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Abstract Brain serotonergic signaling is coupled to

arachidonic acid (AA)-releasing calcium-dependent phos-

pholipase A2. Increased brain serotonin concentrations and

disturbed serotonergic neurotransmission have been

reported in the Flinders Sensitive Line (FSL) rat model of

depression, suggesting that brain AA metabolism may be

elevated. To test this hypothesis, 14C-AA was intra-

venously infused to steady-state levels into control and

FSL rats derived from the same Sprague–Dawley back-

ground strain, and labeled and unlabeled brain phospho-

lipid and plasma fatty acid concentrations were measured

to determine the rate of brain AA incorporation and turn-

over. Brain AA incorporation and turnover did not differ

significantly between controls and FSL rats. Compared to

controls, plasma unesterified docosahexaenoic acid was

increased, and brain phosphatidylinositol AA and total

lipid linoleic acid and n-3 and n-6 docosapentaenoic acid

were significantly decreased in FSL rats. Several plasma

esterified fatty acids differed significantly from controls. In

summary, brain AA metabolism did not change in FSL rats

despite reported increased levels of serotonin concentra-

tions, suggesting possible post-synaptic dampening of

serotonergic neurotransmission involving AA.
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Abbreviations

5-HT Serotonin

5-HTT 5-HT transporter

a-LNA Alpha-linolenic acid

AA Arachidonic acid

AA-CoA Arachidonoyl-CoA

AUC Area under the curve

ChoGpl Choline glycerophospholipid

cPLA2 Cytosolic phospholipase A2

CSF Cerebrospinal fluid

DFP Diisopropyl fluorophosphate

DHA Docosahexaenoic acid

DOI 2,5-Dimethoxy-4-iodoamphetamine

hydrochloride

GC Gas Chromatography

EtnGpl Ethanolamine glycerophospholipid

DPA Docosapentaenoic acid

EPA Eicosapentaenoic acid

FAME Fatty Acid Methyl Ester

FRL Flinders Resistant Line

FSL Flinders Sensitive Line

LA Linoleic acid

PtdIns Phosphatidylinositol

PdtSer Phosphatidylserine

SFA Saturated fatty acids

MUFA Monounsaturated fatty acids

PUFA Polyunsaturated fatty acids
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SD Sprague–Dawley

SSRI Selective serotonin reuptake inhibitors

TLC Thin Layer Chromatography

Introduction

Reduced serotonergic neurotransmission is one of many

neurochemical disturbances in major depression [1]. This is

evidenced by studies showing reduced serotonin (5-HT)

receptor binding sites in post-mortem hippocampus from

anti-depressant-free depressed suicide victims, compared

to non-depressed controls [2], as well as reductions in

regional binding of serotonin to 5-HT 1A and 2A receptor

subtypes [3, 4]. Serotonin binding to the 5-HT transporter

(5-HTT) is increased in patients with major depression

compared to healthy controls, reflecting reduced synaptic

serotonin clearance [5]. Selective serotonin reuptake inhi-

bitors (SSRIs), such as fluoxetine, are clinically effective in

the treatment of depression, because they increase synaptic

serotonin levels by targeting 5-HTT, thus blocking 5-HT

reuptake from the synaptic cleft [6, 7].

Serotonergic transmission is coupled to group IV calcium-

dependent phospholipase A2 (cPLA2) [8], which selectively

hydrolyzes omega-6 arachidonic acid (AA, 20:4n-6) from the

sterospecifically numbered-2 (sn-2) position of membrane

phospholipids [9]. Using quantitative autoradiography, radi-

olabeled 14C-AA incorporation into rodent brain was reported

to increase following 5-HT2A/2C receptor activation by the

partial agonist, 2,5-Dimethoxy-4-iodoamphetamine

hydrochloride (DOI) [10]. Chronic fluoxetine, which increa-

ses synaptic serotonin levels by targeting 5-HTT, increased

brain AA incorporation and turnover, in association with

increased cPLA2 activity [11–13]. The increase in AA

incorporation following activation of serotonergic neuro-

transmission reflects post-synaptic coupling between AA-re-

leasing cPLA2 and 5-HT neuroreceptors [8, 14, 15].

The Flinders Sensitive Line (FSL) rat is a well-charac-

terized genetic animal model of human depression obtained

by selective breeding of Sprague Dawley (SD) rats for

increased sensitivity to the anticholinesterase agent diiso-

propyl fluorophosphate (DFP) [16, 17]. This animal model

shows face, construct and predictive validity, in that

depressive-like symptoms and disturbances in serotonergic

neurotransmission are reversed by SSRIs [18]. Behavioral

characteristics of FSL rats include anhedonia, reduced

locomotion and activity, sleep disorders and cognitive

impairment, which are improved by chronic treatment with

antidepressants such as desipramine, fluoxetine, imipra-

mine or sertraline [17].

