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Abstract The following article addresses some seem-

ingly paradoxical observations concerning cerebral glu-

tamine synthetase in ischemia–reperfusion injury. In the

brain, this enzyme is predominantly found in astrocytes and

catalyzes part of the glutamine-glutamate cycle. Glutamine

synthetase is also thought to be especially sensitive to

inactivation by the oxygen- and nitrogen-centered radicals

generated during strokes. Despite this apparent sensitivity,

glutamine synthetase specific activity is elevated in the

affected tissues during reperfusion. Given the central role

of the glutamine-glutamate cycle in the brain, we sought to

resolve these conflicting observations with the view of

providing an alternative perspective for therapeutic inter-

vention in stroke.

Keywords Brain � Glutamine synthetase � Ischemia–

reperfusion � Oxidative stress � Stroke

Abbreviations

EPR Electron paramagnetic resonance

GABA c-Aminobutyrate

MSO L-Methionine-S,R-sulfoximine

Introduction

We are honored to contribute an article to the special

volume dedicated to the retirement of Gerald Dienel. One

of us (AJLC) has known Gerry for over 40 years as a

friend, mentor and scientific colleague. Gerry is an out-

standing neurochemist and has been a source of inspiration

to many in the field of neurochemistry, particularly those

interested in brain energy metabolism, the biology of

astrocytes and trafficking of metabolites between astro-

cytes and neurons.

Structure and Enzymology of the Mammalian
Glutamine Synthetase

Human glutamine synthetase (glutamate ammonia ligase)

is encoded by a single gene on chromosome 1 known as

GLUL [1]. An additional four GLUL-like genes are present

in the human genome [1] but it is not known whether these

genes are transcribed or translated. The expression of

glutamine synthetase in the central nervous system was

thought to be restricted to astrocytes [2]. Bernstein et al.

[3], however, identified glutamine synthetase in white and

grey matter astrocytes, oligodendrocytes, ependymal cells,

and some neurons of human brain. The genes responsible

for the glutamine synthetase in some of these cells may

differ from GLUL, given that the epigenetic processes

underlying cellular differentiation may favor the expres-

sion of different genes. To date, two forms of glutamine

synthetase have been isolated from the human brain that

differed in size. One protein has a molecular mass of

44 kDa and is the likely product of the GLUL gene [4]. The

other protein has a molecular mass of 54 kDa and is named

glutamine synthetase-like protein [5]. Canine brain also
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contains two forms of glutamine synthetase, although in

this case, the larger form of the enzyme represents a splice

variant [6]. The canine glutamine synthetase gene contains

an additional exon in the first intron of the GLUL gene

(relative to the glutamine synthetase genes in other mam-

mals [7]) that is variably excised [6]. Despite the possible

variations, most discussion of mammalian glutamine syn-

thetase—including the current discussion—focuses on the

product of the GLUL gene.

The human GLUL gene encodes a 373 amino acid

protein with three domains as shown in Fig. 1a: an N-ter-

minal meander (residues 3–24), a b-grasp domain (residues

25–112), and a catalytic domain (residues 113–373) [8].

Five such monomers are conjoined in a ring such that the

b-grasp domain of one subunit aligns with the catalytic

domain of the adjacent subunit to form a funnel-shaped

cavity (Fig. 1b). The ring structure thus optimizes the

orientation of the five active sites toward its substrates

(Fig. 1b). Two such pentameric rings are stacked on top of

each other, such that the orientation of each ring is opposite

the other to comprise the native decameric glutamine

synthetase (Fig. 1b, c). The individual rings are stabilized

by contacts between adjacent b-grasp and catalytic

domains as well as contacts between the N-terminal

meanders, which project into the core of the pentamer

(Fig. 1b, c). Five loops comprising residues 150–156

within the catalytic domain of each subunit interact with

the corresponding loops in the neighboring ring to stabilize

the decamer. All of the known eukaryote glutamine syn-

thetases exhibit a similar organization of stacked and

oppositely-oriented concentric rings, although the number

of subunits varies among species [8–11]. The number of

stacked rings may also vary [8, 11–14], but the physio-

logical relevance of the stacking remains unknown.

Glutamine synthetase catalyzes the ATP-dependent

condensation of ammonia1 and glutamate to glutamine:

L�GlutamateþNHþ
4 þATP�L�GlutamineþADPþPi

ð1Þ

This reaction begins with the binding of ATP to a

hydrophobic pocket bounded by Trp130, Arg262, Tyr336,

and Pro208 at the top of the catalytic funnel in the structure

of the human enzyme (Fig. 2) [8]. Figures 1 and 2 were

obtained with glutamine synthetase complexed to phos-

phorylated L-methionine-S,R-sulfoximine (MSO) [15],

which facilitated the crystallization of the enzyme [8].

MSO is an inhibitor of glutamine synthetase that competes

with glutamate for binding at the active site and upon

phosphorylation irreversibly inactivates the enzyme [15].

