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Abstract a6b2* nicotinic acetylcholine receptors (nACh

Rs) expressed by dopaminergic neurons mediate nicotine-

evoked dopamine (DA) release and nicotine reinforcement.

a6b2* antagonists inhibit these effects of nicotine, such

that a6b2* receptors serve as therapeutic targets for nico-

tine addiction. The present research assessed the neu-

ropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-

1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary

amino analog of its parent compound, N,N-decane-1,10-

diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previ-

ously shown to inhibit both nicotine-evoked DA release

and the reinforcing effects of nicotine. In the current study,

r-bPiDI inhibition of [3H]nicotine and [3H]methyllyca-

conitine binding sites was evaluated to assess interaction

with the recognition binding sites on a4b2* and a7*
nAChRs, respectively. Further, r-bPiDI inhibition of nico-

tine-evoked DA release in vitro in the absence and pres-

ence of a-conotoxin MII and following chronic in vivo

nicotine administration were determined. The ability of

r-bPiDI to decrease nicotine self-administration and food-

maintained responding was also assessed. Results show

that r-bPiDI did not inhibit [3H]nicotine or [3H]methylly-

caconitine binding, but potently (IC50 = 37.5 nM) inhib-

ited nicotine-evoked DA release from superfused striatal

slices obtained from either drug naı̈ve rats or from those

repeatedly treated with nicotine. r-bPiDI inhibition of

nicotine-evoked DA release was not different in the

absence or presence of a-conotoxin MII, indicating that

r-bPiDI acts as a potent, selective a6b2* nAChR antago-

nist. Acute systemic administration of r-bPiDI specifically

decreased nicotine self-administration by 75 %, and did not

alter food-maintained responding, demonstrating greater

specificity relative to bPiDI and bPiDDB, as well as the

tertiary amino analog r-bPiDDB. The current work

describes the discovery of r-bPiDI, a tertiary amino, a-
conotoxin MII-like small molecule that acts as a potent and

selective antagonist at a6b2* nAChRs to specifically

decrease nicotine self-administration in rats, thus, estab-

lishing r-bPiDI as a lead compound for development as a

treatment for nicotine addiction.
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Introduction

Despite the knowledge that tobacco smoking has serious

health and economic consequences and is the most pre-

ventable cause of death in the US, cessation remains elu-

sive and those addicted for the most part continue to use

tobacco [1–4]. The major psychoactive alkaloid in tobacco

predominantly associated with its abuse liability is nicotine

[5]. Nicotine acts directly as an agonist on nicotinic

acetylcholine receptors (nAChRs) located on dopaminergic
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neurons. Activation of nAChRs evokes dopamine (DA)

release within the neuronal circuitry producing reward [6].

DA release is well known to underlie the reinforcing

properties of nicotine and other drugs of abuse [7].

Therefore, tobacco smoking is reinforced and maintained at

least in part by nicotine activation of nAChRs within the

DA reward circuitry.

Results from comprehensive molecular genetics studies,

in which an individual nAChR subunit gene (a4, a5, a6,
a7, b2, b3, and b4) was deleted, suggest that nicotine-

evoked DA release is mediated by six different nAChR

subtypes, including a-conotoxin MII (a-CtxMII)-sensitive

(a6b2b3*, a4a6b2b3*, a6b2*, and a4a6b2*) and a-
CtxMII-insensitive (a4b2* and a4a5b2*) subtypes (*

denotes possible assembly with other subunits), while

deletion of a7 and b4 subunits had no effect [8, 9]. Thus,

these studies suggest that multiple nAChR subtypes

mediate nicotine-evoked DA release.

Expression of the a6 subunit is largely limited to

dopaminergic neurons, and the DA-selective neurotoxin,

6-hydroxydopamine, produces [90 % decrease in a6
mRNA expression in the nigrostriatal tract [10, 11].

Moreover, a6 knockout mice do not self-administer nico-

tine [12, 13] and do not show nicotine conditioned-place

preference [14]. Consistent with these findings, mice with

gain-of-function a6 nAChRs show enhanced DA release in

nucleus accumbens and are hypersensitive to the locomotor

activating effects of a novel environment, an effect that is

exaggerated further when nicotine is administered [15, 16].

