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Multifactorial Effects on Different Types of Brain Cells 
Contribute to Ammonia Toxicity

Leif Hertz1 · Dan Song1 · Liang Peng1 · Ye Chen2

NKCC1 in both astrocytes and endothelial cells is essen-
tial for the development of brain edema. Na+,K+-ATPase 
stimulation also activates production of endogenous oua-
bains. This leads to oxidative and nitrosative damage and 
sensitizes NKCC1. Administration of ouabain antagonists 
may accordingly have therapeutic potential in hyperam-
monemic diseases.
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Introduction

Hyperammonemia causes diseases, among which hepatic 
encephalopathy and acute liver failure (ALF) are the quan-
titatively most important. Most studies of these diseases 
focus on a single pathological feature which is important 
for understanding the pathogenesis, symptomatology and 
treatment of the disease(s). This review takes a different 
approach by describing hyperammonemic diseases as mul-
tifactorial. It discusses several of these factors, as deter-
mined by a multitude of authors, including ourselves. It 
begins by describing the increases in magnitude of ammo-
nia concentrations in blood and its fluxes from there to 
brain in hyperammonemic patients determined by Susanne 
Keiding and her co-workers. In this connection it points 
out that much larger amounts of ammonia turn over under 
physiological conditions in the glutamate–glutamine 
cycle, which is essential for supply of neurons with trans-
mitter glutamate and GABA. These transmitters are syn-
thesized in astrocytes because neurons are unable to do so. 
However, since the ammonia which is released from neu-
rons in the glutamate–glutamine cycle (during glutamate 

Abstract Effects of ammonia on astrocytes play a 
major role in hepatic encephalopathy, acute liver failure 
and other diseases caused by increased arterial ammonia 
concentrations (e.g., inborn errors of metabolism, drug 
or mushroom poisoning). There is a direct correlation 
between arterial ammonia concentration, brain ammonia 
level and disease severity. However, the pathophysiology 
of hyperammonemic diseases is disputed. One long rec-
ognized factor is that increased brain ammonia triggers 
its own detoxification by glutamine formation from glu-
tamate. This is an astrocytic process due to the selective 
expression of the glutamine synthetase in astrocytes. A 
possible deleterious effect of the resulting increase in glu-
tamine concentration has repeatedly been discussed and 
is supported by improvement of some pathologic effects 
by GS inhibition. However, this procedure also inhibits 
a large part of astrocytic energy metabolism and may 
prevent astrocytes from responding to pathogenic fac-
tors. A decrease of the already low glutamate concentra-
tion in astrocytes due to increased synthesis of glutamine 
inhibits the malate–aspartate shuttle and energy metabo-
lism. A more recently described pathogenic factor is the 
resemblance between NH4

+ and K+ in their effects on the 
Na+,K+-ATPase and the Na+,K+, 2 Cl− and water trans-
porter NKCC1. Stimulation of the Na+,K+-ATPase driven 

1 3

Neurochem Res (2017) 42:721–736
DOI 10.1007/s11064-016-1966-1

/ Published online: 10 June 2016

http://crossmark.crossref.org/dialog/?doi=10.1007/s11064-016-1966-1&domain=pdf&date_stamp=2016-6-9


Ammonia Fluxes in Hepatic Encephalopathy 
Compared to Those in the Glutamate–Glutamine Cycle

Hepatic Encephalopathy

Human ammonia toxicity is generally not secondary to 
exposure to exogenous ammonia but to failure of normally 
occurring hepatic detoxification of ammonia generated in 
the gut [1]. This leads to arterial hyperammonia and cere-
bral ammonia uptake. Most, but not all, patients with liver 
disease (fibrosis, cirrhosis) develop neurological abnormali-
ties referred to as hepatic encephalopathy. Chronic hepatic 
encephalopathy is the most common form of this condi-
tion and is characterized by changes in personality, altered 
mood, declining intellectual capacity, and abnormal muscle 
tone [2]. Encephalopathy caused by ALF is generally a 
result of drug toxicity and presents with an abrupt decline 
in mental function, systemic inflammation and ultimately 
multi-organ failure and coma [3]. A frequent, although 
recently less common neuropathological finding is severe 
brain edema, which leads to increased intracranial pressure 
and is associated with a high mortality rate. However, using 
specialized MRI imaging some degree of cerebral edema 
is often detectable even in less fulminant hepatic encepha-
lopathy [4].

Ammonia Concentrations and Fluxes in Hyperammonic 
Diseases

Arterial ammonia concentrations and blood brain fluxes of 
ammonia have been measured in patients with liver fibro-
sis with and without hepatic encephalopathy [5]. An arterial 
ammonia concentration above the normal level of <30 nM 
causes hepatic encephalopathy due to uptake in the brain 
from the systemic circulation, and both arterial concentra-
tions and uptake rates are higher in patients with liver fibro-
sis who show sign of encephalopathy than in those who do 
not (Fig. 1). However, as shown in Fig. 1 even in the latter 
group the arterial concentration does not exceed 100 mM 
and the ammonia flux into brain is generally not above 
15 nmol/min/ml(~g) brain [5].

Higher ammonia levels are found in ALF and in children 
(and some adults) suffering from inborn errors of metabo-
lism for example in the urea cycle [6], where the arterial 
ammonia concentration can exceed 1000 mM [7]. High arte-
rial ammonia concentrations are also seen in patients with 
Reye’s syndrome [8] and in patients with ALF precipitated 
by intake of certain drugs or foods. These include normal 
doses of valproic acid in some patients, who may have suf-
fered from undiagnosed inborn errors of metabolism [9–12]. 
Overdoses of acetaminophen [13, 14] or intake of certain 
mushrooms [15] can also lead to ALF. It is likely that the 
correlation between arterial ammonia concentration and 

synthesis from glutamine) is used in identical amounts 
in astrocytes (for synthesis of glutamine from glutamate) 
there is no net production of ammonia during the operation 
of this cycle. This is an important difference from hyper-
ammonemic diseases, where excess ammonia is detoxified 
in astrocytes, almost exclusively by glutamine production 
from ammonia.