Serotonergic function is impacted in FSL rats. Com-

pared to SD controls, FSL brains show reduced 5-HT

synthesis [19], three to eightfold increased concentration of

serotonin and its 5-hydroxyindoleacetic acid metabolite in

the nucleus accumbens, prefrontal cortex, hippocampus

and hypothalamus [20], reduced 5-HTT density [7],

decreased 5HT1A receptors and increased 5HT1B receptors

[21, 22]. Compared to a control strain less sensitive to DFP,

the Flinders Resistant Line (FRL), FSL rats were reported

to have reduced mRNA expression of 5-HT2A in perirhinal

cortex, piriform cortex and medial anterodorsal amygdala

nucleus, and increased 5-HT2A mRNA in hippocampal

CA2 and CA3 regions [23]. The FSL rats also show

reduced cholinergic [17, 24], noradrenergic [25] and

dopaminergic [26] neurotransmission and increased gluta-

matergic transmission [27] compared to SD controls.

Brain AA composition is altered in FSL rats, suggesting

a link between depression and brain lipid metabolism.

Green et al. [28, 29] reported increased brain AA fractional

concentrations (i.e. percent of total fatty acids) and AA-

containing phosphatidylcholine in hypothalamus, nucleus

accumbens, prefrontal cortex or striatum of FSL rats

compared to controls. Changes in brain AA concentrations

could be linked to disturbed AA-metabolizing cPLA2 and

reduced serotonergic transmission in FSL rats.

In view of the coupling between serotonergic neuro-

transmission and AA-releasing cPLA2 [8], and disturbed

serotonergic neurotransmission associated with regional

three to eightfold increases in brain serotonin concentra-

tions in FSL rats [20], we hypothesized that brain AA

turnover, a marker of AA signaling, would increase in the

FSL model of depression. Changes in brain AA metabo-

lism were expected also because of the reported changes in

brain AA fractional concentrations in FSL rats [28, 29].

We used the in vivo kinetic method developed by

Rapoport and colleagues [30, 31] to measure brain AA

incorporation and turnover in FSL and non-littermate SD

control rats. Radiolabeled 14C-AA was infused intra-

venously for 5 min in unanaesthetized FSL and SD control

rats, and brain and plasma unlabeled fatty acid and acyl-

CoA concentrations, as well as labeled AA and arachi-

donoyl-CoA (AA-CoA) concentrations were measured to

calculate turnover. We found no significant differences in

brain AA incorporation or turnover between FSL and SD

rats.

Materials and Methods

Animals

Experiments were conducted in accordance with the

National Institutes of Health guidelines for animal care

(Publication no. 86-23) and followed a protocol approved

by the Animal Care and Use Committee of the Eunice

Kennedy Shriver National Institute of Child Health and
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Human Development. Adult FSL rats were obtained from

Duke University (Durham, NC, USA). Male SD rats

(Harlan Laboratories, Indianapolis, IN, USA) were used as

controls. The FSL colony was established by selective

breeding of SD rats, based on their sensitivity to the

cholinergic agent DFP [17, 32]. FSL rats were obtained

from a breeding colony established at Duke University by

Dr. Amir H. Rezvani.

Initially, seven control and seven FSL male rats were

obtained at 8 weeks of age. Two of the FSL rats turned out

to be females because they gave birth when they arrived at

the NIH vivarium. They and their pups were therefore

euthanized. The remaining animals were sexed and con-

firmed to be males.

SD and FSL rats were housed (3–4 per cage) in an

animal facility with regulated temperature, humidity and

light cycle (12 h dark cycle) until they reached

16–17 weeks of age. They had free access to water and

food. Rats were fed the 5001 diet (LabDiet, Richmond, IN,

USA) which contained (as % total fatty acid): 33.5 %

saturated fatty acids, 32.1 % monounsaturated fatty acids,

29.6 % linoleic acid (LA, 18:2n-6), 2.2 % a-linolenic acid

(a-LNA, 18:3n-3), 1.5 % eicosapentaenoic acid (EPA,

20:5n-3) and 1.1 % docosahexaenoic acid (DHA, 22:6n-3),

which was the diet used in the Duke University facility.

The fatty acid composition of the diet was determined by

gas-chromatography following extraction of total lipids

from food pellets using chloroform:methanol (2:1, v:v) and

transesterification with 1 % H2SO4 in methanol as previ-

ously reported [33].

Surgical Procedure and Tracer Infusion

Rats were anesthetized with isofluorane (10 % O2) and

polyethylene catheters (PE50, Clay Adams, Becton–Dick-

inson, Sparks, MD, USA) filled with heparinized saline

were inserted surgically into the right femoral vein and

artery [31]. Animals recovered from anesthesia for

approximately 4 h in a temperature-controlled recovery

chamber maintained at 25 �C, while body temperature was

maintained at 37 �C with a rectal probe and a feedback

heating element (TACT-2DF Temperature controller;

Physitemp Instruments, Clifton, NJ, USA).

Before infusion, heart rate and blood pressure were

monitored using a CyberSense monitor (BPM01 CyQ 302,

Nicholasville, KY, USA). Rats were infused intravenously

for 5 min with 170 lCi/kg [1-14C]AA (50 mCi/mmol,

[98 % pure; Moravek Biochemicals, Brea, CA, USA) dis-

solved in HEPES buffer (pH 7.4) containing 50 mg/kg fatty

acid-free bovine serum albumin (BSA, Sigma) [34]. The

tracer was infused at a rate of 0.223(1 ? e-0.032t) ml/min

(t = s) with a computer-controlled variable rate infusion

pump (No. 22; Harvard Apparatus, South Natick, MA,

USA), to achieve a steady-state plasma specific activity

within 1 min [35]. The 5-min infusion paradigm was used

because a previous study showed that more than 90 % of

radiolabeled AA that enters the brain is esterified within

1 min into brain phospholipids [35]. Blood samples were

collected at different time points (0, 15, 30, 45, 90, 180, 240,

and 300 s) during infusion. Five minutes after infusion, the

rats were anesthetized using sodium pentobarbital (50 mg/

kg, i.v.) and subjected to head-focused microwave irradia-

tion (5.5 kW, 4.8 s, Cober Electronics, Norwalk, CT, USA)

to stop brain lipid metabolism [36, 37]. The brains were

quickly excised, separated into two hemispheres, frozen on

dry ice and stored at -80 �C until further analysis.

