of neu-
rodegenerative diseases, have repeatedly failed to translate 
to effective treatments in human clinical settings. This has 
led to concerns about deficiencies in current animal models 
of human neurodegenerative diseases.

Following thermal stress, HSPA6 localized to nuclear 
speckles, which are enriched in RNA splicing factors (iden-
tified by the marker protein SC35), and to the granular com-
ponent of the nucleolus that is involved in rRNA processing 
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Millipore). Western blots representative of three experimen-
tal repeats are shown.

Heat Shock Treatment

Differentiated human neuronal SH-SY5Y cells transfected 
with YFP-HSPA6 were incubated under control conditions 
(37 °C) or heat shocked at 43 ± 0.1 °C for 20 min in a circu-
lating water bath and then transferred to a recovery incuba-
tor at 37 °C with 5 % CO2 for 20 min. Cells were treated 
with the indicated nanomolar concentration of triptolide dis-
solved in DMSO in serum-free DMEM.

Immunocytochemistry

YFP-HSPA6 transfected human neuronal SH-SY5Y cells 
were harvested at the indicated time points, with time zero 
being the commencement of heat shock at 43 °C. Cells were 
fixed with 4 % paraformaldehyde in phosphate-buffered 
saline (PBS; pH 7.4) at room temperature for 30 min and 
then permeabilized with 0.1 % Triton-X 100 and 100 mM 
glycine in PBS for 30 min. After washing with PBS, cells 
were blocked with 5 % fetal bovine serum (FBS) in PBS for 
1 h, followed by incubation with primary antibodies in 1 % 
FBS in PBS overnight at 4 °C. Primary antibodies specific 
for nuclear speckles (SC35, ab11826, Abcam) and the gran-
ular component of the nucleolus (nucleophosmin, ab37659, 
Abcam) were used. Cells were subsequently washed and 
incubated with fluorescently labeled cy3 and cy5 donkey 
anti-mouse and donkey anti-rabbit secondary antibodies 
for 2 h at room temperature (Alexa Fluor®, Thermo Fisher 
Scientific, MA, USA). The cells were mounted and viewed 
using a Quorum Wave FX-X1 spinning disc confocal system 
(Quorum Technologies, Ontario, Canada) using a 63X oil 
objective. Images were captured via a Hamamatsu electron-
multiplying charge-coupled device camera. For Fig. 3b, 100 
cells were sampled, and the average counts of three inde-
pendent experiments were used for statistical analysis. Data 
was expressed as the mean ± the standard deviation of the 
means. An unpaired Student’s t test of unequal variance was 
used to assess significant differences (*p < 0.05).

Results

The Transcriptional Inhibitor Triptolide is Effective at 
Nanomolar Concentrations

Triptolide has recently been characterized as a fast-acting 
transcriptional inhibitor [53, 56]. It induces the hyper-phos-
phorylation of the carboxyl-terminal domain of the RPB1 
subunit of RNA polymerase II, which targets it to the pro-
teasome for degradation [57–59]. Differentiated human 

and ribosomal subunit assembly (identified by the marker 
protein nucleophosmin) [41–47]. HSPA6 also localized to 
the periphery of nuclear speckles (‘perispeckles’) that are 
sites of transcription factories [48–52]. The present study 
investigated the effect of triptolide, a fast-acting transcrip-
tional inhibitor that is effective at nanomolar concentra-
tions [53]. Results demonstrated that triptolide disrupted 
the heat-induced targeting of HSPA6 to perispeckles, how-
ever the localization of HSPA6 to nuclear speckles and the 
nucleolus was not affected. Current mouse and rat models 
of neurodegeneration, that lack HSPA6, are missing a fea-
ture of the heat shock response exhibited by human neuro-
nal cells that is associated with transcription recovery after 
stress.