The possibility that glutamate conversion to glutamine 
during ammonia detoxification may have deleterious effects 
due to either an increase of glutamine or a decrease of glu-
tamate is subsequently discussed. Conversion rates are 
described together with the increase in glutamine content 
and its possible adverse consequences. It is also discussed 
that reduction of glutamate has adverse functional conse-
quences, although there probably is a small increase in glu-
tamate synthesis.

Another reason why hyperammonemia exerts delete-
rious effects is the similarity between the ammonia ion, 
NH4

+, and K+. This is the reason for the most dreaded 
consequence of ALF, cerebral edema, which is due to 
increased uptake of ions and water mediated by operation 
of both the Na+,K+-ATPase and NKCC1, a cotransporter of 
Na+,K+, 2 Cl− and water. A similar edema occurs when the 
extracellular K+ concentration is highly increased during 
brain ischemia, and in both cases concomitant effects on 
endothelial cells are crucial for cell swelling. An impor-
tant difference between the two ions is that NH4

+ is more 
potent than K+. This difference is accentuated by inflam-
matory events. The Norenberg and Albrecht groups have 
thoroughly studied these events, which are accompanied 
by increases in compounds like reactive oxygen species 
(ROS), nuclear factor kappa B (NF-κB) and nitric oxide 
(NO). The inflammation is probably also a result of the 
similarity between NH4

+ and K+, since they both stimulate 
the Na+,K+-ATPase. The catalytic effect of this ATPase 
is essential for the ion fluxes creating the gradients driv-
ing NKCC1 and leading to the edema, but the stimulation 
of the Na+,K+-ATPase has also signaling effects. This is 
because it activates a pathway initiated by nanomolar con-
centrations of endogenous ouabains, as shown by Liang 
Peng and her coworkers. One branch of this pathway is 
essential for the catalytic function of the ATPase, and the 
other leads to the inflammation.

The similarity between NH4
+ and K+ is also the reason 

for stimulation of a specific glycolytic enzyme and thus 
of glycolysis, but it is unknown if the increased lactate 
production has any adverse effects. It is also not known 
whether the similarity between NH4

+ and K+ could be 
associated with a decrease in cyclic GMP not only in 
neurons but also in astrocytes, which is associated with 
impairment of memory in hepatic encephalopathy, as 
demonstrated by the groups of Vincente Felipo and Jan 
Albrecht.
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as NH3 and pH is lower in brain (7.1) than in blood (7.4), 
brain ammonia level at equilibrium is normally 1.5–3 times 
higher in brain than in blood [21, 22].

In animal studies of hepatic encephalopathy it is impor-
tant how the human disease can best be mimicked. The Inter-
national Society for Hepatic Encephalopathy and Nitrogen 
Metabolism recommends portocaval anastomosis or bile 
duct ligation as animal models for hepatic encephalopathy 
and hepatic devascularization or thioacetamide treatment 
for simulation of ALF [23]. Exposure of brain slices, cell 
cultures, astrocytic-neuronal co-cultures or models of the 
neurovascular unit to different toxins are endorsed for in 
vitro studies. Consideration of the neurovascular unit may 
be especially important due to the fact that brain edema can-
not develop on the basis of effects on neural cells alone but 
also requires an enhanced influx of water across the blood-
brain barrier. This will be discussed in more detail together 
with brain swelling.

Much larger amounts of ammonia are generated in the 
brain during the operation of the glutamate–glutamine cycle. 
This is a physiological metabolic pathway transporting glu-
tamate via glutamine to neurons from astrocytes where it is 
generated (and eventually degraded in similar amounts) or 
accumulated after its neuronal release [24, 25]. Flux in the 
glutamate–glutamine cycle corresponds to the total neuro-
nal rate of glucose uptake [26] or ~75 % of the total glucose 
uptake rate, which amounts to 0.7 mmol/min per g wet wt. 
in rat brain [27] and to 0.3 mmol/min per g wet wt. in human 
brain [28]. In human brain the rate of ammonia formation 
and degradation in the glutamate–glutamine cycle accord-
ingly corresponds to 0.2–0.25 mmol/min per g wet wt. It is 
thus normally at least ten times larger than the rate of glu-
tamine production due to ammonia uptake and subsequent 
detoxification even during hepatic encephalopathy (Fig. 1). 
In contrast to excess ammonia entering the brain due to an 
increased arterial concentration of ammonia, that generated 
during conversion of glutamine to glutamate in the gluta-
mate–glutamine cycle is re-utilized in astrocytes during for-
mation of glutamine from glutamate. There is accordingly 
no increase in total brain ammonia or glutamine concentra-
tions. This is a very important difference from hyperammo-
nemic brain diseases.

Effects of Increased Ammonia Detoxification via 
Glutamine Synthesis

Glutamate and Glutamine

Berl et al. [29] studied metabolism of excess ammonia 
entering the brain from the circulation during a 25-min 
period. They concluded that (a) glutamine was the only 
cerebral amino acid that showed a considerable increase; (b) 
this increase occurred without a corresponding decrease in 

brain uptake shown in Fig. 1 can be extrapolated to these 
levels.

An exciting and potentially quantitatively very important 
reason for ammonia-induced encephalopathy is the recently 
suggested possibility [16] that cerebral malaria could be 
due to elevated ammonia content specifically in blood ves-
sels in brain. Plasmodium falciparum generates substantial 
amounts of ammonia but lacks detoxification mechanisms. 
It can therefore cause localized brain ammonia elevation 
and subsequent neurotoxic effects [16], including severe 
brain swelling [17]. Moreover, during Plasmodium yoelii 
infection in mice there is an increase in cerebral ammo-
nia and lactate contents, and in glutamine synthetase (GS), 
phosphofructokinase and monoamine oxidase activities 
[18]. Many of these changes resemble hepatic encephalopa-
thy as will become evident later in the review. Confirmation 
that cerebral malaria is a hyperammonemic brain disease 
would add a large number of cases without liver disease to 
the group of diseases presently known as hepatic encepha-
lopathy and ALF.