Also, animals chronically treated with nicotine show down-

regulation of a6b2* nAChRs in both dorsal and ventral

striatum [17–19].

a-conotoxin MII (a-CtxMII), a peptide that selectively

inhibits a6b2* nAChRs, but does not cross the blood–

brain barrier, inhibits nicotine-evoked DA release from

mouse striatal synaptosomes [6, 20] and from rat nucleus

accumbens slices [21, 22]. Also, a-CtxMII when locally

infused into the ventral tegmental area inhibits phasic DA

release in the nucleus accumbens in anesthetized rats [23],

and when infused intraventricularly or into nucleus

accumbens decreases nicotine conditioned place prefer-

ence [14, 24]. Further, following microinjection into

nucleus accumbens shell, a-CtxMII decreases motivation

for nicotine reinforcement using a progressive ratio

schedule of nicotine self-administration [25]. Also,

microinjection of a-CtxMII into the ventral tegmental

area decreases nicotine self-administration, without

causing alterations in food-maintained behavior [22].

Together, these results suggest that selective inhibition of

a6b2* nAChRs decreases nicotine reinforcement and

reward, indicating that this nAChR subtype is a valid

target for development of smoking cessation therapies

[26–28]. Thus, a6b2* nAChRs play a major role in

mediating nicotine-evoked DA release and the corre-

sponding reinforcement and reward produced by nicotine.

Small molecule antagonists that selectively inhibit

a6b2* nAChR subtypes that act as brain-bioavailable

surrogates for a-CtxMII would be expected to inhibit

nicotine-evoked DA release and to decrease nicotine rein-

forcement. Importantly, such a-CtxMII-like small mole-

cules presumably would have greater drug-likeness

compared to a-CtxMII, and could be developed as novel

tobacco smoking cessation therapeutics. Toward this goal,

our laboratories have discovered a group of N,N’-alkane-

diyl-bis-3-picolinium compounds with varying C6-12

methylene linker lengths that act as selective antagonists of

a6b2* nAChRs. Importantly, the C12 analog, bPiDDB

(Fig. 1), inhibits nicotine-evoked DA release from super-

fused rat striatal slices [29]. Concurrent superfusion with

maximal inhibitory concentrations of bPiDDB and a-
CtxMII resulted in inhibition of nicotine-evoked DA

release no greater than inhibition with either compound

alone, indicating that bPiDDB inhibits nicotine-evoked DA

release by interacting with a-CtxMII-sensitive, a6b2*
nAChRs [29]. Additionally, bPiDDB completely inhibits

nicotine-evoked DA release in rat nucleus accumbens,

measured using in vivo microdialysis [30]. These neuro-

chemical findings translated to whole animal behavioral

analyses, in that bPiDDB specifically decreased nicotine

self-administration [31]. The C10 analog bPiDI (Fig. 1)

exhibited a pharmacological profile similar to that for

bPiDDB [29, 32]. These results provide proof-of-concept
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supporting the discovery of a new class of small molecules

with potential as novel pharmacotherapies for nicotine

addiction.

Based on these previous efforts using bis-quaternary

ammonium analogs (bPiDDB and bPiDI), we recently

investigated a chemically-reduced, tertiary amino deriva-

tive, 1,12-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)dode-

cane dihydrochloride (r-bPiDDB, bis-THP3, Fig. 1) [26,

33], designed as a more drug-like analog of the parent

compound, bPiDDB. When striatal slices were obtained

from rats 24 h after either repeated nicotine or saline

administration (once daily for 10 days), concurrent super-

fusion with maximal inhibitory concentrations of

r-bPiDDB and a-CtxMII resulted in inhibition of nicotine-

evoked DA release no greater than inhibition with either

compound alone [33]. These results indicate that r-bPiDDB

inhibits nicotine-evoked DA release by interacting with a-
CtxMII-sensitive, a6b2* nAChRs in both naive and

repeatedly treated rats. Further, r-bPiDDB decreased

nicotine self-administration by 60 % [26]. However, the

effect at the higher doses of r-bPiDDB was not specific,

i.e., also decreasing responding maintained by food. The

current research investigates the pharmacological effects of

the novel, tertiary amino, small molecule, 1,10-bis(3-

methyl-5,6-dihydropyridin-1(2H)-yl)decane dihydrochlo-

ride (r-bPiDI) as an a6b2*-selective antagonist with greater
drug-likeness when compared with its parent compound,

bPiDI.