Materials and Methods

Growth of Human Neuronal SH-SY5Y Cells

Human neuronal SH-SY5Y cells stably expressing YFP-
tagged HSPA6 (HSP70B′) were grown in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10 % 
fetal bovine serum (FBS), and cultured at 37 °C in a humidi-
fied 5 % CO2 atmosphere. Plasmid preparation, transfection, 
and selection of SH-SY5Y cells constitutively expressing 
eYFP-HSPA6 were carried out as previously described [54]. 
Transfected cells were plated in 10 cm dishes at 5 × 106 cells 
per cm2 for Western blotting, and onto glass coverslips at 
5 × 104 cells per cm2 for immunocytochemistry. Differen-
tiation of neuronal cells was induced with 10 μM all-trans-
retinoic acid under serum-free conditions at 37 °C for 72 h 
[55].

Western Blotting

Differentiated human neuronal SH-SY5Y cells were har-
vested and solubilized in Laemmli buffer and boiled for 
15 min. Protein quantitation was carried out using the 
RC DC Protein Assay Kit (Bio-Rad Laboratories, Her-
cules, CA, USA). Equal loadings of 50 μg of protein per 
lane were separated by 7 % SDS-PAGE and 4 % stacking 
gel, using the Mini-PROTEAN 3 Electrophoresis Module 
Assembly (Bio-Rad Laboratories) before transfer to nitro-
cellulose membranes. Western blotting was carried out with 
primary antibodies specific for RPB1 (ab140509, Abcam, 
Cambridge, UK), and β-tubulin (MAB3408, EMD Mil-
lipore, Billerica, MA, USA) as loading control. Second-
ary antibodies, peroxidase-conjugated donkey anti-goat 
(Jackson ImmunoResearch Labs, West Grove, PA, USA) 
and goat anti-mouse (A4416, Sigma Aldrich, St. Louis, 
MO, USA), were detected using enhanced chemilumines-
cence (Luminata™ Classico Western HRP Substrate, EMD 
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targeted to perispeckles located at the periphery of nuclear 
speckles which have been characterized as sites of transcrip-
tion factories (perispeckles, indicated by arrows clustered 
around SC35-positive nuclear speckles which are identified 
by arrowheads) [48–52].

Triptolide Disrupted the Targeting of YFP-HSPA6 to 
Perispeckles in Human Neuronal Cells

The localization of HSPA6 to perispeckles, that have been 
characterized as sites of transcription factories, suggested 
that HSPA6 may be involved in the recovery of transcrip-
tion following stress in human neuronal cells. As shown 
in Fig. 3a, triptolide disrupted the targeting of YFP-tagged 
HSPA6 to the periphery of nuclear speckles (perispeck-
les). YFP-tagged HSPA6 localized to perispeckles in heat-
stressed neuronal cells (indicated by arrows in the upper 
panels of Fig. 3a). However, treatment with triptolide dis-
rupted this association (indicated by the lack of arrows in 
the lower panels of Fig. 3a at 3 and 6 h). Localization of 
YFP-HSPA6 to nuclear speckles and the granular compo-
nent of the nucleolus were not affected (indicated by single 
and double arrowheads, respectively).

Disruption of the localization of YFP-HSPA6 to the 
periphery of nuclear speckles during the recovery period 
from thermal stress was confirmed as shown in Fig. 3b. In 
the absence of triptolide, 66 ± 1 % of cells demonstrated 
YFP-HSPA6 targeting to perispeckles, however only 4 ± 1 % 
of cells demonstrated YFP-HSPA6 localization in the trip-
tolide condition at 3 h. The percentage of cells positive for 
YFP-HSPA6 at perispeckles was 63 ± 1 % (no triptolide) 
and 2 ± 1 % (triptolide condition) at 6 h. These results dem-
onstrated that nanomolar concentrations of the transcription 
inhibitor, triptolide, disrupted YFP-tagged HSPA6 local-
ization at the periphery of nuclear speckles. To determine 
whether the association of YFP-HSPA6 with perispeckles 
could be restored following triptolide treatment, triptolide 
was washed out of cells at 3 h and replaced with serum-free 
media. Washout of triptolide at 3 h after heat shock did not 
restore localization of YFP-tagged HSPA6 to the periphery 
of nuclear speckles (Fig. 3c).