Lipid Extraction and Separation

Total lipids from plasma samples collected at 5 min infu-

sion, and from one brain hemisphere, were extracted using

the Folch procedure [38]. After addition of unesterified

heptadecanoic acid (17:0) as an internal standard, lipid

extracts from plasma were separated into neutral lipid

classes by thin layer chromatography (TLC) on silica plates

(Silica gel 60A TLC plates, Whatman, Clifton, NJ, USA)

using heptane:diethylether:acetic acid (60:40:3, v:v) [39].

Phospholipid classes from brain lipid extracts were sepa-

rated using chloroform:methanol:H2O:acetic acid

(60:50:4:1, v:v) [40], and choline glycerophospholipids

(ChoGpls), phosphatidylserine (PtdSer), ethanolamine

glycerophospholipids (EtnGpls) and phosphatidylinositol

(PtdIns) were identified by running standards in parallel

with the samples. The lipid bands were visualized under

ultraviolet light after spraying the plates with 0.03 % (w/v)

6-p-toluidine-2-naphthalene sulfonic acid (Acros, Fair-

lawn, NJ, USA) in 50 mM Tris buffer (pH 7.4). Each band

was scraped, and the silica gel was used directly to quantify

radioactivity by scintillation counting or to prepare fatty

acid methyl esters (FAMEs) as described below.

Quantification of Plasma and Brain Radioactivity

Radioactivity in plasma total lipid extracts collected over

the course of the 5 min infusion and brain phospholipids

and acyl-CoAs was determined using a liquid scintillation

analyzer (2200CA, TRI-CARB�; Packard Instruments,

Meriden, CT, USA).

FAME Preparation and Analysis by Gas

Chromatography

Scrapes collected from TLC were heated in 1 % H2SO4 in

methanol at 70 �C for 3 h to produce FAMEs, which were

separated on a SP-2330 fused silica capillary column

(30 m 9 0.25 mm inner diameter, 0.25 lm film thickness)
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(Supleco, Bellefonte, PA, USA), using gas chromatography

(GC) equipped with a flame ionization detector (6890 N,

Agilent Technologies, Palo Alto, CA, USA). The run

temperature started at 80 �C, was ramped up at 10 �C/min

to 150 �C, and 6 �C/min to 200 �C, held at 200 �C for

10 min and increased to 240 �C for a total run time of

38 min. Fatty acid concentrations (nmol/g brain or nmol/ml

plasma) were calculated by comparison of the GC peak

areas to the 17:0 internal standard area.

Quantification of Acyl-CoA

Acyl-CoAs were extracted from the remaining microwaved

half-brains by the method of Deutsch et al. [41]. 10 nmol

17:0-CoA was added as a surrogate standard to a weighed

half-brain before homogenization by sonication in 2 mL of

25 mM potassium phosphate. Proteins were precipitated

with saturated ammonium sulphate and gentle shaking.

Four mL acetonitrile were added and the sample was

shaken for 10 min before centrifugation. The upper phase

was collected and diluted with 10 mL of 25 mM potassium

phosphate and passed three times though an activated

oligonucleotide purification cartridge (ABI MasterpieceTM,

OPC�, Applied Biosystems, Foster City, CA, USA). The

cartridge was washed with 10 mL of 25 mM potassium

phosphate. Acyl-CoAs were then eluted using 500 lL

elution buffer containing 75 % isopropanol/25 % 1 mM

glacial acetic acid (v:v). Samples were dried under N2 and

reconstituted in 100 lL elution buffer for high performance

liquid chromatography (HPLC) analysis. Extracted acyl-

CoA were separated on a reverse phase HPLC column

(Symmetry C-18, 5 lm particle size, 250 9 4.6 mm,

Waters Millipore, Milford, MA, USA), using HPLC

(Beckman, Fullerton, CA, USA) coupled with a UV/VIS

detector (Model 168, System Gold, Beckman). HPLC

conditions were set to a 1 ml/min gradient system com-

posed of (A) 75 mM potassium phosphate and (B) ace-

tonitrile. The gradient was set initially at 44 % B for 1 min,

then 48 % over 25 min, and 70 % for 5 min. The gradient

was maintained at 70 % for 9 min, decreased to 44 % over

4 min and was held at 44 % for 4 min. Peak identification

was performed with UV set at 280 and 260 nm. Acyl-CoA

species were identified by running authentic standards, and

quantitated by integration of the HPLC peaks relative to the

17:0-CoA standard (UV detection at 260 nm). The

arachidonoyl-CoA (AA-CoA) peak was collected to mea-

sure its radioactivity by scintillation counting.