In rats, which frequently are used to study mechanisms 
of hyperammonemic diseases, the normal arterial level of 
ammonia is higher (~170 nM) than in humans, and it rises 
to about 500 nM after portocaval anastomosis [19] and to 
>4 mM in animals given a large amount of ammonia i.p 
[20]. In both of these studies almost identical ammonia con-
centrations were reported in arteries and in brain. However, 
because ammonia crosses the blood–brain barrier mainly 

Fig. 1 Net metabolic flux of ammonia from blood to brain cortex as 
a function of arterial blood ammonia concentration in patients with 
cirrhosis with hepatic encephalopathy (closed triangles), patients with 
liver cirrhosis without hepatic encephalopathy (open circles), and 
healthy controls (open triangles). From Sørensen and Keiding [5]
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swelling [42–45], which in hyperammonemic rats is pre-
vented by inhibition of GS [46]. The content of glutamine in 
normal human brain cortex is ~3 mM [47, 48], but a slightly 
higher value was found in rats [49]. Most of this glutamine 
must be astrocytic, since the glutamine content is higher in 
astrocytes than in neurons [50]. The L system-dependent 
exchange of systemic tryptophan with brain glutamine is 
increased in cerebral capillary endothelial cells treated with 
ammonia, or isolated from rats with hepatic encephalopathy 
[51]. This prevents a continuous rise in cerebral glutamine. 
The change in osmolarity induced by glutamine accumu-
lation can be calculated to be about 3 % from the culture 
data by Huang et al. [33]. It can therefore not be expected 
to cause significant swelling. Moreover, myo-inositol and 
other osmolytes are decreased [39], and mild hypother-
mia delays the development of brain edema in portacaval-
shunted rats without any effect on cerebral glutamine level 
[52].

A different possible reason for a deleterious role of glu-
tamine accumulation in astrocytic edema is that glutamine 
uptake in mitochondria might function as a “Trojan horse” 
introducing ammonia into mitochondria with subsequent 
free radical production and mitochondrial damage in astro-
cytes [44], but not in neurons [53, 54]. Intramitochondrial 
release of ammonia causes mitochondrial permeability 
transition and free radical production [53–57]. The “Tro-
jan horse” theory is supported by the finding that histidine, 
which inhibits glutamine uptake in mitochondria, prevents 
swelling in ammonia-exposed astrocytes [57]. However, 
this observation must be interpreted with caution because 
histidine also exerts direct effects against oxidative stress 
[58–60]. Prevention of glutamine formation also inhibits 
the glutamate–glutamine cycle, and since most ATP pro-
duced in astrocytes during and after formation of gluta-
mine is derived when glutamate subsequently is oxidized in 
astrocytes [61–63], it will severely reduce astrocytic energy 
metabolism. Energy metabolism is required for brain swell-
ing, which during complete medial cerebral artery occlusion 
in rats (MCAO) does not become significant until after re-
perfusion [64].

Glutathione, Malate–Aspartate Shuttle, Tricarboxylic Acid 
(TCA) Cycle, Pyruvate Carboxylase and Metabolic Rate

A drastic reduction in glutathione content in the thioacet-
amide model of hepatic encephalopathy might be a result of 
reduced glutamate content due to conversion of glutamate 
to glutamine, since glutamate is an essential precursor for 
glutathione [65, 66]. In rats made chronically hyperammo-
nemic by portal-systemic shunting intraperitoneal injection 
of ammonium acetate induces a brief period of pre-coma 
(10–15 min), associated with a decreased glutamate content, 
and followed by a deep coma and high mortality [67]. In 

glutamate (which accordingly must have been synthesized 
in corresponding amounts intracerebrally); and (c) the syn-
thesized glutamine was formed from a small pool of gluta-
mate that was both rapidly turning over and distinct from 
a larger tissue glutamate pool (which must have been the 
glutamate associated with the glutamate–glutamine cycle). 
Cooper et al. [30] expanded this information by demonstrat-
ing that infusion of physiological concentrations of [13N]
ammonia led to a rapid increase in the specific activity of the 
amide nitrogen in glutamine. The simultaneous demonstra-
tion by Norenberg and Martinez-Hernandez [31] that GS is 
an astrocyte-specific enzyme in brain established hepatic 
encephalopathy as a primarily astrocytic disease. Other 
authors have presented evidence that GS is also expressed in 
oligodendrocytes, but the original astrocyte-specific local-
ization has been confirmed by Anlauf and Derouiche [32].

Cudalbu et al. [22] simultaneously measured [5-15N]
glutamine and [2-15N]glutamine, glutamate content and net 
glutamine accumulation in the brains of rats exposed to an 
arterial ammonia concentration of 1 mM for 7 h. Mathemat-
ical modeling of the data provided reliable determination of 
both glutamate–glutamine cycle flux (0.26 μmol/g per min), 
and net glutamine accumulation (0.033 μmol/g per min). 
The results show an increase in glutamine accumulation 
under hyperammonemia, which amounted to 70 nmol/g per 
minute or about one quarter of the glutamine formation rate 
in the glutamate–glutamine cycle. This is consistent with the 
conclusion above based on ammonia fluxes that the rate of 
ammonia detoxification in hepatic encephalopathy becomes 
closer to that of ammonia turnover in the glutamate–glu-
tamine cycle. That the demonstrated glutamate–glutamine 
cycle flux is similar to that described above in human brain 
in spite of a higher respiratory rate in the rat brain is proba-
bly because the experiments were performed in brain slices.