Materials and Methods

Materials

[3H]DA (dihydroxyphenylethylamine, 3,4-[7-3H]); specific

activity 28.0 Ci/mmol) and S(-)[3H]nicotine [S(-)[N-

methyl-3H]; specific activity 81.0 Ci/mmol) were purchased

from PerkinElmer Life and Analytical Sciences (Boston,

MA). [3H]Methyllycaconitine (MLA; [1a,4(S),6b,14a,16b]-
20-ethyl-1,6,14,16-tetramethoxy-4-([{2-([3-3H]-methyl-2,5-

dioxo-1-pyrrolidinyl)benzoyl}-oxy]methyl)aconitane-7,8-

diol; specific activity 25.8 Ci/mmol) was purchased from

Tocris Cookson, Inc. (Bristol, UK). S(-)Nicotine ditartrate

(nicotine), nomifensine maleate, pargyline hydrochloride,

mecamylamine hydrochloride, MLA, cytisine hydrochlo-

ride, EDTA, EGTA, HEPES, sucrose, magnesium sulfate,

and polyethyleneimine (PEI) were obtained from Sigma-

Aldrich (St. Louis, MO, USA). TS-2 tissue solubilizer and

scintillation cocktail were purchased from Research Prod-

ucts International (Mt. Prospect, IL, USA). L-Ascorbic acid

and sodium bicarbonate were obtained from Aldrich

Chemical Co. (Milwaukee, WI). Other assay buffer

constituents were purchased from Thermo Fisher Scientific

(Waltham, MA, USA).

a-CtxMII, and r-bPiDI (Fig. 1) were synthesized as

previously described [34, 35]. r-bPiDI was characterized by
1H and 13C NMR spectroscopy, mass spectrometry, and

elemental analysis. Chemical purity of all products was

[98 %. r-bPiDI, mecamylamine and nicotine were dis-

solved in saline and administered (s.c., 1 ml/kg) 15 min

prior to behavioral sessions. Nicotine solutions were

adjusted to pH 7.4. Nicotine dose represents freebase;

r-bPiDI doses represent the dihydrochloride salt.

Animals

All animal care and experimental protocols were in

accordance with the Institute of Laboratory Animal

Resources Commission on Life Sciences National

Research Council (1996), and approved by the University

of Kentucky Institutional Animal Care and Use Committee.

Male Sprague–Dawley rats (Harlan Industries, Indi-

anapolis, IN, USA) were housed in a temperature- and

humidity-controlled colony with a 12/12 h light/dark cycle.

Experiments were conducted during the light phase. Unless

stated otherwise, rats had ad libitum access to food and

water in the home cage.

[3H]DA Release

Nicotine-evoked [3H]DA overflow was determined using

superfused rat striatal slices preloaded with [3H]DA

according to previous methods [32, 36]. Coronal slices of

dorsal striatum (not including nucleus accumbens core or

shell; 500 lm, *5 mg) were incubated for 30 min in

Krebs’ buffer with 0.1 lM [3H]DA (final concentration).

Slices were transferred to a 2500 Suprafusion system

(Brandel, Inc.; Gaithersburg, MD, USA) and superfused

(0.6 ml/min) for 60 min with Krebs’ buffer. Krebs’ buffer

contained 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2,

1.0 mM NaH2PO4, 1.3 mM CaCl2, 11.1 mM a-D-glucose,
25.0 mM NaHCO3, 0.11 mM L-ascorbic acid 0.004 mM

disodium EDTA, pH 7.4, saturated with 95 % O2/5 % CO2

at 34 �C. Nomifensine (10 lM) and pargyline (10 lM)

were included in the buffer to assure that the [3H] collected

primarily represented [3H]DA released into superfusate

rather than [3H]DA metabolites [37].

To determine the concentration-dependent effect of

r-bPiDI to inhibit nicotine (10 lM)-evoked [3H]DA over-

flow from rat striatal slices, each slice from an individual

rat was superfused for 36 min with and without one of six

r-bPiDI concentrations (1 nM–1 lM). This initial super-

fusion period determined if the analog itself had an effect

on DA release, as an antagonist by pharmacological defi-

nition should have no effect. r-bPiDI remained in the
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superfusion buffer until the end of the experiment. Fol-

lowing 36 min of superfusion with r-bPiDI, nicotine

(10 lM) was added to the buffer and superfusion continued

for 36 min. The nicotine concentration (10 lM) was cho-

sen because it consistently and reproducibly provides suf-

ficient dopamine release to allow investigation of

antagonist concentration–response curves, and because it

was employed in previous studies determining inhibitory

effects of the structurally-related analogs [26, 29, 32, 33].

