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are evident in the APPswe/PSEN1dE9 mouse prior to amy-
loid plaque deposition, including altered glucose metabo-
lism, hampered glutamine processing and mitochondrial 
dysfunctions.
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Abbreviations
ACSF	 �Artificial cerebrospinal fluid
AD	� Alzheimer’s disease
GS	� Glutamine synthetase
M	� Molecular ion
MCL	� Molecular carbon labeling
PAG	� Phosphate-activated glutaminase
PDH	� Pyruvate dehydrogenase
TG	� Transgene

Introduction

Alzheimer’s disease (AD) is a complex neurodegenera-
tive disorder causing progressive deterioration of cogni-
tive functions leading to dementia. A molecular hallmark 
of AD is cerebral accumulation of amyloid β-peptide and 
further deposition in amyloid plaques. The formation 
of amyloid plaques is regarded as a main factor of AD 
pathology and has been associated with several cerebral 
complications including inflammation, oxidative stress 
and mitochondrial dysfunction [1, 2]. Alterations in cere-
bral glucose metabolism have been observed in individu-
als prone to familial AD before manifestation of amyloid 
plaques, suggesting that changes in brain energy metabo-
lism might be causative of AD development [2–4]. Yet, 

Abstract  Alterations in brain energy metabolism have 
been suggested to be of fundamental importance for the 
development of Alzheimer’s disease (AD). However, spe-
cific changes in brain energetics in the early stages of AD 
are poorly known. The aim of this study was to investigate 
cerebral energy metabolism in the APPswe/PSEN1dE9 
mouse prior to amyloid plaque formation. Acutely isolated 
cerebral cortical and hippocampal slices of 3-month-old 
APPswe/PSEN1dE9 and wild-type control mice were incu-
bated in media containing [U-13C]glucose, [1,2-13C]acetate 
or [U-13C]glutamine, and tissue extracts were analyzed 
by mass spectrometry. The ATP synthesis rate of iso-
lated whole-brain mitochondria was assessed by an on-
line luciferin-luciferase assay. Significantly increased 13C 
labeling of intracellular lactate and alanine and decreased 
tricarboxylic acid (TCA) cycle activity were observed from 
cerebral cortical slices of APPswe/PSEN1dE9 mice incu-
bated in media containing [U-13C]glucose. No changes in 
glial [1,2-13C]acetate metabolism were observed. Cerebral 
cortical slices from APPswe/PSEN1dE9 mice exhibited a 
reduced capacity for uptake and oxidative metabolism of 
glutamine. Furthermore, the ATP synthesis rate tended to be 
decreased in isolated whole-brain mitochondria of APPswe/
PSEN1dE9 mice. Thus, several cerebral metabolic changes 
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Animals

Transgenic mice carrying mouse/human amyloid precur-
sor protein with the Swedish mutation and deletion of exon 
9 of human presenilin-1 (APPswe/PSEN1dE9 mice) were 
originally generated by D. Borchelt and J. Jankowsky at 
Johns Hopkins University, Baltimore, MD, USA [5]. Mice 
for this study were obtained from a colony at the Univer-
sity of Eastern Finland. The mice were practically of pure 
C57Bl/6J background after more than 15 generations of 
backcrossing to this strain. Young adult (3 months) male 
APPswe/PSEN1dE9 mice and wild-type control littermates 
were used in these experiments. The animals were kept in 
humidity and temperature controlled facility, with 12/12 h 
light/dark cycle with free access to water and chow. All 
experiments were approved by the Danish National Ethics 
Committee and were performed according to the European 
Convention ETS 123 of 1986.