Huang et al. [33] had previously shown in cultured astro-
cytes that chronic (3 days) exposure to 3 mM ammonia 
(which is similar to the final brain concentration measured 
by Cudalbu et al. [22]) significantly increased glutamine 
formation from glutamate from 2.1 to 3.35 nmol/min per 
mg protein. With 200 mg protein per g wet wt. [34]. this 
increase corresponds to 250 nmol/min per g astrocytic wet 
wt., which with astrocytes accounting for ~25 % of corti-
cal volume [25] equals 60–70 nmol/min per g brain wet 
wt., i.e., a similar effect of ammonia as that found in brain 
slices [23]. This similarity supports the validity of the use of 
well differentiated cultured astrocytes for study of ammonia 
toxicity.

Due to the increased flux from glutamate to glutamine 
during hyperammonemia brain glutamine is increased in 
hyperammonemic states [21, 22, 35–39]. This applies also 
to patients with hepatic encephalopathy [40, 41]. It has been 
suggested that the increased glutamine content might con-
tribute to ammonia toxicity and ammonia-induced brain 
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[74], the enzyme necessary for increased production of TCA 
cycle intermediates and glutamate. As could be expected, 
the activity was negligible in synaptic mitochondria where 
an elevated ammonia concentration had no effect. However, 
Leke et al. [75, 76] found a significant increase in GABA 
formation from labeled glucose during hyperammonemic 
conditions in both co-cultures of cerebral neurons and astro-
cytes and in rats with liver cirrhosis. Increased anaplerosis 
has also been observed in cultured astrocytes in the presence 
of ammonia by Lapidot and Gopher [77] and in additional 
studies using cultured cells or animal models of hyperam-
monemia [78–80]. Zwingmann [81] has pointed out that the 
activity of an enzyme measured in tissue homogenates does 
not necessarily reflect the actual metabolic flux through 
the enzyme and reviewed additional studies indicating that 
ammonia increases anaplerosis.

A stimulatory effect of aspartate on glutamate and glu-
tamine synthesis in astrocytes, probably by serving as an 
amino group donor, has been shown by Pardo et al. [82]. 
It revived the concept that α-ketoglutarate formation from 
glutamate during its degradation in the brain in vivo mainly 
is catalyzed by amino aspartate transferase [83, 84]. It also 
led to the concept that glutamate formation and eventual 
oxidation via the glutamate–glutamine cycle might be met-
abolically coupled [24, 25]. A potential reduction of gluta-
mate oxidation by its enhanced use for glutamine formation 
under hyperammonemic conditions might accordingly also 
impair glutamate synthesis in the glutamate–glutamine 
cycle. This could explain an ammonia-induced inhibition 
of oxidation of both [2-14C]pyruvate [85] and [1-14C]pyru-
vate [86] and the prevention of this inhibition by addition 
of glutamate to the medium [86]. Reduced pyruvate-sup-
ported oxygen consumption has also been found in astro-
cytes obtained from rats with acute toxic liver damage [87]. 
Oxidative metabolism of glutamate in cultured astrocytes is 
also potently decreased by ammonia (Fig. 3) [71, 88].

15O-oxygen positron emission tomography (PET) stud-
ies by Iversen et al. [89] established a decrease in cere-
bral oxygen consumption in patients with cirrhosis and an 
acute episode of hepatic encephalopathy. Dam et al. [90], 
analogously showed a decrease in oxidative metabolism in 
patients with hepatic encephalopathy and a clear increase 
after recovery to control values. Keiding and Pavese [91] 
reviewed studies on brain metabolism in human patients 
with different degrees of encephalopathy and concluded 
that cerebral oxygen uptake is reduced to 2/3 in cirrhotic 
patients with clinically overt hepatic encephalopathy. 
Iversen et al. [92] examined specifically astrocytic metabo-
lism with [11C]acetate PET in patients with liver cirrhosis 
with and without hepatic encephalopathy. Although ammo-
nia evoked no significant decrease it seemed to reduce 
astrocytic metabolism by between 10 and 15 % in both 
types of patients.

brain tissue from cirrhotic patients with hepatic encepha-
lopathy cerebral glutamate content is similarly reduced by 
about 20 % [68].

Another consequence of decreased glutamate content 
might be interference with the function of the malate–aspar-
tate shuttle (MAS) (Fig. 2), which is needed for normal glu-
cose metabolism in order to transfer reducing equivalents 
from the cytoplasm to mitochondria. This function is essen-
tial because one oxidative reaction occurs during glycolysis 
and the generated NADH is not able to traverse the mito-
chondrial membrane (e.g. [69]). Kosenko et al. [70] found 
a 20 % decrease in MAS activity in non-synaptic rat brain 
mitochondria after injection of ammonia acetate in rats. Lai 
et al. [71], studying glutamate metabolism and contents of 
glutamate, aspartate and glutamine in astrocyte cultures 
with or without 3 mM ammonium chloride similarly con-
cluded that ammonia inhibits MAS in astrocytes. Based on 
levels of metabolic enzymes in mitochondria, synaptosomes 
and cytosol isolated from brains of normal rats and rats 
injected with ammonium acetate Ratnakumari and Murthy 
[72] reached an identical conclusion.

