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Abstract Human SH-SY5Y neuroblastoma cells maintain

their potential for differentiation and regression in culture

conditions. The induction of differentiation could serve as a

strategy to inhibit cell proliferation and tumor growth. Pre-

vious studies have shown that differentiation of SH-SY5Y

cells can be induced by all-trans-retinoic-acid (RA) and

cholesterol (CHOL). However, signaling pathways that lead

to terminal differentiation of SH-SY5Y cells are still largely

unknown. The goal of this study was to examine in the RA

and CHOL treated SH-SY5Y cells the additive impacts of

estradiol (E2) and brain-derived neurotrophic factor (BDNF)

on cell morphology, cell population growth, synaptic vesicle

recycling and presence of neurofilaments. The above fea-

tures indicate a higher level of neuronal differentiation. Our

data show that treatment for 10 days in vitro (DIV) with RA

alone or when combined with E2 (RE) or CHOL (RC), but

not when combined with BDNF (RB), significantly

(p\ 0.01) inhibited the cell population growth. Synaptic

vesicle recycling, induced by high-K? depolarization, was

significantly increased in all treatments where RA was

included (RE, RC, RB, RCB), and when all agents were

added together (RCBE). Specifically, our results show for the

first time that E2 treatment can alone increase synaptic

vesicle recycling in SH-SY5Y cells. This work contributes to

the understanding of the ways to improve suppression of

neuroblastoma cells’ population growth by inducing matu-

ration and differentiation.
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Abbreviations

AChE Acetylcholinesterase

Arc Activity-regulated cytoskeleton associated

protein

BDNF Brain-derived neurotrophic factor

CHOL Cholesterol

CO2 Carbon dioxide

CTNF Corrected total neurofilament fluorescence

DIV Days in vitro

E2 Estradiol

ER Estrogen receptor

LTP Long-term potentiation

NF-68 Neurofilament 68 kD

PBS Phosphate-buffered saline

RA All-trans retinoic acid

RB All-trans retinoic acid with BDNF

RC All-trans retinoic acid with CHOL

RCB All-trans retinoic acid with CHOL and BDNF

RCBE All-trans retinoic acid with CHOL, BDNF and E2

RE All-trans retinoic acid with E2

RT Room temperature

TrkB Tropomyosin-related kinase B
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Introduction

Neuroblastoma is the most common extra-cranial solid

malignant tumor of sympathetic nervous system in infants

and young children [1]. Regardless of its stage, until today,

there is no cure or treatment, which could offer good

prognosis for patients [2, 3]. Human SH-SY5Y cell line,

used in this study, is a subclone of SK-N-SH cell line

which was isolated from a bone marrow of a 4 year-old

female patient [4]. SH-SY5Y cells maintain their potential

for regression, which results in aggressive proliferation of

these cells [5]. Novel therapeutic treatments inducing dif-

ferentiation into neuronal cell types could help to improve

the prognosis of children suffering from neuroblastoma [6].

The induction of differentiation could serve as a strategy to

inhibit cell population growth and eventually stop the

tumor growth, as well as induce healthy mature neurons in

patients.

Previous studies have presented that differentiation of

SH-SY5Y cells can be induced by dibutyryl cyclic AMP

[5, 7], 12-o-tetradecanoyl-phorbol-13-acetate [8–13], all-

trans-retinoic-acid (RA) [9, 14–16], brain-derived neu-

rotrophic factor (BDNF) [17–19], vanadate [20], nerve

growth factor [21, 22], cholesterol (CHOL) [23], vitamin

D3, and neuregulin beta1 [24]. The signaling pathways that

lead to terminal differentiation of SH-SY5Y cells, how-

ever, are still largely unknown.

The retinoic acid (RA) is a potent cell differentiating

factor, which through its nuclear receptors affects a vast

range of promoter sites in the neuronal and glial cells in

every step of embryonic and postnatal life [25]. RA-in-

duced differentiation has been shown to inhibit cell pro-

liferation [9], change cellular sodium conductance [15],

enhance the outgrowth of neurites [16], increase the

acetylcholinesterase (AChE) activity [26, 27], and enhance

the synaptic vesicle recycling [23]. However, clinical trials

have demonstrated that treatment with RA alone, or in

combination with interferon alpha, is not enough against

recurrent neuroblastoma in children [28, 29]. Therefore,

new alternative resources for more effective neuronal dif-

ferentiation are needed.

Cholesterol (CHOL) is a necessary component in cell

membranes and important for synaptic structure and

function [30]. It is synthesized by neurons themselves for

their survival and growth. The development of active

synapses requires additional amount of cholesterol that is

shown to be secreted by glial cells (specifically astrocytes)

in the central nervous system [30–32] and by Schwann

cells in the peripheral nervous system [33]. The glia-

derived cholesterol has also been shown to be crucial for

differentiation of dendrites, synaptogenesis, increase in

synaptic protein expression (synapsin-1) and neuronal

activity, and for transmitter release [30, 32, 34, 35]. In pure

human SH-SY5Y cell cultures, the glia-derived cholesterol

is non-existing, and addition of cholesterol is needed in

order to achieve conditions resembling normal neuronal

environment with surrounding glial cells [23].