Brain Slice Preparation and Incubations

Animals were euthanized by cervical dislocation and decapi-
tated. The brain was removed and submerged in ice-cold arti-
ficial cerebrospinal fluid (ACSF), containing in mM: NaCl 
128, NaHCO3 25, D-glucose 10, KCl 3, CaCl2 2, MgSO4 
1.2, KH2PO4 0.4, pH 7.4. The cortices and hippocampi 
were dissected and sliced (350 µm) using a McIlwain tissue 
chopper (The Vibratome Company, O’Fallon, MO, USA). 
Two cortical or six hippocampal slices were placed in each 
chamber and allowed to recover from slicing, by incubation 
in ACSF for 60  min. Subsequently, the slices were incu-
bated for 60 min in ACSF (without 10 mM D-glucose) con-
taining either 5 mM [U-13C]glucose, 5 mM [1,2-13C]acetate 
and 5 mM D-glucose or 1 mM [U-13C]glutamine and 5 mM 
D-glucose. The incubations were terminated by transfer-
ring slices to ice-cold 70 % ethanol. The slices were soni-
cated, centrifuged (20,000g × 20  min) and the supernatant 
removed. Pellets were saved for protein determination 
(Pierce method) while the supernatant was lyophilized and 
reconstituted in water for determination of 13C labeling of 
metabolites and quantification of amino acids, by GC-MS 
and HPLC analysis, respectively.

Gas Chromatography Mass Spectrometry (GC-MS) 
Analysis

Aqueous extracts of brain slices were acidified, to pH 1–2, 
with HCl and evaporated to dryness under nitrogen flow. 
Organic extraction was carried out twice, using 96 % etha-
nol and benzene, with evaporation to dryness under nitrogen 
flow between the two extractions. TCA cycle intermedi-
ates and amino acids in the samples were derivatized using 
N-tert-butyldimethylsilyl-N-methyl-trifluoroacetamide in 

specific changes in AD brain energetics prior to amyloid 
plaque manifestation are poorly known. Accordingly, 
we decided to investigate if alterations in brain energy 
metabolism were present before amyloid plaque forma-
tion in the widely used AD mouse model, the APPswe/
PSEN1dE9 mouse.

This mouse model of AD expresses two familial AD 
mutations causing an aggressive formation of insoluble 
amyloid plaques in the brain [5]. The disease progression in 
these mice is well characterized. The first amyloid plaques 
develop around 4 months of age [6], while memory impair-
ment manifests around 12 months of age [7–9]. In addition, 
these mice show an epileptic phenotype and preterm mortal-
ity that peaks around 3 months of age [10].

Glucose is the main energy substrate of both neurons 
and glial cells. Hampered cerebral glucose utilization is 
associated with cognitive dysfunctions [4]. Alterations in 
glycolysis and oxidative metabolism have been reported 
in the AD brain [2, 3]. Neurons and glial cells function in 
tight cooperation in the brain, a prime example being the 
glutamate-glutamine cycle [11]. Released neurotransmitter 
glutamate is mainly taken up by astrocytes and converted 
into glutamine, which is subsequently transported back to 
the neurons. Glutamine is deamidated into glutamate in the 
neuron, and the cycle is thereby complete. The glutamate-
glutamine cycle is linked to cellular energy metabolism 
as glutamate can be converted into α-ketoglutarate and 
serve as substrate for the tricarboxylic acid (TCA) cycle. 
To investigate whether glucose and glutamine metabolism 
could be impaired prior to amyloid plaque manifestation, 
we incubated acutely isolated brain slices from 3-month-
old APPswe/PSEN1dE9 mice with different 13C labeled 
energy substrates.

The main production of ATP takes place by oxidative 
phosphorylation in mitochondria. It has been proposed that 
malfunction of cerebral mitochondria plays a major role in 
the metabolic changes observed in the AD brain [2, 12, 13]. 
To elucidate if mitochondria are affected prior to the devel-
opment of amyloid plaques in the brain of the APPswe/
PSEN1dE9 mouse, the ATP production rate of isolated brain 
mitochondria was assessed.