Calculations

The Rapoport in vivo model used to quantify brain fatty

acid kinetic parameters is described in detail elsewhere [30,

42]. Unidirectional incorporation coefficients, ki
*

(ml s-1 g-1) of AA, representing incorporation from

plasma into brain lipid i, were calculated as follows:

k�i ¼
C�
br;i Tð Þ

r
T
0 C

�
pldt

ð1Þ

Cbr,i
* (T) (nCi g-1) represents radioactivity of brain lipid i at

the end of the infusion T = 5 min, t is time after starting

infusion, and Cpl
* (nCi ml-1) is the plasma concentration of

labeled unesterified AA during infusion. Integrals of

plasma radioactivity were determined by trapezoidal inte-

gration. Since brain AA synthesis from its precursor LA

(18:2n-6) is minimal [43], the rate of incorporation Jin,i
(nmol s-1 g-1) of plasma unesterified AA into brain lipid i,

represents the rate of metabolic loss of AA by the brain,

and is calculated as follows:

Jin;i ¼ k�i Cpl ð2Þ

Cpl(nmol ml-1) is the concentration of unlabeled unester-

ified AA in plasma. The ‘‘dilution factor’’ k, defined as the

steady-state ratio during [1-14C]AA infusion of the specific

activity of the brain arachidonoyl-CoA (AA-CoA) pool to

the specific activity of plasma unesterified AA, was

determined as follows:

k ¼
C�
br;acyl�CoA=Cbr;acyl�CoA

C�
pl=Cpl

ð3Þ

Net rates of incorporation of unlabeled unesterified AA

from brain AA-CoA into brain lipid i, JFA;i (nmol s-1 g-1)

equals:

JFA;i ¼
Jin;i

k
ð4Þ

The fractional turnover of AA within phospholipid i, due

to deacylation and reacylation, FFA;i (% h-1) is defined as:

FFA;i ¼
JFA;i

Cbr;i
ð5Þ

Data Handling and Statistical Analysis

One FSL rat died during the 14C-AA infusion of unknown

causes. Two control rats were not successfully infused to

steady-state, as evidenced by the lack of radioactivity in the

plasma of one rat, and another rat which showed delayed

appearance of the tracer in its plasma (after 30 s) due to the

presence of blood clots in the venous catheter line. These

animals were therefore excluded from the study.

Results were expressed as mean ± SD, for n = 5 con-

trols and 4 FSL rats. Data were compared using Student

t test (GraphPad Prism software, San Diego, CA, USA) and

statistical significance was considered at P\ 0.05.
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Results

Physiological Parameters

Body weight was significantly higher in FSL rats than

control SD rats (Table 1). Mean arterial blood pressure,

heart rate and body temperature did not differ significantly

between the two groups (Table 1).

Plasma Kinetics

Plasma radioactivity, measured over the 5 min 14C AA

infusion period, reached steady state for both groups after

45 s (Fig. 1). The total area under the curve (AUC) for

plasma 14C-AA concentration did not significantly differ

between FSL and control rats (147,467 ± 27,017 for 4 FSL

rats and 177,188 ± 18,840 for 5 controls, P = 0.092).

Plasma Fatty Acid Concentrations

As shown in Table 2, plasma unesterified fatty acid con-

centrations did not significantly differ between control and

FSL rats, except for DHA concentration which was sig-

nificantly higher in FSL rats compared to controls (?36 %,

P\ 0.05).

Supplementary Table 1 shows esterified plasma fatty

acid concentrations. Total phospholipid and cholesteryl

ester fatty acid concentrations were higher by 74 and 39 %,

respectively, in FSL rats than controls (P\ 0.05). Within

plasma phospholipids, stearic acid (18:0), palmitoleic acid

(18:1n-7), AA, n-6 DPA and DHA were significantly

increased by 34–98 % in FSL compared to control rats.

Cholesteryl ester a-LNA was decreased by 45 % and AA

was increased by 57 %.

Brain Fatty Acid Concentrations

Brain total lipid LA, n-3 DPA and n-6 DPA concentrations

were significantly decreased by 11–21 % in FSL rats.

PtdIns AA concentration was significantly reduced by

5.2 % in FSL rats compared to controls, as was total n-6

PUFA concentration (P\ 0.05). There were no significant

differences in fatty acid concentrations within brain

ChoGpls, EtnGpls, PtdSer and unesterified fatty acids,

between control and FSL rats (Table 3).

Table 1 Physiological parameters

Control (n = 7) FSL (n = 5)

Age (weeks) 16.0 ± 0.0 17.0 ± 2.0

Body weight (g) 373.6 ± 32.9 445.0 ± 30.5*

Mean Arterial blood

pressure (mm Hg)

137.3 ± 6.2 141.9 ± 10.7

Heart rate (beats/min) 466.5 ± 16.4 423.7 ± 65.7

Body temperature (�C) 37.7 ± 0.6 37.8 ± 0.8

Values are mean ± SD; * P\ 0.05 as determined by an unpaired

t test comparison
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Fig. 1 Plasma radioactivity during the 5 min of [1-14C] AA intra-

venous infusion

Table 2 Unesterified fatty acid concentrations in plasma

Fatty acid Plasma unesterified fatty acids (nmol/mL)