Depletion of the very small glutamate pool in astrocytes 
[73] during ammonia-induced glutamine formation must in 
the long run lead to an increase in glutamate synthesis in 
order to maintain glutamine synthesis. However, in non-syn-
aptic mitochondria from thioacetamide-treated rats and nor-
mal non-synaptic mitochondria treated with 3 mM ammonia 
there is a reduction of the activity of pyruvate carboxylase 

Fig. 2 In the malate–aspartate shuttle (MAS) cytosolic malate dehydro-
genase (MDHc) oxidizes NADH and converts oxaloacetate (OAA) to 
malate (top right of figure), which enters the mitochondria in exchange 
with α-ketoglutarate (α-KG). The mitochondrial malate dehydroge-
nase (MDHm) re-oxidizes malate to OAA, which is transaminated to 
aspartate by the mitochondrial aspartate aminotransferase (AATm). 
Aspartate leaves the mitochondria in exchange with glutamate. In the 
mitochondria glutamate conversion to α-KG is essential for AATm 
activity forming aspartate from OAA and delivering α-KG for mito-
chondrial export. The glutamate imported into the mitochondria had 
been formed by cytosolic aspartate aminotransferase (AATc) from 
α-KG after its entry into the cytosol. Without MAS activity NADH 
formed in the cytosol during glycolysis would have been unable to 
enter the mitochondria for oxidation. From Hertz and Dienel [69]
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is obvious in cultured astrocytes [100, 101]. However, it 
was mentioned above that in normal, non-hyperammonemic 
brain astrocytic glutamate formation and degradation might 
be metabolically coupled and to a large extent catalyzed by 
aspartate aminotransferase [24, 25]. Even if that is the case 
GDH might also play a role, possibly by supporting glu-
tamate’s cellular uptake, mediated by ion gradient-driven 
cotransport with Na+, which in the long run requires energy-
consuming Na+,K+-ATPase-mediated Na+ extrusion. This is 
in agreement with the observation by Robinson and Jackson 
[102] that astrocytic glutamate transporters, mitochondrial 
enzymes and Na+,K+-ATPase are co-localized and co-pre-
cipitate. These authors also suggest that glutamate transport 
(and thus presumably its subsequent intense metabolism 
[63]) plays an essential role in regulation of brain energet-
ics. The inhibition of glutamate metabolism shown in Fig. 3 
might therefore have considerable adverse effects.

Ammonia Effects on Lactate and Pyruvate

Brain glucose consumption is increased in brains of acutely 
hyperammonemic animals [103–105]. An ammonia-
induced stimulation of glycolysis has been demonstrated in 
brain slices [106, 107], rats with ALF [108] and bile duct-
ligated rats [109]. Production of lactate is increased in cul-
tured astrocytes (Fig. 4), but not in cultured neurons [110]. 
In contrast the rate of pyruvate production is decreased, 
leading to a reduced pyruvate/lactate ratio, consistent with 
the decreased cytosolic [NAD+/NADH] ratio observed by 
Hindfelt and Siesjo[104] and Gjedde et al. [111]. The effect 
of ammonia on pyruvate/lactate ratio is more potent in cells 
that had not been treated with dBcAMP, where the pyruvate/
lactate ratio progressively decreases within the entire con-
centration range 0.1–3.0 mM [110]. Addition of glutamate 
to the incubation medium diminished the reduced pyruvate/
lactate ratio, consistent with the previously discussed inhi-
bition of MAS and of glutathione synthesis due to enhanced 
glutamate utilization for glutamine production during hyper-
ammonemic conditions. However, addition of glutamate had 
no effect on the increased lactate production (Fig. 4), sug-
gesting that the main reason for this is not reduced oxidative 
metabolism. Ammonia activates brain phosphofructokinase, 
a rate-limiting and highly regulated enzyme in glycolysis 
[112–116]. This may be due to the similarity between NH4

+ 
and K+ (see below), since highly elevated K+ concentrations 
have a similar, although less marked effect and prevent an 
additional effect of ammonia [115].

The pathophysiological importance of the ammonia-
induced increase in lactate production may be minor since 
lactate can be exported from brain during hyperammone-
mic conditions [105], but it occurs early during the disease 
[117], and its magnitude is proportional to the severity of 
the condition [108].

Branched Chain Amino Acids and Glutamate 
Dehydrogenase

Other processes than pyruvate carboxylation might also con-
tribute to glutamate formation in hyperammonemic brain. 
Some branched-chain amino acids (BCAAs) are transported 
rapidly across the blood–brain barrier [93], and valine and 
isoleucine are metabolized in the TCA cycle (via respec-
tively acetyl CoA and succinyl CoA). A role of BCAAs, 
especially isoleucine, in production of glutamate and glu-
tamine in brain and muscle was therefore suggested by Bak 
et al. [94]. Such a production might reduce the formation 
of CO2 from these amino acids and their incorporation into 
protein. It may therefore be of interest that both of these pro-
cesses were strongly inhibited by acute exposure to 3 mM 
ammonia in cultured astrocytes, although they were less 
affected by chronic exposure [95, 96]. There is also clini-
cal evidence that a diet rich in BCAA increases event-free 
survival in cirrhotic patients, but this might be on account of 
increased ammonia detoxification in muscle [97].

The enzyme glutamate dehydrogenase (GDH) produces 
glutamate from α-ketoglutarate plus ammonia with concom-
itant oxidation of NAD(P)H. This process is stimulated by 
an increase in the ammonia concentration [98], and it might 
catalyze the increased glutamate production required for 
ammonia detoxification by glutamine production. The ther-
modynamic equilibrium constant of GDH favors glutamate 
formation, but in normal brain a high NAD+/NADH ratio 
and a low ammonia concentration enables glutamate oxida-
tion [99]. The involvement of GDH in glutamate oxidation 

Fig. 3 Rate of 14CO2 formation from [1-14C]glutamate in primary cul-
tures of astrocytes grown in tissue culture medium supplemented with 
0.25 % dBcAMP from the age of 2 weeks and acutely exposed to 0, 
0.1, 0.3, 1.0, or 3.0 mM ammonia when they were at least 3 weeks old. 
CO2 production rates were determined in an air-tight chamber during a 
30-min period, at the end of which injections were made of perchloric 
acid to acidify the medium and of hyamine hydroxide into a suspended 
beaker for quantitative trapping of 14CO2 within the chamber. From the 
measured activity in the trapped CO2, the specific activity of [1-14C]
glutamate in the medium and the protein content of the culture rates 
of 14CO2 formation were determined. Results are means of six to nine 
experiments and SEM values are shown by vertical bars. From Yu et 
al. [88]
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Cyclic GMP and Natriuretic Peptides