At the end of each experiment, slices were solubilized and

the [3H]-content of the tissue and superfusate samples was

determined using liquid scintillation spectrometry.

r-bPiDI inhibition of nicotine-evoked [3H]DA overflow

was assessed in rats following repeated administration of

nicotine (0.4 mg/kg, s.c.) or saline daily for 10 days. Stri-

atal slices were obtained 24 h after the last injection.

Concentration–response for r-bPiDI (0.1 nM–1 lM) to

inhibit [3H]DA overflow evoked by 10 lM nicotine was

determined as described above. Concentration of nicotine

(10 lM) used to determine r-bPiDI inhibition was selected

based on previous findings demonstrating that prior repe-

ated administration of nicotine (0.4 mg/kg, s.c.) does not

alter the concentration–response for nicotine-evoked

[3H]DA overflow [33]. The latter findings are in agreement

with earlier studies demonstrating that nicotine-evoked

striatal DA release, either in vitro or in vivo, is not altered

following repeated nicotine administration [38, 39].

To determine if r-bPiDI interacts with a-CtxMII-sensi-

tive nAChRs, a series of experiments was conducted in

which maximally inhibitory concentrations of a-CtxMII

(1 nM), r-bPiDI (1 lM), or a-CtxMII plus r-bPiDI were

superfused for 36 min in duplicate slices from each animal.

Slices were superfused for 36 min in the absence of

antagonist(s), followed by superfusion with 10 lM nicotine

(nicotine control). To determine maximal inhibition pro-

duced by blockade of nAChRs, slices were superfused with

mecamylamine (10 lM) [40], an antagonist at all known

nAChRs. A repeated-measures design was used for this

series of experiments.

[3H]Nicotine and [3H]MLA Binding

Inhibition of [3H]nicotine and [3H]MLA binding was

determined using previously published methods [41].

Whole brain, excluding cortex and cerebellum, was

homogenized in 20 vol of ice-cold modified Krebs’-HEPES

buffer (2 mM HEPES, 14.4 mM NaCl, 0.15 mM KCl,

0.2 mM CaCl2�2H2O, and 0.1 mM MgSO4�7H2O, pH 7.5).

Homogenates were centrifuged at 31,000g for 17 min at

4 �C (Avanti J-301 centrifuge; Beckman Coulter, Fuller-

ton, CA). Pellets were resuspended by sonication (Vibra

Cell; Sonics and Materials Inc., Danbury, CT) in 20 vol

Krebs’-HEPES buffer and incubated at 37 �C for 10 min

(Reciprocal Shaking Bath model 50; Precision Scientific,

Chicago, IL). Suspensions were centrifuged using the

above conditions. Resulting pellets were resuspended by

sonication in 20 vol buffer and centrifuged at 31,000 g for

17 min at 4 �C. Final pellets were stored in incubation

buffer containing 40 mM HEPES, 288 mM NaCl, 3.0 mM

KCl, 4.0 mM CaCl2�2H2O, and 2.0 mM MgSO4�7H2O, pH

7.5. Membrane suspensions (100–140 lg of protein/

100 ll) were added to tubes containing r-bPiDI (7-9 con-

centrations, 0.001 nM–1 mM) and 3 nM [3H]nicotine or

3 nM [3H]MLA in a final assay volume of 250 ll. Samples

were incubated for 60 min at room temperature. Non-

specific binding was determined in the presence of 10 lM
cytisine or 10 lM nicotine for the [3H]nicotine and

[3H]MLA assays, respectively. Reactions were terminated

by harvesting samples on Unifilter-96 GF/B filter plates

presoaked in 0.5 % PEI. Samples were washed 3 times

with 350 ll of ice-cold buffer. Filter plates were washed 5

times with 350 ll of ice-cold buffer, dried and bottom

sealed, and each well was filled with 40 ll of scintillation
cocktail (MicroScint 20; PerkinElmer Life and Analytical

Sciences, Waltham, MA).