Materials and Methods

Isotopes and Chemicals

[U-13C]glucose (99 %) and [U-13C]glutamine (99 %) were 
purchased from Cambridge Isotope Laboratories (Tewks-
bury, MA, USA) and [1,2-13C]acetate (99 %) was purchased 
from ISOTEC® (Miamisburg, OH, USA). All other chemi-
cals used were of the purest grade available from commer-
cial sources.
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fraction was rinsed with two subsequent centrifugations 
(18,000g × 5 and 14,000g × 5 min) by suspending the mito-
chondria in isolation buffer and discarding the supernatant 
after each centrifugation. The mitochondrial pellet was re-
suspended in isolation buffer and the amount of protein 
was determined (Bradford method). The ATP synthesis 
assay measures luminescence from the reaction of ATP and 
luciferin, catalyzed by luciferase, using a NOVOstar plate 
reader (BMG Labtech, Ortenberg, Germany). The isolated 
mitochondria were diluted in respiration buffer, containing 
in mM: sucrose 250, K2HPO4 15, MgSO4 2, EDTA 0.5 and 
0.5 % BSA (fatty acid free), pH 7.2 and 2.5 µg of protein 
were added to each well. The wells contained pyruvate and 
P1,P5-diadenosine pentaphosphate in final concentrations 
of 5 mM and 10 µM, respectively. During the measurement 
period, three injections were performed: firstly a luciferin-
luciferase cocktail was injected, to establish the background 
luminescence. Following, 2 mM ADP in combination with 
2.5  mM malate (final concentrations), were injected and 
finally 250 µM ATP was injected, as an internal standard for 
determination of the produced amount of ATP. The appa-
ratus and suspensions were preheated to 28 °C for optimal 
luciferin-luciferase response. The results are presented as 
the rate of ATP synthesis in nmol/(min*mg).

Statistical Analysis

Data are presented as mean ± standard error of the mean 
(SEM). Significant outliers were identified by Grubbs’ test 
(α = 0.05). Student’s unpaired t test was employed to test 
if differences were statistically significant. The signifi-
cance level was set at p < 0.05 and is indicated with a single 
asterisk.

Results

Amino Acid Amounts in Brain Slices of APPswe/
PSEN1dE9 Mice

We observed no significant differences between APPswe/
PSEN1dE9 and wild-type control mice in amino acid 
amounts (glutamine, glutamate, aspartate, GABA and ala-
nine) in extracts of cerebral cortical or hippocampal slices 
incubated in media containing [U-13C]glucose (Fig. 1a, b) 
or [1,2-13C]acetate (data not shown). However, changes in 
amino acid contents were found between cerebral cortex 
slices of wild-type control and APPswe/PSEN1dE9 mice 
incubated in media containing [U-13C]glutamine (Fig. 1c). 
Significantly lower levels of glutamine (40 %) and aspartate 
(31 %), and a tendency towards lower glutamate (p = 0.170) 
were observed for cerebral cortical slices of APPswe/
PSEN1dE9 mice when compared to wild-type controls. 

the presence of dimethylformamide. The samples were ana-
lyzed by gas chromatography (Agilent Technologies 7820A, 
J&W GC column HP-5MS) coupled to a mass spectrometer 
(Agilent Technologies 5977E). Isotopic enrichment was 
corrected for the natural abundance of 13C by standards con-
taining unlabeled metabolites of interest. Data are presented 
as % 13C enrichment of M + X, where M is the molecular 
ion of the given molecule and X is the number of 13C atoms 
in the molecule or as molecular carbon labeling (MCL) an 
average of total 13C enrichment in the given molecule [14].