cGMP synthesis is also elicited by stimulation of the natri-
uretic peptide receptor 2 (NPR-2) with its natural ligand, 
C-type natriuretic peptide [126, 127]. NPR-2 is expressed 
both in neurons and astrocytes [128, 129]. Atrial natri-
uretic peptide seems to be enriched in astrocytes [130], and 
although it is also expressed in neurons it is possible that 
natriuretic peptides modulate neuronal activity via their 
effect on glial cells [131]. It is consistent with this possibil-
ity that Zielinska et al. [125] showed that hyperammonemia 
interferes with this pathway in rat cerebral cortical slices 
and that it does so in astrocytes. In slices from control ani-
mals CNP stimulated cGMP synthesis to a similar extent 
as the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) 
used at optimal concentrations. Inhibition of specifically 
astrocytic oxidative metabolism with fluoroacetate reduced 
cGMP synthesis by ~50 %, and in slices from animals with 
ammonium acetate-induced hepatic encephalopathy it was 
decreased by 68 %. This inhibition was absent after treat-
ment with fluoroacetate indicating that the CNP-dependent 
cGMP synthesis occurred in the fluoroacetate-inhibitable 
astrocytic compartment, not in the fluoroacetate-resistant 
neurons.

Effects of Hyperammonemia Due to Similarity with 
Catalytic and Signaling Effects of K+ on the Na+,K+-
ATPase

Brain Edema, Na+,K+-ATPase, NKCC1 and Inflammation

Brain edema is a serious and often fatal complication in ALF 
[109, 132, 133] and in inborn errors of metabolism [134]. A 
major reason for the development of brain edema is the sim-
ilarity between NH4

+ and K+. NH4
+ can potently replace K+ 

in stimulation of the Na+,K+-ATPase and active Na+ trans-
port [135, 136] as well as the associated increase in oxygen 
consumption [137, 138]. Expression and phosphorylation of 
NKCC1, a cotransporter of Na+, K+, 2 Cl− and water [139–
141] are increased in ammonia-treated cultured astrocytes 
and in brain slices from thioacetamide-rats with a delay of 
3–6 h (Fig. 5) [142, 143]. Similarly, Dai et al. [144] found 
an increase in cell volume of cultured astrocytes after 12 h’ 
exposure to 3 mM ammonia. Kelly and Rose [145] showed 
in hippocampal slices that intracellular Na+ in astrocytes but 
not in neurons rapidly increased by 25–30 mM after expo-
sure to a high concentration of NH4Cl (5 mM). This increase 
was prevented by bumetanide, a specific NKCC1 inhibitor. 
As discussed by Hertz et al. [146] these findings all indicate 
that the ammonia induced swelling is secondary to stimula-
tion of NKCC1 and that ammonia acts more potently than 
K+, which needs to be increased by 10 mM to activate the 
cotransporter.

Ammonia Effects on Cyclic GMP

Cyclic GMP and Nitric Oxide

Lymphocytes from patients with liver cirrhosis show reduc-
tion of intracellular cyclic guanosine monophosphate 
(cGMP) and less than normal activation of soluble guanyl-
ate cyclase (sGC) by NO, which correlates with the degree 
of encephalopathy [118]. cGMP modulates some forms of 
learning and memory by activating cGMP-dependent pro-
tein kinase and phosphorylation of the glutamate receptor 
GluR1, which results in insertion of AMPA receptors in the 
synaptic membrane and increased magnitude of long-term 
potentiation (LTP) [119]. At least two pathways modulate 
cGMP levels in brain. One of these is the glutamate-NO-
cGMP pathway which is impaired by ammonia due to 
reduced activation of sGC by NO [120–123]. Impairment 
of this pathway in brains and neurons of rats with hyperam-
monemia or hepatic encephalopathy may be partly respon-
sible for their reduced ability to learn [124, 125]. Moreover, 
restoration of cGMP levels in brain by administering phos-
phodiesterase inhibitors, cGMP or anti-inflammatory drugs 
improves learning ability in patients with hepatic encepha-
lopathy [118].

Fig. 4 Accumulation of lactate in the incubation medium of 3–4-week-
old primary cultures of mouse astrocytes as a function of the length of 
the incubation period under control conditions (open symbols), i.e., 
incubation in normal serum-free tissue culture medium with addition 
of 3 mM sodium chloride, and after incubation in normal serum-free 
tissue culture medium with addition of 3 mM ammonium chloride 
(filled-in symbols). The cells had either been grown in tissue culture 
medium supplemented with 0.25 % dBcAMP from the age of 2 weeks 
and were accordingly morphologically differentiated (squares), or 
they had been grown for 3–4 weeks without dBcAMP supplementa-
tion and were accordingly morphologically undifferentiated (circles). 
Results are means ± SEM values (if extending beyond the symbols) of 
4–20 individual experiments using cultures obtained from at least two 
different batches. All values obtained in the presence of ammonia are 
significantly different (P < 0.05 or better) from corresponding control 
values. From Kala and Hertz [110]
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which lowers the threshold for NKCC1 activation. The 
presence of inflammation is in agreement with a good cor-
relation between arterial pro-inflammatory cytokines and 
intracranial pressure in patients with ALF [158].