Nicotine Self-Administration

Throughout nicotine self-administration training, rats were

fed 15–20 g of food post-session in the home cage to

maintain *85 % free feeding body weight. Rats were

initially trained to press a lever for food pellets (45 mg) in

operant conditioning chambers (ENV-008, MED Associ-

ates, St. Albans, VT, USA). Responding on one lever

(active) resulted in delivery of a food pellet, while presses

on another lever (inactive) had no scheduled consequence.

Following food training, rats were returned to a free

feeding schedule for 3 days and then jugular vein catheters

were implanted. After 5 days of recovery, rats were again

returned to a food-restriction schedule (15–20 g post-ses-

sion) and nicotine self-administration was initiated during

daily 1 h sessions.

During nicotine self-administration, responding on the

active lever, according to a fixed ratio 5 (FR 5) schedule,

resulted in simultaneous delivery of nicotine (0.03 mg/kg/

infusion over 5.9 s) and activation of the cue lights, which

initiated a 20 s time-out period, where responding on either

lever was not reinforced. Inactive lever responses were

recorded, but had no consequence. Behavior was defined as

stable once rats earned at least 10 infusions per session,

produced less than 20 % variability in the number of

infusions earned, and had a minimum of 2:1 active to

inactive response ratio over 3 consecutive sessions. Effects

of acute r-bPiDI (19.4–109 lmol/kg, s.c.) and saline pre-

treatment (15 min before each treatment session) on nico-

tine self-administration were determined using a within-
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subjects Latin Square design. At least two maintenance

sessions separated each treatment session.

Food-Maintained Responding

Food-maintained responding was carried out using the

same procedures as nicotine self-administration, except

responding resulted in the delivery of a 45 mg food pellet

and rats were not subjected to catheter-implant surgery.

Effects of acute r-bPiDI (2.5–74 lmol/kg, s.c.) and saline

pretreatment (15 min before each treatment session) on

food-maintained responding were determined using a

within-subjects Latin Square design, with at least two

maintenance sessions between each treatment session.

Response stability criteria were the same as those for

nicotine self-administration. Of note, the dose range for

r-bPiDI varied slightly between food and nicotine self-ad-

ministration experiments. Smaller starting doses were used

in the food self-administration experiments, because these

experiments were performed first to ensure that there were

no adverse consequences. Since no adverse effects were

observed across a large r-bPiDI dose range in the food self-

administration study, the nicotine self-administration study

began using a higher dose of r-bPiDI.

Data Analysis

Data are presented as mean (±SEM). In nicotine-evoked

[3H]DA overflow assays, fractional release was calculated

by dividing [3H] in each sample by total tissue-[3H] at time

of sample collection. Basal [3H]outflow was the average

fractional release in the two samples before r-bPiDI addi-

tion to the buffer. Total [3H]overflow was the sum of

increases in fractional release above basal [3H]outflow

resulting from r-bPiDI or nicotine exposure, with [3-

H]outflow for equivalent periods of drug exposure sub-

tracted. r-bPiDI concentration–response curves were

generated by nonlinear fit to the sigmoidal dose–response.

IC50 for r-bPiDI inhibition of nicotine-evoked [3H]DA

overflow was determined using Prism 5.0 (GraphPad

Software Inc., San Diego, CA, USA). For the binding

assays, specific [3H]nicotine and [3H]MLA binding were

determined by subtracting the nonspecific binding from

total binding. Inhibition constants (Ki values) were deter-

mined using the Cheng-Prusoff equation [42]. To deter-

mine if r-bPiDI interacts with a-CtxMII-sensitive nAChRs,

the effect of concomitant exposure to maximally inhibitory

concentrations of r-bPiDI and a-CtxMII was compared

with inhibition produced by r-bPiDI or a-CtxMII alone

using a one-way ANOVA. Pairwise comparisons (a =

0.05) were used to compare [3H]overflow after mecamy-

lamine treatment to [3H]overflow following r-bPiDI alone,

a-CtxMII alone, and r-bPiDI plus a-CtxMII. The effects of

r-bPiDDB and r-bPiDI on the number of nicotine infusions

and food pellets earned during nicotine self-administration

and food-maintained behavior, respectively, were analyzed

by one-way, repeated-measures ANOVA, followed by

Dunnett’s test (a = 0.05).