The brain-derived neurotrophic factor (BDNF) has been

shown to support the survival of neurons and stimulate the

growth and differentiation of new neurons and synapses

[36]. BDNF is a ligand for tropomyosin-related kinase B

(TrkB) receptor, expression of which is lacking in naı̈ve

neuroblastoma cells. However, TrkB receptor expression

and responsiveness to BDNF is induced by RA [37]. The

activation of TrkB by BDNF has been suggested to

enhance neuroblastoma cell survival and resistance to

chemotherapy [38]. BDNF has also been shown to expose

only a modest benefit for RA-induced arrest in a dormant

state [6]. However, the sequential treatment of SH-SY5Y

cells with RA and BDNF has been reported to induce

differentiated, neurotrophic factor-dependent neuron-like

cells [18] and sustained treatment has been reported to

enhance neuronal differentiation of neural progenitor cells

[39]. Moreover, RA-BDNF treatment induces significant

increase in the expression of synaptic genes, brain miRNA,

miRNA biogenesis machinery, and AChE activity, in

comparison to sole RA treatment [19]. These studies

stimulate the interest to further examine the potential

therapeutic competence of BDNF for RA-induced SH-

SY5Y cell differentiation and for treatment of neuroblas-

toma. Disruption of BDNF and its downstream signaling

pathways have been observed in many neurodegenerative

diseases such as Alzheimer’s, Parkinson’s and Hunting-

ton’s diseases [40–42], underlining the importance of

BDNF. However, the results of the role of added exoge-

nous BDNF for differentiation of RA treated SH-SY5Y

cells are still controversial.

Estradiol (17-beta-estradiol, E2), a form of estrogen

hormone, has both acute and long-term effects on a variety

of neuronal cell types. Increase in the number of dendritic

spines and number of excitatory synapses, which are the

slow long-term effects of estradiol, were first detected [43–

45]. The acute effects, which alter the intrinsic and synaptic

physiology of neurons within minutes (reversible depolar-

ization and increased input resistance with a latency of

\1 min in 19.8 % of CA1 neurons tested) were detected

later [46, 47]. Several studies have shown that estrogen

enhances synaptogenesis and synaptic plasticity [48–55],

which properties may be crucial for example in enhancing

memory consolidation [43, 56]. Additionally, estrogen has

been demonstrated to induce synaptic connectivity [52],

enhance NMDA receptor expression and activity [57–66],

and long-term potentiation (LTP) [58, 59, 64, 67].

Several earlier studies have addressed possible signaling
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mechanisms associated with estrogen-induced cellular

functions. Estrogen activates these functions through the

activation of estrogen receptors (ERs), ERa and ERb,
which serve as transcription factors modifying the activity

of target genes [68, 69]. Estrogen has been shown to

increase the key synaptic proteins, e.g. PSD-95, via either

activation of ERa [70], ERb [51], or both [71]. Estrogen is

thought to use both nuclear ERs and plasma membrane

ERs which are usually referred to as classical genomic and

non-genomic pathways [69]. In classical genomic action,

ERs are thought to translocate into nucleus in ligand-de-

pendent manner and acting as a transcription factor of

target genes after prolonged estrogen exposure [72]. In

non-genomic action, estrogen has been shown to activate

the membrane ERs, which rapidly stimulate the membrane-

associated signaling molecules such as PI-3K and MAPK,

resulting in quick increase in protein expression [73, 74].

SH-SY5Y cells have been shown to express both ERa and

ERb [75]. Estrogen has also been shown to stimulate the

activity-regulated cytoskeleton associated protein (Arc)

expression via the MAPK and PI-3K dependent pathway in

SH-SY5Y cells [48]. Arc is known to be induced by neu-

ronal activity and playing a key role in activity-dependent

synaptic plasticity [76]. Its knockdown has been shown to

lead to impairment of long-term memory [77, 78]. How-

ever, the specific role of E2 for inducing differentiation in

human SH-SY5Y neuroblastoma cells is still unknown.

The main goal of the current study was to find a func-

tional combination of substances for effective induction of

differentiation of the SH-SY5Y cells. Based on our earlier

studies, we used RA and CHOL as primary differentiation

treatments [23]. We further investigated the ability of E2

and BDNF to support, and possible enhance, the RA and

CHOL induced neuronal differentiation. We quantified the

individual and additive impacts of BDNF and E2 on the RA

and CHOL-induced neurite outgrowth, presence of neuro-

filament 68, synaptic vesicle recycling and arrest in the

population growth rate of SH-SY5Y neuroblastoma cells

in vitro.

Methods

Maintenance and Differentiation of Cell Cultures

The human SH-SY5Y neuroblastoma cell line (CRL-2266;

American Type Culture Collection, Manassas, VA, USA)

was cultured as previously described [23]. Briefly, the cells

were plated at passage 29–30 with density of 5000 cells/

cm2 on 48-well culture dishes. Cells were cultured and

maintained in 5 % CO2 humidified incubator at 37 �C in

1:1 nutrient mixture F-12K Kaighn’s modification, and

minimum essential medium supplemented with 10 % fetal

bovine serum, 2 mM/L L-glutamine, 1 % antibiotic–an-

timycotic mixture and 1 % non-essential amino acids (all

reagents from GIBCO, Invitrogen, Carlsbad, CA, USA,

unless otherwise stated). Cell differentiation was induced

with 10 lM/L all-trans retinoid-acid (RA), 1 nM/L

17-beta-estradiol (E2), 50 ng/mL brain-derived neu-

rotrophic factor (BDNF), 10 lg/mL cholesterol (3b-hy-
droxy-5-cholestene, CHOL), or with combinations such as

(i) 5 lM/L RA with 5 lg/mL CHOL (RC), (ii) 5 lM/L RA

with 50 ng/mL BDNF (RB), (iii) 5 lM/L RA with 1 nM/L

E2 (RE), (iv) 5 lM/L RA with 5 lg/mL CHOL, and 50 ng/

mL BDNF (RCB), and (v) 5 lM/L RA with 5 lg/mL

CHOL, 50 ng/mL BDNF, and 1 nM/L E2 (RCBE) for 10

DIV (all differentiation reagents from Sigma-Aldrich, St

Louis, MO, USA, unless otherwise stated). Stock solutions

of differentiation substances were diluted in 96 % ethanol;

the final ethanol concentration never exceeded 0.1 % in

cell culture. Control cells were treated with\0.1 % etha-

nol. All used substance concentrations were carefully

evaluated according to already published literature. Sui-

table, least toxic concentrations, also used by other labo-

ratories, were used to enable comparison of our results with

others. All differentiation substances (except BDNF when

used in combinations) were applied with medium exchange

at 1, 3 and 7 DIV. BDNF was applied at 4 and 7 DIV when

used together with RA (RB), RA and CHOL (RCB) or RA,

CHOL and E2 (RCBE). The cell growth, condition, and

morphology were observed with culture microscope

(Olympus CK40) and images were taken at 10 DIV DP10

microscope digital camera system (Olympus, Tokyo,

Japan).