Control (n = 5) FSL (n = 4)

(nmol/ml plasma)

16:0 184.8 ± 25.6 204.0 ± 33.5

16:1 n-9 18.3 ± 3.4 27.1 ± 14.2

18:0 74.6 ± 10.0 80.4 ± 7.5

18:1n-9 156.6 ± 20.8 165.8 ± 36.8

18:1n-7 21.4 ± 2.4 21.5 ± 3.2

18:2n-6 174.7 ± 23.1 149.7 ± 26.4

18:3n-3 13.4 ± 1.8 11.7 ± 2.7

20:4n-6 29.6 ± 4.8 27.6 ± 3.9

20:5n-3 0.8 ± 0.2 0.7 ± 0.3

22:4n-6 2.6 ± 0.5 2.4 ± 1.4

22:5n-6 3.0 ± 0.6 3.4 ± 0.3

22:5n-3 5.5 ± 1.1 6.3 ± 1.4

22:6n-3 11.3 ± 2.2 15.4 ± 2.6*

Total 696.6 ± 88.5 715.9 ± 113.9

SFA 259.4 ± 34.3 284.4 ± 28.6

MUFA 196.4 ± 25.0 214.4 ± 53.3

PUFA 240.8 ± 31.0 217.2 ± 34.8

n-6 PUFA 209.8 ± 26.6 183.1 ± 29.5

n-3 PUFA 31.0 ± 4.9 34.0 ± 6.1

Values are mean ± SD; * P\ 0.05 as determined by an unpaired

t test comparison; SFA saturated fatty acids, MUFA monounsaturated

fatty acids, PUFA polyunsaturated fatty acids
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Table 3 Fatty acid concentrations (nmol/g wet weight) in brain lipids

Fatty acid Total lipids Unesterified fatty acids

Control (n = 5) FSL (n = 4) Control (n = 5) FSL (n = 4)

(nmol/g brain) (nmol/g brain)

16:0 26,957.6 ± 554.0 27,121.3 ± 537.7 81.8 ± 17.5 76.7 ± 7.1

18:0 30,899.5 ± 674.7 31,521.3 ± 894.7 80.8 ± 15.9 78.1 ± 6.6

18:1n-9 27,584.3 ± 957.1 29,722.7 ± 2977.3 15.7 ± 3.1 15.7 ± 2.8

18:1n-7 6153.8 ± 108.0 6742.0 ± 754.8 3.2 ± 0.7 3.4 ± 0.8

18:2n-6 1208.1 ± 67.1 1072.9 ± 96.7* 4.5 ± 1.5 3.7 ± 0.8

18:3n-3 ND ND 0.6 ± 0.2 0.4 ± 0.1

20:4n-6 14,685.9 ± 325.6 14,943.0 ± 1590.9 6.5 ± 1.5 6.1 ± 1.0

20:5n-3 68.5 ± 5.3 60.3 ± 35.2 ND ND

22:4n-6 2231.2 ± 735.3 2076.5 ± 320.9 6.6 ± 1.5 6.4 ± 1.0

22:5n-6 4762.9 ± 129.2 4254.0 ± 181.1** 1.6 ± 1.5 1.7 ± 0.5

22:5n-3 306.6 ± 15.4 241.2 ± 36.9** 0.6 ± 0.6 0.3 ± 0.1

22:6n-3 20,282.4 ± 413.4 19,827.8 ± 539.6 7.6 ± 2.3 7.2 ± 1.5

Total 136,872.3 ± 2328.0 139,381.6 ± 4294.7 211.3 ± 38.1 201.7 ± 15.4

SFA 57,857.0 ± 1127.4 58,642.5 ± 1424.6 162.7 ± 33.3 154.8 ± 13.4

MUFA 33,738.1 ± 1045.3 36,464.7 ± 3731.2 18.9 ± 3.8 19.1 ± 3.6

PUFA 45,277.1 ± 1110.7 44,274.4 ± 1175.0 29.7 ± 7.2 27.8 ± 3.8

n-6 PUFA 22,888.1 ± 1013.3 22,346.4 ± 1275.5 19.2 ± 4.6 18.0 ± 2.5

n-3 PUFA 22,389.0 ± 363.5 21,927.9 ± 516.4 10.5 ± 2.9 9.8 ± 1.5

Fatty acid Choline Glycerophospholipids (ChoGpls) Phosphatidylinositol (PtdIns)

Control (n = 5) FSL (n = 4) Control (n = 5) FSL (n = 4)

(nmol/g brain) (nmol/g brain)