Results

r-bPiDI Inhibits Nicotine-Evoked [3H]DA Overflow

From Rat Striatal Slices

Total nicotine-evoked [3H]DA overflow as a function of

concentration of r-bPiDI is illustrated in Fig. 2 (top). In a

concentration-dependent manner, r-bPiDI potently, but
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Fig. 2 In a concentration-dependent manner, r-bPiDI inhibits nico-

tine-evoked [3H]DA overflow from rat striatal slices obtained from

drug naive (top) and repeated nicotine- or saline-treated rats (bottom).

Control (CON) represents [3H]DA overflow in response to nicotine

(10 lM) in the absence of r-bPiDI. Data are expressed as mean ± -

SEM total [3H]DA overflow as a percentage of tissue-[3H] content.

For repeated-treatment groups, nicotine (0.4 mg/kg, s.c.) or saline

were administered once daily for 10 days and striatum obtained 24 h

after the last injection. (n = 4–6/group)
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incompletely (IC50 = 37.5 ± 18.7 nM; Imax = 65 ± 9 %)

inhibited nicotine-evoked [3H]DA overflow. Furthermore,

repeated nicotine treatment (0.4 mg/kg, s.c., once daily for

10 days) did not alter either r-bPiDI potency or maximal

inhibition of nicotine-evoked [3H]DA overflow compared

to repeated saline injection (IC50 = 38 ± 25 and

28 ± 20 nM; Imax = 69 ± 6 and 60 ± 5 %, respectively;

Fig. 2, bottom).

r-bPiDI Does Not Inhibit Binding of [3H]nicotine

or [3H]MLA Binding

[3H]Nicotine binding to rat brain membranes as a function

of nicotine and r-bPiDI concentration is illustrated in Fig. 3

(top). r-bPiDI did not inhibit [3H]nicotine binding.

[3H]MLA binding to rat brain membranes as a function of

MLA and r-bPiDI concentration is illustrated in Fig. 3

(bottom). r-bPiDI also did not inhibit [3H]MLA binding to

rat brain membranes.

r-bPiDI Interacts with a-CtxMII-Sensitive a6b2*-
Containing nAChRs

Inhibition of nicotine-evoked (10 lM) total [3H]DA over-

flow by mecamylamine (MEC; 10 lM), a-CtxMII (1 nM),

r-bPiDI (1 lM), or a-CtxMII ? r-bPiDI is illustrated in

Fig. 4 (top). Mecamylamine inhibition of [3H]DA overflow

was nearly complete ([90 %). In contrast, inhibition of

[3H]DA overflow was *60–70 % for both a-CtxMII and

r-bPiDI given alone. Concomitant administration of a-
CtxMII and r-bPiDI did not result in greater inhibition of

nicotine-evoked [3H]DA overflow than either antagonist

alone. Repeated nicotine treatment (0.4 mg/kg, s.c., once

daily for 10 days) did not alter inhibition produced by
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Fig. 3 r-bPiDI does not inhibit [3H]nicotine ([3H]NIC) or [3H]MLA

binding. Nonspecific binding in the [3H]nicotine and [3H]MLA

binding assays was determined in the presence of 10 lM cytisine and

10 lM nicotine, respectively. Control (CON) represents [3H]nicotine

and [3H]MLA binding in the absence of r-bPiDI (47.9 ± 4.50 and

47.4 ± 4.80 fmol/mg protein, respectively). Data are mean ± S.E.M.

(n = 4–5 rats/compound)
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Fig. 4 Concomitant exposure to maximal inhibitory concentrations

of r-bPiDI (1 lM) ? a-CtxMII (1 nM) results in inhibition of

nicotine-evoked [3H]DA overflow not different from that produced

by either antagonist alone. Striatal slices were obtained from either

drug-naı̈ve rats (top) or from rats treated once daily for 10 days with

nicotine (0.4 mg/kg, s.c.; bottom). Control represents [3H]DA over-

flow (drug-naı̈ve = 1.74 ± 0.42; nicotine-treated = 1.06 ± 0.29

total [3H]DA overflow as a percentage of tissue-[3H] content) in

response to nicotine (10 lM) in the absence of r-bPiDI, a-CtxMII and

mecamylamine (MEC, 10 lM). Data are expressed as mean ± SEM

total [3H]DA overflow as a percent of control. (n = 4/group).