Neurofilament Staining

For detecting the level of differentiation in the neuroblas-

toma cell cultures, the cells were stained at 10 DIV with

neuronal marker NF-68 for neurofilament light polypeptide

(68 kDa, Sigma-Aldrich). Cells were first fixed for 20 min

with 4 % paraformaldehyde (Sigma-Aldrich) in phosphate

buffered saline solution (PBS), washed three times with

PBS and permeabilized in 0.5 % Triton X-100 (J.T. Baker,

Phillipsburg, NJ, USA) for 15 min. After washing with

PBS, the non-specific antibody binding sites were blocked

with 10 % bovine serum albumin (GIBCO) in PBS for

30 min to reduce the background. Cells were then incu-

bated with the primary antibody mouse monoclonal anti-

NF-68 1:200 for 1 h at room temperature (RT; ?22 �C),
rinsed three times with PBS, and then incubated with a

secondary antibody FITC-conjugated goat anti-mouse IgG

1:100 (Sigma-Aldrich) for 30 min at RT. Fluorescence was

visualized with Nikon Eclipse TS100 microscope equipped

with Nikon DS Camera Control Unit DS L-1 and images

were organized with Visio 2010 (Microsoft, WA, USA).
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The intensity of total neurofilament fluorescence (NF-68)

and the intensity of total background fluorescence were

measured from each fluorescence image with ImageJ

software (National Institute of Mental Health, Bethesda,

Maryland, USA) [79]. Corrected total neurofilament fluo-

rescence (CTNF) was calculated from the gathered data in

Excel 2010 (Microsoft, WA, USA) with the method used

previously [80, 81], as follows: The fluorescence of the

neurofilaments of interest was selected using the selection

tool. Area of interest, integrated density, and mean gray

value were calculated from selected areas with ImageJ

software. A region next to the selected neurofilament was

selected as a background value. The CTNF was calculated

by using the following equation CTNF = integrated den-

sity - (area of selected neurofilaments 9 mean fluores-

cence of background readings).

Quantification of Cell Population Growth

The substance-induced changes in the growth rate were

quantified by counting the nuclei of 10 DIV cultured SH-

SY5Y cells in each treatment group. Cell nuclei were

stained with 10 lg/mL Hoechst 33258 (Sigma-Aldrich) for

5 min. Cultures were washed five times in PBS and

mounted on cover slips. Fluorescence results were visual-

ized with Nikon DS Camera Control Unit DS L-1. Images

of each treatment group were analyzed with CellC analysis

software [82], which corrects the image background for

auto-fluorescence by fitting a two-dimensional quadratic

polynomial to the image and subtracts the fitted polynomial

surface from the original image. After this the algorithm

separates the nuclei pixels from background pixels by

global thresholding and produces a binarized image with

white nuclei on a black background. It furthermore sepa-

rates clustered nuclei from each other by marker-controlled

watershed segmentation, which is based on nuclei inten-

sity. Eventually the software removes artifacts, such as

staining residues by discarding objects smaller than 1/10 of

the mean size of all objects. Images were organized with

Microsoft Visio 2010. The obtained nuclei counts and

statistics (see section ‘‘Statistical Analysis’’) were analyzed

and plotted in MATLAB (version 2013b, The Mathworks

Inc., MA, USA).

Quantification of Neurite Length

The SH-SY5Y cells were cultured in CTRL, CHOL, E2,

BDNF, RA, RE, RB, RC and RCBE conditions at 10 DIV.

Neurites were traced from phase contrast images of each

treatment group with NeuronGrowth plugin [83] of the

ImageJ software (National Institute of Mental Health,

Bethesda, Maryland, USA) [79]. The NeuronGrowth

automatically counts the length of traced neurites in pixels

and exports the data. The gathered data and statistics were

analyzed and plotted in MATLAB (version 2013b, The

Mathworks Inc., MA, USA).

Synaptic Vesicle Recycling

The level of synaptic vesicle recycling was verified by

measuring the number of fluorescence puncta in 10 DIV

cultured SH-SY5Y cells. Cells were treated either with

\0.1 % ethanol (CTRL), RA, CHOL, BDNF, E2, or with

their combinations. Cultures were stained with AM1-43

styryl dye (Biotium, Hayward, CA, USA) for detecting

synaptic exo/endocytosis in cells. AM1-43 is a fixable

nerve terminal probe. It is not able to pass through the

membranes, but instead, when cells are depolarized with

high potassium (K?)-Tyrode solution, AM1-43 styryl dye

attaches inside those vesicles, which are ongoing exocy-

tosis. Staining was modified from method previously

described [23, 84, 85]. In the current experiments, the cells

were incubated for 1 min with 4 lmol/L AM1-43,

according to manufacturer’s protocol, with the depolarizing

Tyrode solution including 80 mmol/L K? (80 mmol/L

KCl, 29 mmol/L NaCl, 2 mmol/L MgCl2, 30 mmol/L

glucose, 25 mmol/L HEPES, 2 mmol/L CaCl2). Cells were

further washed several times with SCAS quencher solution

(Biotium, Hayward, CA, USA) at RT to reduce background

fluorescence. Cells were fixed for 20 min with 4 %

paraformaldehyde (GIBCO), permeabilized in 0.01 %

Triton X-100 (J.T. Baker) for 12 min and washed three

times for 1 min in cold PBS. All reagents were from Sigma

Aldrich unless otherwise stated. The fluorescence was

visualized with Nikon Eclipse TS100 microscope equipped

with Nikon DS Camera Control Unit DS L-1 and images

were organized with Microsoft Visio 2010. Fluorescence

images of each treatment group were analyzed with ImageJ

analysis software [79] using the following procedural steps

specifically designed to this study: background of the

image was subtracted by setting a rolling ball radius to 50

pixels, after image was sharpened, and then the maxima of

fluorescence puncta were found with noise tolerance of 20

and with the point selection style. This procedure was

evaluated by visual inspection and it was found to be the

best for finding the correct number of AM1-43 puncta from

fluorescence images. The obtained counts of fluorescence

puncta per image were divided by the obtained median

nuclei number (see section ‘‘Quantification of Cell Popu-

lation Growth’’) in particular culture in 10 DIV treatments.