16:0 20,935.7 ± 616.8 21,322.8 ± 882.1 517.0 ± 25.4 558.6 ± 96.8

18:0 7170.7 ± 191.7 7502.6 ± 357.2 2158.8 ± 37.8 2114.8 ± 185.5

18:1n-9 11,746.0 ± 391.4 12,127.3 ± 678.5 854.2 ± 35.7 875.5 ± 173.3

18:1n-7 3210.5 ± 129.8 3352.9 ± 283.8 211.1 ± 12.1 226.0 ± 51.0

18:2n-6 466.9 ± 23.6 432.8 ± 25.7 43.5 ± 2.3 38.3 ± 5.6

18:3n-3 ND ND ND ND

20:4n-6 2972.4 ± 55.9 3136.1 ± 719.1 2099.2 ± 51.7 1990.9 ± 54.3*

20:5n-3 11.7 ± 1.6 11.6 ± 3.9(n = 2)a ND ND

22:4n-6 8.9 ± 2.3 10.9 ± 8.8 7.9 ± 2.8 10.4 ± 2.8

22:5n-6 353.6 ± 79.8 329.7 ± 17.7 78.5 ± 8.3 77.7 ± 15.7

22:5n-3 49.0 ± 4.3 44.2 ± 3.4 5.3 ± 1.1 6.1 ± 1.0

22:6n-3 2206.1 ± 155.2 2126.6 ± 76.2 212.9 ± 22.4 251.9 ± 44.9

Total 49,306.5 ± 1370.4 50,534.8 ± 2052.7 6240.4 ± 115.7 6187.9 ± 604.1

SFA 28,106.4 ± 751.2 28,825.4 ± 1172.6 2675.7 ± 47.0 2673.4 ± 275.0

MUFA 14,956.5 ± 461.2 15,480.3 ± 925.5 1065.3 ± 46.9 1101.5 ± 224.1

PUFA 6243.6 ± 225.4 6229.1 ± 689.0 2499.4 ± 59.9 2413.0 ± 120.5

n-6 PUFA 3801.8 ± 114.5 3909.5 ± 714.2 2229.1 ± 48.6 2117.3 ± 71.5*

n-3 PUFA 2441.8 ± 160.5 2319.6 ± 87.4 270.3 ± 22.1 295.8 ± 54.0
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Brain Acyl-CoA Concentrations

There were no significant differences in 14:0, 16:0, 18:0,

18:1 n-9, 18:2 n-6, AA or DHA acyl-CoA concentrations

between FSL rats and controls (Table 4). There was no

change in specific activity of 14C-AA-CoA between the

groups. The dilution factor k, which measures the ratio of

specific activity of brain 14C-AA-CoA to that of plasma

unesterified 14C-AA, did not significantly differ.

Brain AA Kinetics

The brain AA incorporation coefficient k* (Eq. 1) did not

differ significantly between FSL and control rats, in total

phospholipids and individual phospholipid subclasses

(Table 5). The incorporation rate of AA from plasma Jin,I
was calculated from Eq. 2, and did not differ significantly

between the groups.

There was no significant change in the rate of incorpo-

ration JFA of brain unesterified AA from the AA-CoA pool

into phospholipids (Eq. 5) or in brain AA turnover FFA

(Table 6).

Discussion

This study showed no significant differences in brain AA

incorporation or turnover in the FSL rat model of depres-

sion compared to SD controls. Plasma unesterified DHA,

Table 4 Brain acyl-CoA concentrations and k

Acyl-CoA in

brain (nmol/g brain)

Control (n = 5) FSL (n = 4)

(nmol/ml plasma)

14:0-CoA 3.6 ± 1.8 3.0 ± 1.6

16:0-CoA 19.5 ± 6.5 21.0 ± 8.6

18:0-CoA 11.1 ± 3.4 15.5 ± 9.0

18:1n-9-CoA 25.1 ± 8.1 30.6 ± 12.6

18:2n-6-CoA 3.2 ± 1.1 2.5 ± 0.8

DHA-CoA 4.7 ± 3.3 4.2 ± 1.8

AA-CoA 3.1 ± 1.1 3.7 ± 1.5

14C AA – CoA (nCi/g brain) 1.5 ± 0.4 1.4 ± 0.6

ka 0.04 ± 0.01 0.04 ± 0.03

Values are mean ± SD
a k (Eq. 3) is the steady-state ratio during 14C-AA infusion of specific

activity of brain AA-CoA pool to specific activity of plasma unes-

terified AA

Table 3 continued

Fatty acid Phosphatidylserine (PtdSer) Ethanolamine Glycerophospholipids (EtnGpls)

Control (n = 5) FSL (n = 4) Control (n = 5) FSL (n = 4)

(nmol/g brain) (nmol/g brain)