High Performance Liquid Chromatography (HPLC) 
Analysis

Quantitative amounts of amino acids in brain slice extracts 
were determined by reverse phase high performance liq-
uid chromatography (Agilent Technologies 1260 Infinity, 
Agilent ZORBAX Eclipse plus C18 column). Pre-column 
o-phthalaldehyde derivatization and fluorescent detec-
tion (excitation λ = 338  nm, emission λ = 390  nm) were 
performed. Gradient elution with aqueous mobile phase A 
(10 mM NaH2PO4, 10 mM Na2B4O7, 0.5 mM NaN3, pH 8.2) 
and mobile phase B (acetonitrile 45 %: methanol 45 %: H2O 
10 %, V:V:V), was used. Mobile phase B increased linearly 
from 2 to 57 % from 0 to 30 min, then from 57 to 100 % in 
0.1 min, to return again to 2 % in minute 33.6 with a total 
run time of 35 min. The amounts of amino acids were deter-
mined from standards containing amino acids of interest.

Lactate Determination

Lactate released from brain slices to the medium was 
assessed by a lactate-kit from Boehringer Mannheim/R-
Biopharm AG (Darmstadt, Germany), according to the 
manufacturer’s instructions.

Mitochondrial Isolation and ATP Synthesis Rate Assay

Whole-brain mitochondria of wild-type control and 
APPswe/PSEN1dE9 mice were isolated in tandem for each 
experiment using a Percoll gradient. All procedures were 
performed on ice or at 4 °C. Animals were euthanized by 
cervical dislocation and decapitated. The brain was quickly 
removed and placed in cold mitochondrial isolation buffer 
containing in mM: mannitol 210, sucrose 70, HEPES 5, 
EGTA 1 and 0.5 % BSA (fatty acid free), pH 7.2, and homog-
enized using a Teflon douncer, 750 revolutions/min, 7–8 
strokes. The homogenate was centrifuged, 500g × 5 min, and 
the pellet was discarded. The supernatant was centrifuged, 
14,000g × 10 min, and the pellet was re-suspended in 12 % 
Percoll solution. This suspension was gently layered on top 
of 21 % Percoll solution and centrifuged, 18,000g × 15 min. 
The supernatant was discarded and the mitochondrial 
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cerebral cortex and hippocampus slices of wild-type con-
trol and APPswe/PSEN1dE9 mice in medium containing 
[U-13C]glucose are presented in Fig.  2. [U-13C]Glucose 
is metabolized through glycolysis into [U-13C]pyruvate, 
which can subsequently be converted into lactate M + 3, 
alanine M + 3 or be transported into mitochondria. In the 
mitochondria [U-13C]pyruvate may be oxidatively decar-
boxylated into [1,2-13C]acetylCoA catalyzed by pyruvate 
dehydrogenase (PDH) and upon entry in the TCA cycle give 
rise to M + 2 labeled metabolites.

Significant increases in lactate M + 3 (205 %) and alanine 
M + 3 (45 %) labeling were observed for the cerebral cortex 
slices of APPswe/PSEN1dE9 mice when compared to wild-
type controls (Fig. 2a). Significant increases in 13C labeling 
were also observed for several first turn TCA cycle inter-
mediates including: citrate M + 2 (14 %), α-ketoglutarate 
M + 2 (71 %), succinate M + 2 (100 %), fumarate M + 2 
(55 %) and malate M + 2 (40 %) in the cerebral cortex 
slices of APPswe/PSEN1dE9 mice. Additionally, a sig-
nificant increased labeling of glutamine M + 2 (10 %) was 
observed. None of these changes were observed in hip-
pocampal slices of APPswe/PSEN1dE9 mice (Fig.  2b). 
We were not able to pick up a significant difference in the 
amounts of lactate released from slices to the media during 
the incubations. However, a tendency towards increased 
lactate release from cerebral cortical slices of APPswe/
PSEN1dE9 mice when compared to wild-type controls, 
was observed (643.0 ± 131.7 vs. 570.9 ± 58.9 nmol lactate/
mg protein, p = 0.625).