Asterisks indicate significant differences between the mecamylamine

condition and all other antagonist conditions (p\ 0.05)
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MEC (10 lM), a-CtxMII (1 nM), r-bPiDI (1 lM), or a-
CtxMII ? r-bPiDI (Fig. 4, bottom).

r-bPiDI Specifically Decreases Nicotine

Reinforcement

The dose-related effect of r-bPiDI on the number of nicotine

infusions (0.03 mg/kg/infusion) earned during self-adminis-

tration is illustrated in Fig. 5 (top). One-way ANOVA

revealed an effect of r-bPiDI dose [F(3,21) = 14.91,

p\ 0.05]. Dunnett’s test revealed that, relative to saline

control, r-bPiDI doses of 58.3 and 109 lmol/kg decreased the

number of nicotine infusions earned. The dose-related effect

of r-bPiDI on the number of food pellets earned during food-

maintained responding is illustrated in Fig. 5 (bottom). One-

way ANOVA indicated no significant effect of r-bPiDI dose.

Discussion

Relative to the maximal inhibition of nicotine-evoked DA

release induced by the nonselective nAChR antagonist

mecamylamine ([90 %), r-bPiDI produced incomplete

maximal inhibition (60–70 %), an effect similar to that

produced by parent and related compounds (bPiDI,

bPiDDB, and r-bPiDDB) [26, 29, 32, 33]. The incomplete

inhibition of nicotine-evoked DA release induced by

r-bPiDI suggests that this compound acts at a subset of

nAChRs mediating nicotine-evoked DA release. The

incomplete maximal inhibition of nicotine-evoked DA

release produced by r-bPiDI is consistent with incomplete

inhibition produced by a-CtxMII [20, 43]. Further, r-bPiDI

had little affinity for, and does not interact with, the agonist

recognition site on either a4b2* or a7* nAChRs. Con-

comitant exposure to maximally effective concentrations of

r-bPiDI (1 lM) and a-CtxMII (1 nM) produced inhibition

of nicotine-evoked DA release that was comparable to

inhibition produced by either antagonist alone, suggesting

that these compounds act at the same a6b2* nAChR sites.

Finally, relative to the quaternary compounds, bPiDDB and

bPiDI, and relative to the tertiary amino analog r-bPiDDB,

acute systemic administration of r-bPiDI resulted in greater

specificity for decreasing nicotine reinforcement. Collec-

tively, these results suggest that r-bPiDI functions as a

small molecule antagonist at a-CtxMII-sensitive, a6b2*-
containing nAChRs to inhibit nicotine-evoked DA release

and specifically decreases nicotine reinforcement.

While the potency of the parent compound bPiDI to

inhibit nicotine-evoked DA release was increased by *3-

orders of magnitude following repeated nicotine treatment

(0.4 mg/kg, s.c., once daily for 10 days) [32], the con-

centration response for the tertiary amino analog r-bPiDI to

inhibit nicotine-evoked DA release was not altered by the

same repeated nicotine treatment (current findings). These

results parallel those for bPiDDB and its tertiary amino

analog r-bPiDDB, where repeated nicotine treatment

increased the potency of bPiDDB to inhibit nicotine-

evoked DA release by 3-orders of magnitude, but no

change in potency was found for r-bPiDDB following

repeated nicotine treatment [33]. Similar to r-bPiDI and

r-bPiDDB, no change in inhibitory potency was found for

a-CtxMII following the same repeated nicotine treatment

[33]. Thus, although bPiDI, bPiDDB, r-bPIDDB and

r-bPiDI all act as antagonists at a-CtxMII-sensitive a6b2*-
containing nAChRs based on the lack of additivity upon

concomitant exposure in the nicotine-evoked DA release

assay, differences between the parent compounds (bPiDI

and bPiDDB) and the tertiary amino analogs (r-bPiDI and

r-bPiDDB) are revealed following repeated nicotine

administration.

As we have described previously [33], these findings can

be explained in part based on the different subtypes of a-
CtxMII-sensitive a6b2* nAChRs, i.e., the a6(non-a4)-
containing subtypes (a6b2b3* and a6b2*) and the a4-
containing subtypes (a6a4b2b3* and a6a4b2*). Repeated
nicotine treatment in vivo results in differential changes in
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Fig. 5 Acute r-bPiDI specifically decreases nicotine self-administra-

tion. r-bPiDI (19.4–109 lmol/kg, s.c., 15-min pretreatment)

decreased the number of nicotine infusions (0.03 mg/kg/infusion)

earned (top). (n = 8). r-bPiDI (2.47–74.0 lmol/kg; s.c., 15-min

pretreatment) did not alter the number of food pellets earned (bottom)

(n = 5). Data are expressed as mean ± SEM food pellets earned.