16:0 382.8 ± 30.8 580.4 ± 309.2 2531.2 ± 313.7 2570.3 ± 96.5

18:0 7895.5 ± 383.5 8768.8 ± 839.1 8077.8 ± 235.8 8569.1 ± 406.0

18:1n-9 3732.8 ± 208.7 4293.1 ± 679.1 8393.9 ± 828.4 9844.2 ± 1499.0

18:1n-7 350.0 ± 49.0 415.9 ± 82.9 1756.0 ± 692.8 1749.8 ± 273.3

18:2n-6 34.7 ± 3.4 33.2 ± 3.4 289.0 ± 103.3 338.4 ± 22.7

18:3n-3 ND ND ND ND

20:4n-6 594.5 ± 47.3 674.5 ± 79.0 6395.6 ± 293.1 6772.4 ± 974.6

20:5n-3 ND ND 34.2 ± 6.1 30.6 ± 6.5

22:4n-6 8.6 ± 1.0 6.9 ± 2.3 18.5 ± 9.4 31.3 ± 22.6

22:5n-6 700.6 ± 31.2 644.4 ± 46.0 3030.7 ± 133.1 2834.7 ± 160.0

22:5n-3 39.1 ± 1.9 38.0 ± 3.0 158.3 ± 13.4 155.3 ± 23.5

22:6n-3 4526.2 ± 299.5 4413.2 ± 415.7 9976.2 ± 228.0 10,055.9 ± 269.1

Total 18,364.2 ± 822.0 19,963.6 ± 1318.9 40,642.9 ± 1902.3 42,941.0 ± 2154.0

SFA 8278.3 ± 404.7 9349.1 ± 985.9 10,609.1 ± 442.3 11,139.4 ± 438.5

MUFA 4082.8 ± 178.4 4709.0 ± 761.4 10,150.0 ± 1517.4 11,593.9 ± 1772.0

PUFA 6003.1 ± 371.5 5905.4 ± 526.2 19,883.9 ± 633.5 20,207.6 ± 832.0

n-6 PUFA 1338.4 ± 74.7 1359.0 ± 124.8 9733.8 ± 494.1 9976.7 ± 876.6

n-3 PUFA 4664.7 ± 300.9 4546.4 ± 411.0 10,150.1 ± 238.9 10,230.9 ± 290.8

Values are mean ± SD; * P\ 0.05; ** P\ 0.01 as determined by an unpaired t test comparison; SFA saturated fatty acids, MUFA

monounsaturated fatty acids, PUFA polyunsaturated fatty acids
a EPA detected in two out of four samples. No statistical comparison was made due to the low sample size for ChoGpl EPA
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cholesteryl ester AA, and phospholipid stearic acid,

palmitoleic acid, AA, n-6 DPA and DHA concentrations

were significantly increased in FSL compared to control

rats, whereas plasma cholesteryl ester a-LNA and brain

PtdIns AA and total lipid LA, n-3 DPA and n-6 DPA

concentrations were decreased in FSL rats. These con-

centration differences likely reflect peripheral and central

changes in PUFA metabolism.

Despite the three to eightfold reported increase in

regional brain serotonin concentrations in FSL rats [20],

brain AA incorporation (k*), incorporation rate (Jin) and

turnover (FFA) did not significantly differ relative to con-

trols, suggesting post-synaptic down-regulation of sero-

tonergic transmission involving AA. This could be related

to altered 5-HT receptor subtype (1A and 1B) density as

reported in FSL rats [21], or changes in 5-HT2A/2C receptor

density, internalization [44] or affinity states [45], which

remains to be confirmed in this model. 5-HT2A mRNA was

reported to decrease or increase in various brain regions of

FSL rats compared to FRL controls, although protein

expression was not measured [23].

The absence of change in AA turnover may also be due

to other neurotransmission systems coupled to AA. Dopa-

mine release was reported to be reduced in nucleus

accumbens of FSL rats following 5HT2C receptor activa-

tion [26], suggesting inverse coupling of 5-HT receptors to

dopaminergic neurotransmission, which is also coupled to

AA-releasing cPLA2 [46, 47]. A similar lack of change in

AA metabolism was reported in dopamine-transporter

knockout mice, in which brain AA incorporation did not

differ from wildtype controls despite a tenfold increase in

extracellular dopamine concentrations relative to controls

[48].

The reported elevations in brain serotonin concentra-

tions in FSL rats were based on whole brain homogenates,

and therefore do not necessarily reflect extracellular levels

[20]. Dremencov et al. [26] reported no difference in

extracellular serotonin concentration in nucleus accumbens

between FSL and SD rats, although extracellular serotonin

levels were not measured in other brain regions. Regional

extracellular brain serotonin distribution and turnover in

relation to post-synaptic AA signaling could be tested in

future studies with micro-dialysis [26] and quantitative

autoradiography [10–12].

Total lipid AA fractional concentrations in hypothala-

mus, nucleus accumbens, prefrontal cortex and striatum

were reported to be elevated in FSL compared to control

rats [29], as was phosphatidylcholine containing AA in

striatum and hypothalamus [28]. We found reduced AA

concentration (nmol/g wet weight) within PtdIns, but not in

other phospholipid fractions. AA fractional concentrations,

calculated by dividing brain total lipid AA by total fatty

acid concentrations, also did not significantly change in our

study (10.7 ± 1.4 FSL vs. 10.7 ± 0.1 SD). Differences in

study outcomes could be related to the fact that we ana-

lyzed whole brain instead of regional AA distribution, or to

Table 5 Incorporation

Coefficient (ki
*) and Rate (Jin,i)

of AA from plasma into brain

phospholipids

k* (ml/g/s 9 10-5) Jin,I (nmol/g/s 9 10-5)

Control (n = 5) FSL (n = 4) Control (n = 5) FSL (n = 4)

Total phospholipid 18.2 ± 4.5 21.7 ± 7.5 526.3 ± 112.5 595.2 ± 211.2

ChoGpl 7.9 ± 0.8 8.6 ± 1.0 230.9 ± 19.0 237.1 ± 41.9

PtdSer 1.0 ± 0.1 1.1 ± 0.3 29.5 ± 5.4 31.2 ± 9.2

PtdIns 7.9 ± 0.8 9.0 ± 1.7 230.3 ± 24.9 252.8 ± 76.2

EtnGpl 1.8 ± 0.2 1.7 ± 0.5 52.0 ± 6.5 46.1 ± 13.0

ChoGpl choline glycerophospholipids, PtdSer phosphatidylserine, PtdIns phosphatidylinositol, EtnGpl

ethanolamine glycerophospholipids. Values are mean ± SD

Table 6 Net incorporation rate

of brain AA-CoA into brain

phospholipids (JFA) and AA

turnover (FFA)