The rate of TCA cycling can be calculated by dividing 
the percentage of 13C labeling of later turns isotopologues 
(i.e. M + 3, M + 4, M + 5 etc.) with the percentage of 13C 
labeling of the first turn isotopologue M + 2 of TCA cycle 
intermediates and amino acids. No changes in cycling ratios 
of hippocampal slices were found (data not shown). Cycling 
ratios from cerebral cortex slices incubated in media con-
taining [U-13C]glucose from wild-type control and APPswe/
PSEN1dE9 mice are presented in Fig. 3. The TCA cycling 
ratios of the cerebral cortical slices were significantly 
decreased for malate, aspartate, glutamate and glutamine 
and the same tendency is present for several other TCA 
cycle intermediates, demonstrating a reduced rate of TCA 
cycling in cerebral cortical slices of APPswe/PSEN1dE9 
mice. Taken together the results obtained from the incuba-
tions with [U-13C]glucose point towards an altered metab-
olism of glucose resulting in elevated levels of labeled 
pyruvate and subsequently labeling of lactate M + 3 and ala-
nine M + 3 in cerebral cortex slices of APPswe/PSEN1dE9 
mice. Additionally, the TCA cycle activity is decreased in 
the cerebral cortex. These changes are absent in the hippo-
campus suggesting that glucose metabolism in this region 
is less affected prior to manifestation of amyloid plaques in 
the APPswe/PSEN1dE9 mouse.

The decreased amount of intracellular glutamine, from the 
incubations with exogenously added [U-13C]glutamine, 
indicates an impairment of glutamine uptake capacity, in 
cerebral cortical slices of APPswe/PSEN1dE9 mice.

Alterations in Glucose Metabolism in Cerebral Cortical 
Slices of APPswe/PSEN1dE9 Mice

13C Labeling of metabolites generated from glycolysis and 
first turn of the TCA cycle obtained from incubations of 
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Fig. 1  Amino acid amounts of brain slice extracts. Amino acid con-
tents of cerebral cortical (a) and hippocampal (b) slices of wild-type 
control and APPswe/PSEN1dE9 (TG) mice incubated in media con-
taining [U-13C]glucose. Amino acid contents of cerebral cortical (c) 
slices of wild-type control and APPswe/PSEN1dE9 (TG) mice incu-
bated in media containing [U-13C]glutamine. Results are presented as 
mean ± SEM, n = 4–5. Student’s t test, p < 0.05
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glial cells [15, 16]. No significant differences in MCL were 
observed for cerebral cortical or hippocampal slices of wild-
type control and APPswe/PSEN1dE9 mice incubated in 
media containing [1,2-13C]acetate. In addition, no changes 
were observed in TCA cycling ratios from metabolism of 
[1,2-13C]acetate (data not shown). These results indicate 
little or no change in total glial acetate metabolism and TCA 
cycling in the early stage of amyloid plaque development in 
APPswe/PSEN1dE9 mice.

Unchanged acetate metabolism in brain slices of 
APPswe/PSEN1dE9 mice

Molecular carbon labeling (MCL) of TCA cycle intermediates 
and amino acids obtained from incubations of cerebral cortex 
and hippocampus slices from wild-type control and APPswe/
PSEN1dE9 mice in medium containing [1,2-13C]acetate are 
presented in Fig. 4. [1,2-13C]Acetate enters the TCA cycle 
as [1,2-13C]acetylCoA and is predominantly metabolized in 
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Fig. 3  Cycling ratios from 
[U-13C]glucose metabolism. 
TCA cycling ratios obtained 
from incubations of cerebral 
cortical slices from wild-type 
control and APPswe/PSEN1dE9 
(TG) mice in media containing 
[U-13C]glucose. Results are pre-
sented as mean ± SEM, n = 4–5. 
Student’s t test, p < 0.05
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Fig. 2  13C Labeling from 
[U-13C]glucose metabolism. 
Labeling of metabolites and 
amino acids generated from gly-
colysis and first turn of the TCA 
cycle from incubations of cere-
bral cortical (a) and hippocam-
pal (b) slices from wild-type 
control and APPswe/PSEN1dE9 
(TG) mice in media containing 
[U-13C]glucose. Results are pre-
sented as mean ± SEM, n = 4–5. 
Student’s t test, p < 0.05
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glutamine is released from astrocytes as part of the gluta-
mate-glutamine cycle.