These obtained counts of fluorescence puncta per median

nuclei number and statistics (see section ‘‘Statistical

Analysis’’) were analyzed and plotted in MATLAB (ver-

sion 2013b).

734 Neurochem Res (2016) 41:731–747

123



Summary of the Level of Differentiation

Results are summarized in Table 1, which shows the level

of differentiation induced by different treatments. The level

of differentiation was assessed at least from three samples

from two separate experiments by analyzing the following

features; neurite length, presence of neurofilaments, inhi-

bition in cell population growth rate and synaptic vesicle

recycling. Neurite lengths were detected both visually and,

by using automated methods to support the visual detec-

tion. Other features were defined according to the methods

explained above (see sections ‘‘Neurofilament Staining,

Quantification of Cell Population Growth and Synaptic

Vesicle Recycling’’).

Statistical Analysis

Statistical analysis was performed using One-way ANOVA

in MATLAB (version 2013b). Differences were considered

to be significant when p\ 0.01 or p\ 0.05, different

significances are indicated with ** or * in the figures,

respectively.

Results

Morphology of Differentiated SH-SY5Y Cells

Phase contrast images of SH-SY5Y cultures at 10 DIV

were first visually analyzed for morphological assessment.

In the visual analysis, control cells showed no particular

neurite outgrowth (Fig. 1a), whereas CHOL-treated cells

had a number of short neurites (green arrows in Fig. 1b; see

also Table 1). Cells treated with E2 had very short neurites

(Fig. 1c), which were both fewer and shorter than the

CHOL-induced neurites. The morphology of BDNF treated

SH-SY5Y was relatively polar and cells grew more spread

in the culture dish (Fig. 1d). This differed from control

cells, which grew in clusters (Fig. 1a). No significant out-

growth of neurites was observed after BDNF treatment.

Treatment with RA alone (Fig. 1e) as well as with com-

binations such as RE, RB, RC, RCB or RCBE, induced

branching of longer neurites and detectable network for-

mation (Fig. 1f–j, respectively).

The data show other morphological differences between

the treatments as well. The RE treated SH-SY5Y cells had

Table 1 Summary of differentiation

Treatment� Neurite length Total neurofilament fluorescence Inhibition of cell population growth Synaptic vesicle recycling

CTRL - - - -

CHOL ??** - - -

E2 ?* - - ?*

BDNF - - - -

RA ???** ???** ???** ??**

RE ???** ??* ???** ??**

RC ???** ???** ???** ???*

RB ???** ???** ?? ??**

RCB ???** � � ???*

RCBE ???** ???** � ???*

The criteria for categorizing the neurite length were as follows: - neurites similar to control, ? short neurites without branching and signifi-

cantly longer than in control [p\ 0.05 (*)], ?? intermediate neurites without branching and significantly longer than in control [p\ 0.01 (**)],

??? long neurites with branching and significantly longer than in control [p\ 0.01 (**)] and in CHOL or E2 treatment conditions [p\ 0.01

(**)]. The criteria for categorizing the total neurofilament fluorescence were as follows: - no neurofilament fluorescence, ?? significantly

[p\ 0.05 (*)] increased neurofilament fluorescence compared to control, ??? significantly [p\ 0.01 (**)] increased neurofilament fluores-

cence compared to control. The criteria for categorizing the inhibition of cell population growth were as follows: - the number of cells has not

changed after the treatment, ?? the number of cells decreased (not significantly), ??? the number of cells significantly [p\ 0.01 (**)]

decreased. The criteria for categorizing the amount of synaptic vesicle recycling were as follows: - no significant change in the counts of puncta

in comparison to control, ? significant [p\ 0.05 (*)] increase in the counts of fluorescence puncta in comparison to control, ?? significant

[p\ 0.01 (**)] increase in the counts of fluorescence puncta in comparison to control, ??? significant [p\ 0.05 (*)] increase in the counts of

fluorescence puncta in comparison to RE and RB
� Control (CTRL,\0.1 % ethanol), cholesterol (CHOL; 10 lg/ml), 17-beta-estradiol (E2; 1 nM/L), brain derived neurotrophic factor (BDNF;

50 ng/mL), all-trans retinoic acid (RA; 10 lg/mL), RA with E2 (RE; RA 5 lg/mL, E2 1 nM/L), RA with CHOL (RC; RA 5 lg/mL, CHOL 5 lg/
mL), RA with BDNF (RB; RA 5 lg/mL, BDNF 50 ng/mL), RA with CHOL and BDNF (RCB; RA 5 lg/mL, CHOL 5 lg/mL, BDNF 50 ng/

mL), RA with CHOL, BDNF and E2 (RCBE; RA 5 lg/mL, CHOL 5 lg/mL, BDNF 50 ng/mL, E2 1 nM/L)
� Conclusive data not available
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Fig. 1 Morphology and

network formation of SH-SY5Y

neuroblastoma cells at 10 DIV.