Asterisks indicate a significant difference relative to saline (a = 0.05)
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nAChR composition, conformation, and stoichiometry, as

well as alterations in receptor maturation, by increasing

subunit oligomerization and folding of these a-CtxMII-

sensitive nAChRs subtypes [44–46]. For example, repeated

nicotine down-regulates a4a6b2-containing subtypes by

50 %, while up-regulating a6b2-containing subtypes by

25 % [47]. The changes in a4a6b2 and a6(non-a4)b2-
containing subtypes following repeated nicotine imply a

corresponding functional change in these receptor sub-

types, perhaps reflected by altered inhibitory effects of

bPiDI and bPiDDB in the DA release assay. Furthermore,

the b3 subunit promotes resistance to receptor regulation

(a6b2b3* and a6a4b2b3*) by chronic nicotine [48, 49].

Thus, r-bPiDI and r-bPIDDB may be interacting with

a6b2b3* and a6a4b2b3* subtypes following repeated

nicotine administration. The a4a6b2b3* nAChR subtype is

of particular importance, as it constitutes up to 50 % of the

nAChRs on striatal DA terminals [8].

The tertiary amino analog r-bPiDI investigated herein

specifically decreased nicotine reinforcement. r-bPiDI had

no effect on food-maintained responding at doses demon-

strated to reduce nicotine self-administration by[50 %. In

contrast to these findings with r-bPiDI, pretreatment with

bPiDI, bPiDDB and r-bPiDDB showed nonspecific sup-

pressive effects on food maintained responding within the

same dose range that decreased nicotine self-administration

[26, 32]. In the latter studies, an FR 5 schedule of rein-

forcement with a 120-s timeout for food-maintained

responding was employed in an attempt to match rates of

responding for nicotine and food reinforcement [32]. In the

current study, an FR 5 schedule of reinforcement with a

20-s signaled timeout was used to investigate the effects of

r-bPiDI on both nicotine self-administration and food-

maintained behavior. Thus, the differential effects on food-

maintained responding may have been due to the difference

in schedules used. However, given that the FR 5 schedule

with the accompanying 20-s timeout used for r-bPiDI

resulted in higher rates of responding, these higher

response rates should have had a greater susceptibility to

disruption [50]. Thus, given the lack of r-bPiDI-induced

disruption in food-maintained behavior, the change in

schedule is unlikely to have contributed to the specificity of

the r-bPiDI-induced decrease in nicotine reinforcement

reported herein. Thus, r-bPiDI exhibits the greatest efficacy

and specificity in the nicotine self-administration assay,

compared to the other three structurally related analogs.

In conclusion, the current evidence indicates that r-bPiDI

acts at a-CtxMII-sensitive, a6b2* nAChRs to inhibit

nicotine-evoked striatal DA release, and relative to

bPiDDB, bPiDI and r-bPiDDB, it has the significant

advantage of being highly specific for decreasing nicotine

reinforcement. One of the goals in drug discovery research

is to generate a pipeline of compounds within the same

structural class that serve as backups and alternatives in the

event there are problems with the initial lead. r-bPiDI is one

such compound. Our observations that r-bPiDI has a greater

efficacy and specificity in the behavioral assay relative to

r-bPiDDB, despite its similar profile in the neurochemical

assays, exemplifies the need to test a number of structurally-

related compounds to arrive at the best lead compound to

take forward through the drug discovery pathway into

clinical trials. As such, the findings in the current manu-

script describing effects of r-bPiDI represents a significant

step in identifying the lead compound in the development of

the current class of nAChR antagonists as potential treat-

ments for nicotine addiction. Furthermore, the results of the

present study indicate that a6b2* nAChRs play an impor-

tant role in the reinforcing effects of nicotine. Thus, tar-

geting a6b2* nAChRs with small molecule a-CtxMII-

sensitive antagonists may offer a novel and effective route

that constitutes an alternative approach to the development

of therapeutics for nicotine addiction.
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