No significant difference was observed in glutamine 
M + 5 enrichment between cerebral cortical slices from 
wild-type control and APPswe/PSEN1dE9 mice. Glu-
tamate M + 5 enrichment, generated by deamidation of 
glutamine M + 5, was in contrast significantly decreased 
in cerebral cortical slices of APPswe/PSEN1dE9 mice 

Hampered Oxidative Glutamine Metabolism in 
Cerebral Cortical Slices of APPswe/PSEN1dE9 Mice

13C Labeling of amino acids and TCA cycle intermedi-
ates obtained from incubations of cerebral cortex slices 
from wild-type control and APPswe/PSEN1dE9 mice in 
medium containing [U-13C]glutamine are presented in 
Fig. 5. [U-13C]Glutamine is mainly taken up by neurons, as 
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from incubations of cerebral 
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(TG) mice in media contain-
ing [U-13C]glutamine. Results 
are presented as mean ± SEM, 
n = 4–5. Student’s t test, p < 0.05
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Fig. 4  13C Labeling from 
[1,2-13C]acetate metabolism. 
Molecular carbon labeling 
of TCA cycle intermediates 
and amino acids from incuba-
tions of cerebral cortical (a) 
and hippocampal (b) slices 
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cycle, when incubating cerebral cortical slices of 3-month-
old APPswe/PSEN1dE9 mice in a medium containing 
[U-13C]glucose. Since no significant changes in glial ace-
tate metabolism were observed, this could indicate that the 
changes in [U-13C]glucose metabolism might primarily arise 
from alterations in neuronal energy metabolism. The aug-
mented labeling was not matched by increased TCA cycle 
metabolism and oxidative phosphorylation. The increased 
labeling is likely explained by an elevated metabolism of 
[U-13C]glucose through glycolysis. Augmented glycolytic 
activity, which is not matched by oxidative phosphoryla-
tion, is known as aerobic glycolysis [17]. Interestingly, PET 
studies in AD patients have revealed enhanced aerobic gly-
colysis, which shows a regional correlation with amyloid 
deposits in the brain [18]. Elevated cerebral cortical levels 
of lactate have also been reported in APP transgenic mice 
when compared to wild-type controls, becoming significant 
with age [19]. These observations suggest that increased 
aerobic glycolysis in AD develops along with amyloid 
plaque formation. Furthermore, elevated amounts and 
labeling of lactate were reported in a transgenic rat model of 
AD upon injection of [1-13C]glucose [20], consistent with 
observations in AD patients [21]. Our findings are in line 
with these previous studies but suggest that the augmenta-
tion of aerobic glycolysis occurs prior to plaque deposition. 
Interestingly, it has been shown that enhanced glycolytic 
activity in neurons may lead to increased neuronal oxidative 
stress and death [22]. It can be speculated that the increased 
aerobic glycolysis might be a founding mechanism of neu-
rodegeneration in AD. A significant enhancement of aerobic 
glycolysis would lead to increased lactate production. In 
this study, we only observed a tendency towards elevated 
amounts of lactate released to the media during incubation 
of cerebral cortical slices from APPswe/PSEN1dE9 mice. 
The elevated labeling of intracellular lactate and alanine 
could also arise from reduced conversion of [U-13C]pyruvate 
into [1,2-13C]acetylCoA catalyzed by PDH. Reduced PDH 
activity would lead to a buildup of [U-13C]pyruvate and 
hence increase the labeling of intracellular lactate and ala-
nine, but have less effect on total lactate amounts compared 
to an elevated glycolytic flux. Hampered PDH activity is 
a recurrent observation in both AD patients and transgenic 
mouse models of AD [2, 4, 20, 23]. Since we only observed 
a tendency towards increased lactate release, our observa-
tions, may be explained by reduced PDH activity.