a SH-SY5Y cells were grown

for 10 DIV in control conditions

(CTRL) and with b cholesterol

(CHOL), c estradiol (E2),

d brain-derived neurotrophic

factor (BDNF), e all-trans

retinoic-acid (RA), or with their

combinations f–j RE, RB, RC,
RCB, RCBE, respectively. Data

show that the CHOL treatment

induced short neurites (green

arrows) with many varicosities

(red arrows) (b). E2 induced

few very short neurites in

comparison to CHOL induced

neurites (c). BDNF treatment

did not induce significant

growth of neurites or network

formation (d). RA treatment

generated thin branching

neurites and promoted network

formation (blue arrows, e).
Networks of cells with cell-to

cell contacts (blue arrows) were

always detected when treated

with RA together with f E2

(RE), g BDNF (RB), h CHOL

(RC), i CHOL and BDNF

(RCB), and j CHOL, BDNF,
and E2 (RCBE). Flat substrate-

adherent (S-type) cells were

detected especially when cells

were treated with E2 or BDNF

(orange arrows) (c, d) but also
when cells were treated with RE

(data not shown) or RB (orange

arrows) (g). The RE treated

cells (f) had thinner neurites

than those treated with RCBE

(j) (Color figure online)
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networks of roundish cells with thin neurites without heavy

branching (Fig. 1f). A small number of substrate-adherent

(S-type) flat cells [86] were observed in cultures treated

with RE (data not shown), RB (orange arrows in Fig. 1g)

and RA (data not shown). The RB treatment induced net-

works that consisted of extended contacting neurites, as

well as of cells in direct contact with each other without

neurites. The neurites of the RB treated cells were thicker

in comparison to RE induced neurites. The RC treatment

induced cells with long, branching and connecting neurites

(blue arrows in Fig. 1h). Other cholesterol treated cultures,

such as RCB and RCBE, contained neurons with long

branching neurites and network formation without S-type

cells. More varicosities (red arrows in Fig. 1b) and small

cell clusters (data not shown) were observed in CHOL

treated cultures (CHOL, RC, RCB, RCBE) in comparison

to the control, RE and RB treated groups, in which cells

were more uniformly distributed (data not shown).

Inhibition of Cell Population Growth

The ability of a substance to inhibit the population growth

of human SH-SY5Y cells is one of the indicators of

increased level of differentiation. Therefore, we counted

the numbers of the Hoechst 33258 stained nuclei at 10 DIV

in RA, CHOL, BDNF, E2, RE, RB, and RC treated cell

cultures and compared the results to the number of nuclei

in control conditions. The data demonstrated that CHOL,

E2 or BDNF treatments on their own did not inhibit the cell

population growth (Fig. 2), which, however, was seen

when treated with RA, as well as with RA together with

CHOL (RC) [p\ 0.01(**)] when compared to controls.

Moreover, significant (p\ 0.01 (**) inhibition was also

detected with RA together with E2 (RE) treatment, when

compared to controls (Fig. 2). Interestingly, when cells

were treated with RA and BDNF, no inhibition of growth

was detected (Fig. 2).

Neurite Lengths

The neurites of SH-SY5Y cells were traced from phase

contrast images taken from each experiment at 10 DIV

with NeuronGrowth (see section ‘‘Methods’’), which pro-

vides supportive information of the lengths in addition to

the visual inspection of the cell morphology. In addition to

RA [p\ 0.01 (**)], also with CHOL alone [p\ 0.01 (**)]

and E2 alone [p\ 0.05 (*)] treatments, induced a signifi-

cant increase in the length of neurites in comparison to

control cells at 10 DIV (Fig. 3). Furthermore, the signifi-

cant increase in the neurite length was seen in all
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Fig. 2 Inhibition of cell population growth. Cells were cultured in

control conditions [CTRL (n = 7)], and with CHOL (n = 6), E2

(n = 6), BDNF (n = 6), RA (n = 6), RE (n = 6), RB (n = 6), and

RC (n = 8) (n is the number of analyzed microscopy images) and

the cell nuclei were counted at 10 DIV. In the boxplot representation

the obtained median nuclei counts, 25th and 75th percentiles,

extreme data points, and outliers of the data are shown with red

line, blue edges, black whiskers, and red asterisks, respectively.

Each differentiation agent is shown on the x-axis and the cell nuclei

counts on the y-axis. The statistically significant differences

(p\ 0.01) are shown with asterisks (**). Significantly lower cell

numbers were detected when cells were treated with RA, RE, or RC

in comparison to CTRL data. Slight increase in cell numbers (nuclei

counts) were observed when cells were treated with RB, in

comparison to the cells treated solely with RA. The nuclei counts

of RB treated cultures were not significantly lower in comparison to

CTRL (Color figure online)
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combination treatments such as RE, RB, RC, RCBE

[p\ 0.01 (**)] relative to control conditions (Fig. 3). With

the BDNF treatment alone no increase in the neurite length

was detected.

Presence of Neurofilaments in SH-SY5Y

Neuroblastoma Cells

The level of differentiation of the SH-SY5Y neuroblastoma

cells at 10 DIV was further verified by imaging the NF-68

neurofilaments. The neurofilament fluorescence was

defined by visual inspection and by measuring the intensity

of CTNF, when cells were treated solely with RA, BDNF,

CHOL, or E2 (Fig. 4b–e, respectively) or in combination

with RA and E2 (RE), RA and BDNF (RB), RA and CHOL

(RC), and RA, CHOL, BDNF, and E2 (RCBE) (Fig. 4g–j,

respectively). Both visual and automated image analyses

showed that the presence of the NF-68 neurofilaments was

clearly induced by RA (Fig. 4b). No major increase in NF-

68 fluorescence levels was observed visually or automati-

cally, when cells were treated with BDNF, CHOL or E2

(Fig. 4c–e). However, the intensity of NF-68 fluorescence

was significantly increased in all of the combination

treatments relative to control cells, as shown in Fig. 4g–j,

and in Fig. 5 for RA [p\ 0.01 (**)], RE [p\ 0.05(*)],

RC [p\ 0.01(**)], RB [p\ 0.01(**)] and RCBE

[p\ 0.01(**)].