Re-distribution of water between extracellular and intracel-
lular spaces alone cannot cause brain edema, which in addi-
tion requires uptake from the systemic circulation. Effects on 
endothelial cells in the blood–brain barrier are necessary for 
this component of the swelling. This is similar to the situa-
tion during brain ischemia/reperfusion, where NKCC1 plays 
a major role in the pathway importing ions and water into 
brain parenchyma [159]. In rats subjected to permanent mid-
dle cerebral artery occlusion immune-electron microscopy 

The increase in NKCC1 activity is secondary to ion-
induced astrocytic depolarization [147, 148] and opening of 
L-channels for Ca2+ [149]. An ammonia-induced increase 
in [Ca2+]i and in expression of the gene for an L-type Ca2+ 
channel Cav1.2 in cultured astrocytes treated with 3 mM 
ammonia [150–152] is consistent with the operation of 
this pathway. Increased [Ca2+]i also occurs in brain slices 
exposed to as little as 1–2 mM ammonia, and inhibition of 
GS results in a significantly larger [Ca2+] increases [153], 
perhaps due to impaired ammonia detoxification. The rea-
son for the delayed response at relative low ammonia con-
centrations is a gradually developing, marked nitrosative 
and oxidative damage after ammonia exposure [154–157] 

Fig. 5 Similarity between effects of ammonia (5 mM) on protein 
expression of both NKCC1 and phosphorylated NKCC1 (p-NKCC1) 
in cultured rat astrocytes (a1, a2) and the effect of thioacetamide-
induced acute liver failure in rats in vivo, leading to hyperammone-
mia (b1, b2). The cultures had been grown in almost the same man-
ner as the cultures used by us and were 98 % GFAP- and glutamine 
synthetase-positive with microglia constituting the rest of the cells. 
After solubilization in lysis buffer, cellular protein levels were mea-
sured and equal amounts of protein were subjected to gel electropho-
resis and transferred to nitrocellulose membranes, which after block-
ing with non-fat dry milk were incubated with respective antibodies. 
Primary antibodies were used at 1:1000 to detect total NKCC1 (a1) 
and R5-phosphorylated NKCC1 (a2). Antibody to α-tubulin was used 
as housekeeping gene and results expressed as the ratios between the 

NKCC1 genes and tubulin after optical density of the bands had been 
determined with Chemi-Imager digital imaging system. In the cul-
tures both total NKCC1 and p-NKCC1 show a significant (P < 0.05) 
increase after 3 h of ammonia exposure (asterisk) and maximum 
response is perhaps reached slightly earlier for p-NKCC1 (6 h) than 
for total NKCC1 (12 h). The reason that the response is not immedi-
ate is that it is dependent upon oxidative and nitrosative damage of 
NKCC1. In the rat experiments thioacetamide (300 mg/kg body wt) 
was given daily for between 1 and 3 days and protein expression of 
NKCC1 (b1) and p-NKCC1 (b2) determined as in a1, a2. Note signifi-
cant (P < 0.05) increases after 2 days (asterisk) and a further significant 
increase (dagger symbol) after 3 days. The responses are identical in 
a, b (a maximum~threefold increase), but it occurs faster in (a) than in 
(b). a From Jayakumar et al. [142] and b from Jayakumar et al. [143]
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increased when neuronal excitation raises extracellular K+, 
except as a consequence of glutamate uptake [171]. Experi-
ments in cultured astrocytes known to mimic other signaling 
events and gene expression in astrocytes in situ [172] have 
shown that signaling mediated by nanomolar concentrations 
of ouabain opens an astrocytic Na+ channel and thereby 
enables K+-stimulated K+ uptake in astrocytes [146, 169, 
173]. This effect is probably essential for an initial Na+,K+-
ATPase-mediated K+ uptake in astrocytes during clearance 
of elevated extracellular K+ following neuronal activity, at 
least in astrocytes that have not accumulated Na+ during glu-
tamate uptake. That elevated extracellular K+ initially stimu-
lates astrocytic K+ uptake in brain tissue and optic nerve is 
now well established [174–179]. Subsequently the accumu-
lated K+ is released [180], probably after re-distribution over 
a wider area [181] which prevents a second rise in extracel-
lular K+ and allows neuronal uptake.

Na+,K+-ATPase activity is increased in primary cul-
tures of rat astrocytes exposed acutely or chronically to 
ammonia [182, 183] and in astrocytes from animals treated 
chronically with thioacetamide [184]. Kala et al. [183] 
investigated if this could represent an up-regulation of the 
Na+,K+-ATPase, compensating for exposure to an increased 
concentration of endogenous ouabains. They found an 
increase of ouabain(s) in the incubation media of cultured 
astrocytes exposed to 3 mM ammonia for 4 days. This is 
accompanied by increased expression of the astrocytic α2 
subunit of the Na+,K+-ATPase [185], which is abolished by 
AG1478, an inhibitor of the epidermal growth factor recep-
tor (EGFR). This receptor is a key component of a pathway 
mediated by endogenous ouabain(s) in cultured astrocytes 
[144, 152, 169]. This astrocytic pathway [169] leads like 
many other signaling pathways initiated by G-protein-cou-
pled receptors [186, 187] to metalloproteinase-mediated 
release of a growth factor and ‘transactivation’ and phos-
phorylation of the EGFR [188]. Stimulation of the EGFR 
activates two pathways, one leading to Ca2+ release and 
glycogenolysis which is needed for uptake of K+, and the 
other to phosphorylation of extracellular-regulated kinases 
one and two (ERK1/2) via Ras, Raf and MEK. Phosphory-
lation of ERK, increased ROS production and swelling in 
ammonia-exposed cultured astrocytes is abolished by the 
ouabain antagonist canrenone (Fig. 6) [144]. This is con-
sistent with observations in cardiac myocytes that ouabain 
increases ROS, an effect that was antagonized by a domi-
nant negative Ras, suggesting Ras involvement in ROS gen-
eration [189]. Ouabain-induced nitrosative damage is also 
likely in cardiac myocytes, since iNOS, the form expressed 
in astrocytes is increased by ouabain [190].

Two endogenous steroids with ouabain-like activity, the 
cardenolide, endogenous ouabain and the bufadienolide, 
marinobufagenin are found in small but equal amounts 
in brain cortex [191]. Synthesis of marinobufagenin has 

has demonstrated a predominant expression of NKCC1 at the 
luminal membrane of the blood-brain barrier [160]. It is there-
fore important that cultured cerebral endothelial cells treated 
with ammonia also react with oxidative/nitrosative stress 
[161] and that the transcription factor NF-κB is activated in 
cortical endothelial cells from thioacetamide-treated animals 
[162]. A multitude of inflammatory mediators are increased 
in hepatic encephalopathy and microglia is activated by 
ammonia [157]. In liver cirrhosis patients with and without 
hepatic encephalopathy expression levels are altered for more 
than 1000 genes related to oxidative stress, microglia activa-
tion, receptor signaling, inflammatory and anti-inflammatory 
pathways, cell proliferation, and apoptosis [163]. As a conse-
quence of the role of inflammation in hepatic encephalopathy 
anti-inflammatory therapy is becoming of major importance 
in treatment of liver failure [164].