Neuronal and Glial Implications in Early AD

AD is characterized by loss of neurons, but it is becoming 
evident that glial cells are highly affected in the AD brain 
as well [1, 24, 25]. From incubations with the glial sub-
strate [1,2-13C]acetate, we found no changes in total glial 
acetate metabolism in the cerebral cortex and hippocampus 

(18 %). Glutamate M + 5 is introduced into the TCA cycle 
as α-ketoglutarate M + 5. Significant decreases in labeling 
were observed for α-ketoglutarate M + 5 (33 %), and several 
subsequent metabolites hereof, including: fumarate M + 4 
(23 %), malate M + 4 (26 %), citrate M + 4 (20 %) and aspar-
tate M + 4 (23 %). These results point towards a hampered 
oxidative metabolism of glutamine in cerebral cortical brain 
slices of APPswe/PSEN1dE9 mice.

Decreased ATP Synthesis Rate of Cerebral 
Mitochondria from APPswe/PSEN1dE9 Mice

The changes in substrate utilization observed from incu-
bations of brain slices could be a consequence of altered 
mitochondrial function. The ATP synthesis rate of isolated 
brain mitochondria from wild-type control and APPswe/
PSEN1dE9 mice is presented in Fig. 6. A tendency towards 
significant lowering of the ATP synthesis rate is observed 
for brain mitochondria of APPswe/PSEN1dE9 mice when 
compared to wild-type controls, in the presence of malate 
and pyruvate (p = 0.053). This indicates a reduced cerebral 
mitochondrial ATP synthesis in APPswe/PSEN1dE9 mice 
prior to amyloid plaque deposition.

Discussion

We present evidence of impaired cerebral cortical glu-
cose metabolism and hampered TCA cycle metabolism 
in APPswe/PSEN1dE9 mice prior to significant amyloid 
plaque deposition. Additionally, reduced uptake and oxi-
dative metabolism of glutamine was observed and whole-
brain mitochondria of APPswe/PSEN1dE9 mice exhibit an 
impaired ATP synthesis rate.

Altered Glycolytic Metabolism Precedes Amyloid 
Plaque Formation

In this study, we found increased labeling of intracellu-
lar lactate, alanine and first turn metabolites of the TCA 
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Fig. 6  ATP synthesis rate of isolated brain mitochondria of wild-type 
control and APPswe/PSEN1dE9 (TG) mice. Results are presented as 
mean ± SEM, n = 3. Student’s t test, p < 0.05
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of key TCA cycle enzymes have been reported from human 
AD patients [34]. Such mitochondrial alternations lead to 
decreased oxidative phosphorylation and compromise cel-
lular energy homeostasis.

Several studies have reported mitochondrial changes in 
early stages of AD pathogenesis [23, 35, 36]. Our observa-
tions of decreased ATP synthesis may be explained by ham-
pered PDH activity as described above, as this additionally 
would dampen oxidative metabolism and hence decrease 
mitochondrial ATP synthesis. Significant reductions in both 
ATP levels and expression of cytochrome c oxidase and 
PDH before amyloid plaque formation have been shown in 
several transgene animal models of AD [23, 35–38]. These 
observations are in line with our results, as we observe 
that the mitochondrial ATP synthesis rate in the brain of 
APPswe/PSEN1dE9 mice show a tendency towards being 
compromised prior to amyloid plaque deposition.

Conclusions

We show that brain energy metabolism is affected in 
APPswe/PSEN1dE9 mice prior to amyloid plaque deposi-
tion. Cerebral cortical slices exhibits changes in glucose 
metabolism, reduced TCA cycle activity and impaired 
uptake and oxidative metabolism of glutamine. Further-
more, a tendency towards decreased ATP synthesis rate was 
observed in isolated brain mitochondria. These results dem-
onstrate that several specific alterations in cerebral energy 
metabolism precede the key pathological hallmark of amy-
loid plaques in APPswe/PSEN1dE9 mice.
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