Differentiation-Induced Synaptic Vesicle Recycling

Our group has earlier shown that RA and RC treated

human SH-SY5Y cells show intense Synaptophysin I

(SypI) fluorescence in cell somata, along the neurites and at

the sites of the cell-to-cell contacts. Furthermore, we have

shown co-localization of SypI and AM1-43 at the end of

the neurites at the cell-to-cell contacts of the RA and RC

differentiated and high K? depolarized human SH-SY5Y

cells [23]. It has been also shown elsewhere that the SH-

SY5Y cells are capable of depolarization with high K?

stimulation [87]. Therefore, high K? stimulation was used

for studying the stimulation-related synaptic vesicle recy-

cling also in this study. The SH-SY5Y neuroblastoma cells

were incubated with E2, CHOL, BDNF, or RA or with their

combinations (RE, RB, RC, RCB and RCBE) and stained

at 10 DIV with AM1-43, a fluorescent styryl dye (a nerve

terminal probe) with the presence of depolarizing high K?-

Tyrode solution. The number of fluorescent puncta,

reflecting the recycling synaptic vesicles, was counted after

depolarization (see Fig. 6 and section ‘‘Methods’’). Treat-

ment with CHOL or BDNF alone does not increase the

number of fluorescence puncta in comparison to CTRL.

Our data show for the first time, that the treatment with E2

alone [p\ 0.05(*)], or RA together with E2 (RE), BDNF

(RB), BDNF and CHOL (RBC) or BDNF, CHOL and E2

(RBCE), [p\ 0.01(**)] significantly increases the number
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Fig. 3 Neurite lengths in SH-SY5Y cells. Cells were cultured in

CTRL conditions, and with CHOL, E2, BDNF, RA, or with their

combinations; RE, RB, RC, RCBE. In the boxplot representation the

obtained median of neurite lengths, the 25th and 75th percentiles, the

extreme data points, and the outliers of the data are shown with red

line, blue edges, black whiskers and red asterisks, respectively. Each

treatment is shown on x-axis and the neurite lengths in pixels on

y-axis. The statistically significant differences (p\ 0.01) and

(p\ 0.05) are shown with asterisks (**) and (*), respectively. The

neurite lengths were significantly longer when cells are treated with

RA, CHOL, RE, RB, RC, and RCBE (p\ 0.01). Interestingly, at 10

DIV, E2 induces only short neurites, but the increase in the neurite

length is still significant in comparison to controls (p\ 0.05).

Moreover, RA induces significantly longer neurites when compared

to CHOL or E2 induced neurite lengths (p\ 0.01) (Color

figure online)
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Fig. 4 The presence of NF-68

neurofilaments in SH-SY5Y

neuroblastoma cells.

Neurofilaments were detected at

10 DIV by immunostaining of

NF-68 (green) and cell nuclei

with Hoechst 33258 (blue). a–
e Combined double staining of

neurofilaments and nuclei in the

SH-SY5Y cells in control

conditions (CTRL), and when

treated with RA, BDNF, CHOL

and E2, show that RA induces

NF-68, seen also in the long

branching neurites. a, f No NF-

68 is seen in CTRL. g–j RE,
RB, RC and RCBE treatments

show presence of

neurofilaments similar to those

with RA alone (Color

figure online)
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of fluorescence puncta when compared to controls. The

results also confirm earlier results from our laboratory that

RA alone, as well as together with CHOL, significantly

[p\ 0.01(**)] increases the number of AM1-43 fluores-

cence puncta in SH-SY5Y cells. This data also indicate a

slight, however not significant, increase in fluorescence

puncta in CHOL treated cultures, but not in BDNF treated

cultures. In particular, we found a significant [p\ 0.05(*)]

increase in cells treated with RCB or RCBE relative to

cultures treated without CHOL (such as RB or RE). These

results demonstrate that in addition to RA and CHOL, also

prolonged treatment with E2 alone stimulates the synaptic

vesicle recycling in SH-SY5Y cells. Highest numbers of

fluorescence puncta were detected when all agents were

combined (RCBE).

Discussion

Despite active research for improving the prognosis of

high-risk neuroblastoma patients over the last decades,

only a few patients become long-term survivors. Outcome

of the stage 4 neuroblastoma remains poor, and the

development of novel therapeutic approaches is needed

[28, 88–91]. Therefore, therapies such as induced

differentiation of cancer cells are important. Retinoic acid

is one of the most prominent inducer of differentiation in

clinical treatments [28, 90]. Therefore, in the current study,

the level of differentiation of human SH-SY5Y cells

towards neuronal type was followed by analyzing the

additive impacts of estradiol (E2/E) and brain-derived

neurotrophic factor (BDNF/B) on cell morphology, neurite

length, presence of neurofilaments, cell population growth

and synaptic vesicle recycling in non-treated controls, as

well as retinoic acid (RA/R) and cholesterol (CHOL/C)

treated cells at 10 days in vitro.

We here confirm our earlier data [23] that the most

potent inducer for differentiation is retinoic acid, especially

with co-treatment with CHOL. Of the four markers of

differentiation (cell population growth, neurite length, total

NF-68 fluorescence and synaptic vesicle recycling) growth

is inhibited only when RA is present. Estradiol (E2), a

predominant form of estrogen hormone, as well as CHOL,

supports this inhibition. Growth rate of the cells treated

with RA together with BDNF (RB) was higher than those,

which were treated with RA alone. BDNF thus opposes the

possibility of cells to undergo RA induced growth inhibi-

tion. Earlier results by other laboratories of the impact of

BDNF, and in particular of the treatment together with RA,

have given controversial results. While some studies show
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Fig. 5 Corrected total NF-68 neurofilament fluorescence (CTNF).

CTNF was analyzed from the control (CTRL) SH-SY5Y cells

(n = 19), and cells treated with RA (n = 38), BDNF (n = 6), CHOL

(n = 6) and E2 (n = 6) and RC (n = 9), RB (n = 14), RE (n = 13)

and RCBE (n = 13) (n is the number of analyzed images). The

obtained median of CTNF, the 25th and 75th percentiles, the extreme

data points, and the outliers of the data are shown in the boxplot with

red line, blue edges, black whiskers and red asterisks, respectively.