Discussion

Available models for the study of neurodegenerative disease 
range from cell culture and brain slice systems to whole 
animals. Cell culture allows the study of complex relations 
between molecular events and cellular physiology [62]. 
Human neuronal SH-SY5Y cells have been used as a model 
to study neurodegenerative disorders, including Alzheimer’s 
disease and Parkinson’s disease [63–68]. SH-SY5Y cells 
can be differentiated to produce neuronal-like phenotypes 

neuronal SH-SY5Y cells stably transfected with YFP-
HSPA6 were treated with triptolide at nanomolar concen-
trations ranging from 50 to 500 nM. As demonstrated by 
Western blotting in Fig. 1a, 100 nM triptolide reduced levels 
of RPB1, the large subunit of RNA polymerase II. The time 
course of the reduction of RPB1 by 100 nM triptolide is 
shown in Fig. 1b. These observations led to the selection of 
100 nM triptolide for the investigation of the effect of this 
transcriptional inhibitor on localization of YFP-HSPA6 to 
stress-sensitive sites in differentiated human neuronal cells.

Localization of YFP-HSPA6 to Nuclear Structures 
Following Thermal Stress in Differentiated Human 
Neuronal Cells

YFP-tagged HSPA6 localized to nuclear components fol-
lowing heat shock and recovery at 37 °C, as shown in 
Fig. 2. YFP-tagged HSPA6 associated with nuclear speck-
les, which were identified using the nuclear speckle marker 
protein SC35 (indicated by arrowheads in Fig. 2) [60, 61]. 
Nuclear speckles are enriched with splicing factors that are 
involved in the processing of mRNA [46]. YFP-HSPA6 also 
localized to the granular component of the nucleolus, identi-
fied using the marker protein nucleophosmin (indicated by 
double arrowheads in Fig. 2) [45]. The granular component 
is engaged in ribosomal RNA processing and ribosomal 
subunit assembly [42, 44, 45].

As shown in Fig. 2, in the magnified areas of the lower 
two panel sets, YFP-tagged HSPA6 was subsequently 

Fig. 1 Nanomolar concentrations of triptolide decreased levels 
of RPB1, the large subunit of RNA polymerase II, in differentiated 
human neuronal SH-SY5Y cells. a Western blot showing the effect of 
50–500 nM triptolide on RPB1 levels following 3 h of incubation. b 
Time course of the effect of 100 nM triptolide on RPB1. β-tubulin was 
employed as the loading control
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is strictly inducible and does not exhibit detectable levels of 
endogenous, basal expression in unstressed cells [33, 38].

The targeting of Hsps to specific intracellular structures 
identifies stress-sensitive sites in neuronal cells and suggests 
that Hsps facilitate recovery processes following exposure 
to stress. Nuclear speckles are enriched in RNA splicing 
factors [41, 43, 46]. In an attempt to conserve energy and 
enhance survival, cellular metabolism is down regulated 
following thermal stress [3]. RNA splicing is inhibited fol-
lowing exposure to heat shock [78–81]. Introns are absent 
from stress-inducible heat shock genes, hence they are not 
affected by stress-induced inhibition of RNA splicing. Hsps 
contribute to the recovery of the splicing process [78, 82, 
83]. This is accomplished through facilitating the recogni-
tion of pre-mRNA 5′ splice sites by the splicesome [83]. The 