NKCC1 is also expressed in GABAergic neurons. Using 
very high plasma ammonia concentrations in non-anes-
thetized mice Rangroo Thrane et al. [20] concluded that 
over-activation of NKCC1 in these neurons compromised 
inhibitory neurotransmission, which could be prevented by 
bumetanide. The plasma ammonia concentrations (4 mM) 
were one order of magnitude larger than those seen in 
hepatic encephalopathy, all animals died within 1 h, and 
death was only postponed by ~10 min by bumetanide treat-
ment. This study is accordingly relevant for the acute and 
deadly toxicity caused by ingestion of very high concen-
trations of ammonia. This does not exclude that neuronal 
NKCC1 stimulation may contribute to the pathophysiology 
of hepatic encephalopathy, although the decreased inhibi-
tory transmission is in disagreement with the increased 
GABA formation demonstrated by Leke et al. [75, 76]. 
However, the concern expressed by Hadjihambi et al. [165] 
that the expression of NKCC1 also on astrocytes and endo-
thelial cells may produce off-target actions of bumetanide is 
unjustified and in complete disagreement with the beneficial 
effects of NKCC1 inhibition described above.

Endogenous Ouabains

The role of endogenous ouabains in Na+,K+-ATPase-medi-
ated K+ uptake in astrocytes will be briefly discussed, since 
(a) Na+,K+-ATPase is stimulated by both NH4

+ and K+; (b) 
Na+,K+-ATPase activity is required to create the ion gradients 
driving NKCC1 [166]; and (c) stimulation of the Na+,K+-
ATPase by an increased extracellular K+ concentration opens 
a pathway mediated by endogenous ouabains [167]. Because 
simultaneous stimulation of the intracellular Na+-stimulated 
site of the Na+,K+-ATPase is required for its stimulation 
by elevation of the extracellular K+ concentration the K+-
induced stimulation requires a concomitant increase in intra-
cellular Na+ [146, 168–170]. Astrocytes are non-excitable 
cells and their intracellular Na+ concentration is therefore not 
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GABAA receptor complex [197]. The induced sedation may 
be one reason for a therapeutic effect of partial inverse ago-
nists of the benzodiazepine receptor in hepatic encephalopa-
thy [198], but a potential reduction of endogenous ouabains 
might be even more important. This might not only apply 
to such a serious effect as brain swelling but also to rela-
tively early manifestations of hepatic encephalopathy like 
the memory impairment found by Zielinska et al. [125] to 
be caused by deficient cGMP simulation by NPR-2. Since 
marinobufagonin stimulates collagen synthesis [199] it is 
possible that endogenous ouabains even play a role in the 
development of liver cirrhosis.

Concluding Remarks

The symptoms in hyperammonemic diseases depend on 
the concentration of ammonia in the systemic circulation 
and as a consequence in the brain. Ammonia detoxification 

recently been studied by Fedorova et al. [192] in adreno-
cortical and placental cells and found to occur from choles-
terol via the acidic bile acid pathway, which is controlled by 
enzyme mitochondrial sterol 27-hydroxylase (CYP27A1). 
In macrophages the needed cholesterol trafficking from 
the outer to the inner mitochondrial membrane is medi-
ated by a highly regulated multimeric protein complex. 
This complex comprises mitochondrial TSPO (transloca-
tor protein 18 KDa or mitochondrial peripheral benzodi-
azepine receptor) and VDAC (voltage-dependent anion 
channel) together with additional proteins [193, 194]. 
TSPO is expressed in both astrocytes and microglia [195]. 
In cultured retinal microglia its antagonists Ro5-4864 and 
PK11195 both decrease ROS production, whereas only 
Ro5-4864 decreases TNFα [196]. TSPO is activated in 
hyperammonemic animals and in brain tissue from patients 
with hepatic encephalopathy, resulting in increased synthe-
sis of allopregnanolone and tetrahydrodeoxycorticosterone, 
neurosteroids which have positive modulatory effect on the 

Fig. 6 Ammonia-induced ERK phosphorylation, ROS production 
and cell swelling is inhibited by canrenone, an inhibitor of ouabain. 
a Astrocyte cultures grown as described in legend of in Fig. 3 were 
incubated with 0 or 3 mM NH4Cl in the absence (control: no NH4Cl, 
no canrenone) or presence of 100 mM canrenone for 20 min. a1 
Immunoblots from a representative experiment. Similar results were 
obtained from three independent experiments using cultures from 
three different batches. Bands of 44 and 42 kDa represent p-ERK1 
(phosphorylated ERK1) and p-ERK2 (phosphorylated ERK2), respec-
tively (upper rows), or total ERK1 and ERK2 (lower rows). Average 
ERK phosphorylation was quantitated as ratios between p-ERK1/2 and 

ERK1/2 (a2). The ratio between p-ERK1/2 and ERK1/2 in control group 
was designated a value of one. S.E.M. values are indicated by vertical 
bars. b Cells were incubated as in (a) for 2 h. ROS was determined 
as fluorescence intensity of oxidized carboxy-H2DCFDA. Fifteen and 
twenty cells were selected in each coverslip, and three coverslips were 
used in each experimental group. c Cells were incubated as in (a) for 
12 h Cell volume was determined as fluorescence intensity of calcein. 
Fifteen and twenty cells were selected in each coverslip, and three cov-
erslips were used in each experimental group. *Statistically significant 
(P < 0.05) difference from control group. From Dai et al. [144]
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