Differentiation agents are shown on the x-axis and the CTNF on the

y-axis. The statistical differences between the CTNF data and control

values are shown with asterisks [p\ 0.05(*), and p\ 0.01(**)]. The

automated analysis confirmed that the CTNF was significantly

[p\ 0.01(**)] increased in all other RA treated cultures (RA, RB,

RC, RCB, and RCBE) in comparison to control cultures, except

increased with less significance in the RE treated cultures

[p\ 0.05(*)]. This data show that NF-68 neurofilaments were

induced by RA and further maintained by CHOL, BDNF and E2

(Color figure online)

740 Neurochem Res (2016) 41:731–747

123



Neurochem Res (2016) 41:731–747 741

123



that the RB treatment differentiated the SH-SY5Y cells

[18, 19, 37], other studies show that the activation of TrkB-

BDNF pathway, which is also activated by RB treatment,

can lead to increased cell survival, invasion, metastasis,

angiogenesis and drug resistance [92–96]. Our results of

population growth of RB treated cells are in agreement

with the study by Cernaianu et al. [6], showing that the

effect on proliferation depends on the used concentration of

BDNF, causing either significant inhibition (with 10 ng/

mL BDNF) or no inhibition (with 50 or 100 ng/mL) and

with the study by Nishida et al. [97], where they show that

SH-SY5Y-A cells (American Type Culture Collection; also

used in this study) differentiated in the presence of RA

whereas RA treated SH-SY5Y-E cells (European Collec-

tion of Cell Cultures) require additional BDNF treatment

for full differentiation. This is due to the defects in several

signaling pathways in SH-SY5Y-E cells. In conclusion, the

controversial results in the level of differentiation in some

of the studies might originate from the different subtypes of

SH-SY5Y, as well as from the used BDNF concentrations.

In the light of the current knowledge further examinations

of the properties of BDNF are needed, before considering

the use of BDNF as a therapeutic agent for clinical use.

Long neurites, typical of neuronal morphology, are

found with treatment by retinoic acid, as well as by

cholesterol. We here show, that E2 alone (at 1 nM con-

centration) is able to slightly increase the length of neu-

rites, and when it is combined with RA (RE) or

additionally with CHOL and BDNF (RCBE) neurites’

length is even more enhanced involving also branching and

network formation. It has been earlier demonstrated by

Takahashi et al. [98], that 10 nM E2 induces neurite out-

growth already after 2 DIV, which was not seen in this

study. This difference in the presence of neurites may be

explained by the 10 times difference in the E2 concentra-

tions used. With treatment by BDNF alone, no neurite

outgrowth at 10 DIV was detected. This result is under-

standable based on other reports that 3–5 days’ RA treat-

ment is necessary to induce expression of TrkB receptors,

which are crucial for BDNF induced neurite growth [18,

37]. Agholme et al. [24] have shown, that the RB and RCB

treatments induced longer neurites than treatment with RA

alone, which were not seen in our experiments. We addi-

tionally show, similarly to the results shown in previous

studies, that RA alone [16, 23, 99] or when combined with

CHOL (RC) [23], BDNF (RB) [100], or CHOL and BDNF

(RCB) [24] induce considerable neurite outgrowth and

neuronal networks.

Neurofilaments are major components of the neuronal

cytoskeleton, providing structural support for the axons and

regulating the axon’s diameter. We here show that treat-

ment with RA alone enhances the total light neurofilament

(NF-68) fluorescence. Earlier study from Messi et al. [101]

is in agreement with our results by showing that RA

reduces cell migration and invasiveness and up regulates

NF-68 expression. In addition, it has been shown that

medium size neurofilaments (NF-145-160) are induced by

RA in SH-SY5Y cells [102]. We detected that RA com-

bined to E2 enhanced the total NF-68 fluorescence, though

less than the RC, RB, RCB or RCBE treatments. The

enhancement of total NF-68 fluorescence in human SH-

SY5Y cells by these treatments has not been previously

reported.

Finally, we asked if RA, E2, CHOL and BDNF or their

combinations increase the synaptic vesicle recycling in SH-

SY5Y cells. Results from the current study are interesting,

as in addition to RA, also E2, even when used alone, is able

to significantly increase the number of detected vesicle

recycling after depolarizing cells by high K?-solution. Hu

et al. [103] have shown in cultured neonatal rat cortical

primary cells that E2, produced and secreted by astrocytes,

modulates synaptogenesis and synaptic function by

increasing the synaptic vesicle recycling. In addition, they

showed that added exogenic estradiol mimics this effect of

astrocyte-conditioned medium on synaptic formation and

transmission. Our results here are in agreement with this

study. Chamniansawat and Chongthammakun [48] have

shown that 48 h estrogen treatment significantly increases

the expression of synapse related proteins, such as post-

synaptic dense material 95 (PSD-95) and synaptophysin

(SYP). As they did not see any estrogen induced immediate

bFig. 6 Synaptic vesicle recycling in SH-SY5Y neuroblastoma cells.

a–j Synaptic vesicle recycling was measured by AM1-43 immunos-

taining in the presence of depolarizing high K? containing Tyrode

solution from control cells [CTRL (n = 12)] and cells treated with

CHOL (n = 6), E2 (n = 6), BDNF (n = 6), RA (n = 6), or with their

combinations such as RE (n = 6), RB (n = 6), RC (n = 6), RCB

(n = 6), or RCBE, (n = 9) at 10 DIV (n is the number of analyzed

images). ai–ji Magnified examples of every treatment are shown.