[66, 69–71]. The present study employed retinoic acid, 
which is an endogenous signaling molecule for neuronal 
differentiation during in vivo development of the nervous 
system [72–74]. SH-SY5Y cells, differentiated with retinoic 
acid, develop long bipolar “neuronal-like” processes [75] 
and express biochemical markers of neuronal differentiation 
[62, 63, 66, 68, 76, 77]. Since the HSPA6 gene is present in 
the human genome, SH-SY5Y neuronal cells are an appro-
priate model to investigate this little studied member of the 
HSPA family, which is not present in mouse and rat models 
of neurodegenerative diseases, in order to explore whether 
HSPA6 exhibits features not observed for the widely studied 
HSPA1A. This could reveal features of the cellular stress 
response that are lacking in current animal models of neuro-
degenerative diseases due to the absence of HSPA6, which 

Fig. 2 Association of YFP-
tagged HSPA6 protein with 
nuclear structures in differen-
tiated human neuronal cells 
following thermal stress. YFP-
HSPA6 co-localized with SC35, 
a marker of nuclear speckles 
(arrowhead), and with nucleo-
phosmin, which identified the 
granular component of the 
nucleolus (double arrowhead). 
Subsequently, targeting was 
observed of YFP-tagged HSPA6 
to perispeckles located at the 
periphery of nuclear speckles 
(arrows perispeckles; arrow-
heads SC35-positive nuclear 
speckles). The boxed areas in 
merged panels correspond to 
magnified areas that are shown 
to the right of each panel. Time 
in hour equals time after the 
start of heat shock. Scale bars 
equal 10 μm (panel images), 
and 1 μm (magnified insets)
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Fig. 3 Triptolide disrupted the targeting of YFP-tagged HSPA6 to 
perispeckles. a Upper panel following exposure to thermal stress, 
YFP-tagged HSPA6 localized to nuclear speckles (arrowheads), the 
granular component of the nucleolus (double arrowheads), and subse-
quently the periphery of nuclear speckles (perispeckles, indicated by 
arrows). Lower panel application of 100 nM triptolide disrupted heat-
induced YFP-HSPA6 targeting to perispeckles (indicated by the lack 
of arrows at 3 and 6 h). b Cells positive for YFP-HSPA6 localization 
to nuclear structures, with or without triptolide treatment. YFP-tagged 

HSPA6 was targeted to perispeckles in 66 % ± 1 % of cells at 3 h, 
and 63 % ± 1 % at 6 h. However, following triptolide treatment, only 
4 ± 1 % and 2 ± 1 % of heat shocked cells demonstrated YFP-HSPA6 
localization to perispeckles at 3 and 6 h, respectively (*p < 0.05). Data 
were expressed as the mean ± standard deviation of the means. c Wash-
out of triptolide at 3 h did not restore the localization of YFP-HSPA6 
to perispeckles at 4, 5, and 6 h. Time in hour equals time after the start 
of heat shock. Scale bars equal 10 μm
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of transcription factories [48–52], indicates that these criti-
cal nuclear structures are stress-sensitive. The present study 
demonstrates that administration of triptolide disrupted the 
targeting of HSPA6 to perispeckles, suggesting that HSPA6 
may be associated with transcriptional recovery in differen-
tiated human neuronal cells after cellular stress. Our ongoing 
experiments indicate that knockdown of HSPA6 sensitizes 
differentiated human neuronal SH-SY5Y cells to heat stress. 
It has been reported that HSPA6 knockdown also sensitizes 
human colon cancer cells to heat shock [34]. The HSPA6 
gene is found in humans, and not in the mouse and rat [33, 
37, 38]. Hence, current animal models of neurodegenerative 
diseases lack a member of the HSPA family that exhibits 
the feature of stress-induced targeting to perispeckles. We 
have recently compared the dynamics of the association 
of HSPA6 and HSPA1A with nuclear structures in differ-
entiated human neuronal cells using fluorescence recovery 
after photobleaching (FRAP) [93]. The stress-induced asso-
ciation of HSPA6 with perispeckles displayed the great-
est dynamism compared to the interaction of HSPA6 or 
HSPA1A with other stress-sensitive nuclear structures [93]. 
The presence in HSPA6 in the human genome could provide 
differentiated neuronal cells with a highly dynamic mecha-
nism for transcriptional recovery after stressful stimuli.
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