J FA (nmol/g/s 9 10-2) FFA (% per hour)

Control (n = 5) FSL (n = 4) Control (n = 5) FSL (n = 4)

Total phospholipid 14.5 ± 3.4 18.3 ± 7.4 3.7 ± 0.8 4.5 ± 2.0

ChoGpl 6.2 ± 1.5 7.8 ± 3.4 7.5 ± 1.9 9.4 ± 5.2

PtdSer 0.8 ± 0.2 1.0 ± 0.3 4.8 ± 1.2 5.2 ± 2.0

PtdIns 6.1 ± 1.4 8.1 ± 3.3 10.5 ± 2.6 14.7 ± 5.9

EtnGpl 1.4 ± 0.3 1.4 ± 0.6 0.8 ± 0.1 0.8 ± 0.4

ChoGpl choline glycerophospholipids, PtdSer phosphatidylserine, PtdIns phosphatidylinositol, EtnGpl

ethanolamine glycerophospholipids. Values are mean ± SD
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differences in methodology, since Green et al. used elec-

trospray ionization tandem mass spectra (ESI/MS/MS),

whereas we used TLC/GC to determine fatty acid profiles.

Regional changes in brain AA incorporation could be

measured with quantitative autoradiography in future

studies to assess whether brain AA metabolism changes in

specific brain regions [48].

Body weight was significantly higher in FSL rats than

controls, which is in contrast with previous studies that

reported lower body weight in FSL rats than SD controls

[17]. FSL and SD rats were fed the same diets at our animal

facility for 2 months before starting the experiment.

However, FSL rats were obtained from the Duke Univer-

sity colony, whereas SD rats were purchased from a vendor

because control FSL littermates were not available.

Because of these differences in rat source, the animals were

exposed to a different diet from conception until they

arrived at our facility. The SD rats were born and weaned

to the 2018S Teklad diet, which has 6.2 g of fat containing

31 % LA and 3 % a-LNA, and no EPA or DHA [49]. The

FSL rats were maintained on the 5001 diet (LabDiet,

Richmond, IN, USA) since birth, which has 6.4 g of fat,

composed of 29.6 % LA, 2.2 % a-LNA, 1.5 % EPA and

1.1 % DHA. Differences in fatty acid intake prior to the

arrival of the animals to our facility may have contributed

to the difference in body weight.

The significant increase in plasma unesterified DHA

and esterified stearic acid, palmitoleic acid, AA, n-6 DPA

and DHA, and decrease in plasma cholesteryl ester a –

LNA and brain PtdIns AA and total lipid LA, n-3 DPA

and n-6 DPA concentrations in FSL rats, could be a type I

error associated with multiple comparisons and a low

sample size. They may also be related to the differences

in dietary fatty acid intake prior to the arrival of the rats

at our facility, which are likely to have affected adipose

tissue fatty acid composition and release, and liver syn-

thesis-secretion rates.

Limitations of this work include the low sample size and

the lack of measurement of various AA cascade enzymes

(cPLA2, COX-2, among many others) and AA-derived

metabolites such as PGE2. We did not quantify enzyme

protein level or activity in brains collected from this study

because the animals were subjected to high-energy

microwave fixation, which denatures proteins and stops

brain lipid metabolism [36, 37]. AA-derived mediators,

which are typically measured in microwaved brain sam-

ples, were not quantified in this study because both half-

brains were used for either AA or AA-CoA measurements.

It would be worthwhile to measure AA cascade enzymes

and metabolites in better-powered studies, to better assess

whether specific pathways within the AA cascade are

altered in the FSL model of depression.

Another limitation of this study is that we did not val-

idate our kinetic method by pharmacologically stimulating

brain AA metabolism. However, values for brain AA

concentration, incorporation and turnover in control rats

are consistent with a previous study which used the same

rat strain, thus confirming the validity and reproducibility

of our in vivo kinetic method [35].

Using quantitative autoradiography, Qu et al. [50]

reported that acute administration of DOI to 5-HTT wild-

type and knockout mice produced an AA signal in wildtype

but not knockout mice, suggesting a downregulation of

5-HT2A/2C receptor mediated signaling via AA. In this

regard, it would be worthwhile to test whether challenging

FSL rats with DOI would elicit an AA response. In view of

the reported reduction in 5-HTT density in FSL rats [7], it

is likely that AA signaling would be dampened following

DOI administration, similar to what had been reported in

5-HTT knockout mice [50].

In summary, brain AA incorporation and turnover did

not significantly differ in the FSL model of depression

compared to controls. The absence of differences may be

related to post-synaptic dampening of serotonergic trans-

mission in response to elevated brain serotonin levels [20],

similar to what was reported in a dopamine reuptake

transporter knockout model of depression [48]. Future

studies should examine the involvement of AA signaling in

FSL rats after receiving a challenge such as DOI. Whether

brain AA metabolism is altered in clinical depression could

be explored with positron-emitting tomography imaging

using 11C-AA, as had been done for Alzheimer’s disease

patients [51].
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