k Number of detected fluorescence puncta. In the boxplot, the

obtained median number of fluorescence puncta, the 25th and 75th

percentiles, the extreme data points, and the outliers of the data are

shown with red line, blue edges, black whiskers and red asterisks,

respectively. Differentiation agents are shown on the x-axis and the

number of AM1-43 fluorescence puncta per obtained median nuclei

number on the y-axis. The statistical differences between the data of

interest and control values are shown as asterisks [p\ 0.05(*), and

p\ 0.01(**)]. The number of fluorescence puncta did not signif-

icantly increase in comparison to CTRL group, when cells were

treated solely with CHOL or BDNF (b, d, k). E2 induced significant

increase [p\ 0.05(*)] in the number of AM1-43 puncta relative to

control group (c, k). The results show that RA alone, as well as RE,

RB, RC, RCB, and RCBE significantly [p\ 0.01(**)] increased the

number of AM1-43 puncta relative to control group (e–j). Addition-
ally, the synaptic vesicle recycling was significantly [p\ 0.05(*)]

increased when cholesterol was present (in RCB and RCBE treated

cultures) when compared to RB or RE treated groups without CHOL

(k). The highest median of number of fluorescence puncta was

detected when neuroblastoma cells were treated with all substances

simultaneously (RCBE) (Color figure online)
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or rapid effects on the PSD-95 and SYP mRNA expression

in SH-SY5Y cells, they concluded that the expressions of

PSD-95 and SYP requires translocalization across ER, as

well as long period of time to activate the target gene

expression in SH-SY5Y cells. This is called classical

genomic action of estrogen, where estrogen partially acts

through PI-3K signaling to activate PSD-95 and SYP

expression. Our data support the hypothesis that prolonged

treatment of E2 enhances endo/exocytosis and thus pro-

motes synaptic vesicle recycling in SH-SY5Y cells.

In the current study, synaptic vesicle recycling is sig-

nificantly enhanced in all combination treatments, where

cholesterol is present (RC, RCB and RCBE). Earlier it has

been shown that the depolarized RC treated cells induced

higher number of AM1-43 positive fluorescence puncta/

cell in comparison to depolarized RA treated cells [23]. We

now show for the first time that this same supra-additive

effect can be observed in addition to depolarized RC

treated cultures also in depolarized RCB and RCBE treated

cultures. Sarkanen et al. [23] found that one aspect possibly

explaining this effect of RA and CHOL is that the RA-

induced fragmentation of Golgi apparatus is avoided by co-

treatment with CHOL. In addition, it has been earlier

shown that RA has antioxidant potential and, that RA

isomers enhance the expression of genes linked with

cholesterol efflux e.g. apoe, abca-1 and abcg-1 proteins in

astrocytes [104]. We know also from other earlier studies

that synaptogenesis is promoted by cholesterol [30],

cholesterol influences multiple aspects of synaptic trans-

mission [105], both presynaptically, by acting on neuro-

transmitter vesicle fusion [106–108] and postsynaptically,

altering neurotransmitter receptor mobility in the mem-

brane [109]. Moreover, it is known that retinoic acid has

been shown to function in homeostatic plasticity as a sig-

naling molecule that increases synaptic strength by a pro-

tein synthesis-dependent mechanism [110]. It is also

known that homeostatic synaptic plasticity may manifest as

altered presynaptic transmitter release and vesicle loading

properties [111, 112]. All above mentioned studies support

our current result of the supra-additive effect of cholesterol

and retinoic acid on increasing the number of AM1-43

fluorescence puncta in SH-SY5Y cells when compared to

cells treated without CHOL.

Earlier and our results indicate that the formation of new

synapses is a complex process requiring the presence of

multiple substances simultaneously. Cholesterol is espe-

cially important as a component of cellular membranes,

regulating membrane structure, fluidity and permeability,

and as a precursor for steroid hormones. The increased

cholesterol efflux has been shown to impair the LTP at the

hippocampal CA1 synapses [34]. This study, together with

our results, indicates the importance of cholesterol in reg-

ulation of synaptic vesicle recycling, neurotransmission,

and regeneration of synapses. Lately, research has also

started to focus on the effects of estradiol (estrogen) on

formation and activity of synapses. A recent study on adult

male rat hippocampal slices shows that estradiol treatment

enhances synaptic transmission and LTP via estradiol

receptor beta (ERb) stimulation. Estradiol activates the

RhoA-GTPase signaling, which causes actin polymeriza-

tion within dendritic spines. The study suggests that

estradiol is able to increase the fast excitatory postsynaptic

potentials and causes a reduction in the threshold for last-

ing synaptic changes. Results of the study further indicate

that the estradiol (similarly to RA) activates the synaptic

TrkB receptors needed for the effects of the BDNF [113].

It is important to review the capacity of neuroblastoma

cells to differentiate into a neuronal cell type and link this

differentiation to those factors, which are normally pre-

sent in neuronal microenvironment. Amongst the various

glial cells in central nervous system, astrocytes are known

to release cholesterol and growth factors and thus promote

different aspects of synapse development [30]. Neurons

depend on import of cholesterol via lipoproteins [35] to

effectively maintain development of new connections via

dendrites, dendritic spines and synapses. The efficacy and

stability of the pre-synaptic transmitter release largely

depends on presence of cholesterol [32]. It is also known

that neurons are able to convert glia-derived cholesterol to

steroids, which then promotes synapse formation [114],

and that astrocytes, in addition to cholesterol also produce

and release estradiol, which enhances neurite growth

[115] and increases synapse number and function [103,

116]. In this study, we investigated whether cholesterol or

estradiol are able to increase synaptic vesicle recycling in

human SH-SY5Y cells, and it was found that estradiol,

even alone, is able to promote synaptic vesicle recycling

in these cells. Cholesterol, in contrast, does that only

when used together with retinoic acid. Our results indicate

the importance of estradiol, cholesterol and retinoic acid

in synaptic function.

The findings reported here have significance for under-

standing the effects of retinoic acid, cholesterol, estradiol

and brain derived neurotrophic factor, either alone or in

combinations in the process of SH-SY5Y neuroblastoma

cell differentiation into neuronal cell type. More than one

agent is clearly necessary to reach this goal in aim to

benefit the differentiation induced therapies.
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