ATP binds by alignment of the adenosine moiety with the

side chains of Trp130 and Arg262 to form an aromatic–

arginine planar stacking configuration. Hydrogen bonding

between the hydroxyl of Ser257 and N1 and N6 of the

adenine moiety further stabilizes the nucleotide within the

binding pocket. These events serve to project the triphos-

phate chain into the reaction funnel such that the terminal

Fig. 1 Structure of mammalian glutamine synthetase. a Depicts the

ribbon diagram of the canine glutamine synthetase colored from blue

to red beginning from the N-terminus. The blue-cyan unit corre-

sponds to the N-terminal b-grasp domain, while the remainder

represents the C-terminal catalytic domain. The overall structure of

the active enzyme (a decamer of two stacked pentamers) is shown in

two orientations and as surface plots in (b) and (c). The top-down

view (b) reveals that the decamer is formed via a crystallographic

twofold axis that places the second pentamer ring behind the first. In

this panel, the individual monomers are distinguished by color. Active

sites are formed between the subunits and oriented such that the active

sites in the second pentamer are placed between those in the first and

face in the opposite direction. The side view (c) illustrates the

pentamer–pentamer contacts, which are weaker than those holding the

subunits in the pentamer together. This figure is based on the studies

of Krajewski et al. [8] and was created using CCP4mg [105]

1 Under normal intracellular physiological conditions (pH 7.2–7.4)

ammonia exists predominantly (*99 %) as the conjugate acid,

ammonium (NH4
?). Even so, the term ammonia is used throughout

the text to indicate the sum of NH3 plus NH4
? for the sake of

convenience.
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phosphate of ATP juxtaposes the terminal carboxyl group

of glutamate.

The binding of ATP is accompanied by two simultaneous

events: the importation of three manganous (Mn2?) ions and

the cis-isomerization of Pro208 in the binding pocket.

Catalysis requires the presence of three manganous ions

within the active site [8]. Prior to binding ATP the mam-

malian glutamine synthetase contains one magnesium ion at

the n1 position (Fig. 2). Thus, the manganous ions probably

enter the active site as ATP chelates. The stability constants

of ATP-Mg and ATP-Mn are 4.00 and 3.98, respectively

[16] and consequently both types of chelates exist in cells.

Taken together, these observations suggest that ATP-Mn

binds to glutamine synthetase and that the three associated

manganous ions complex with the enzyme at the n1, n2 and

n3 sites by interacting with Glu196, Glu136, Glu338 and

Glu308 (Fig. 2). Complexing the manganous ions in this

manner serves to position the terminal phosphate group to

undergo a nucleophilic attach by the terminal carboxyl

group of glutamate. The alternative possibility that the

complexing of the nucleotide-bound Mn2? by glutamine

synthetase lessens the charge on the phosphate groups

thereby priming the terminal phosphate for a nucleophilic

attack by the terminal carboxyl group of glutamate is

negated by the studies of Admiraal and Herschlag [17].

As discussed in our review of the activation of transg-

lutaminase 2 [18], cis-proline isomerization can produce

profound conformational changes in proteins. Cis-isomer-

ization of Pro208 (i.e., isomerization from cis to trans) in

the catalytic domain of glutamine synthetase, however,

does not appear to be responsible for the major motions

reported for this enzyme. Pro208 is situated such that the

cis-isomerization could theoretically act to restrict the

departure of ATP or ADP from the catalytic domain. If this

were the case, then the isomerization of proline from the

cis to trans configuration might regulate the ejection of

ADP from the active site. This hypothesis might also

account for the faster rates of reactions noted for the

prokaryote forms of this enzyme relative to the eukaryotic

forms. The order with which ATP and ammonia are

released from glutamine synthetase remains a topic of

debate for the eukaryotic forms of this enzyme. Pro208 is

conserved in eukaryotes and cis-isomerizations are suffi-

ciently slow to be the rate-limiting step in the overall

reaction sequence [19]. In contrast, bacterial glutamine

synthetases have a phenylalanine in place of Pro208 and

therefore the release of ADP from the active site would not

be limited by a cis–trans isomerization reaction.

The binding of ATP to mammalian glutamine synthetase

causes significant conformational changes involving resi-

dues 311–337 of the catalytic domain and residues 63–77 of

the b-grasp domain of the adjacent subunit. These move-

ments serve to create a binding pocket for ammonia between

Glu305 in the active site and Asp 63 of b-grasp domain [20]

and to close the active site. Closure of the active site con-

strains glutamate to its binding site in an orientation that

juxtaposes the c carboxyl of this amino acid with the ter-

minal phosphate of the bound ATP and enables phosphate

transfer between these groups. The resulting acylphosphate

intermediate then undergoes nucleophilic attack by the

bound ammonia to generate glutamine.

Nitration of Glutamine Synthetase

Tyrosyl nitration is one of the major biological effects

resulting from the formation of nitric oxide (�NO) and is

produced in sufficient amounts to act as an index for the

production of this gas. The major pathway for the nitration

Fig. 2 Active site of the human glutamine synthetase. Shown is the

active site of the human glutamine synthetase with bound ADP, MSO,

and manganese ions (n1, n2, and n3). Conserved hydrophobic

residues interacting with the adenine ring of ADP are shown with

ball-and-stick representations. This figure is based on the studies of

Krajewski et al. [8] and was created using CCP4mg [105]
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of tyrosyl residues by �NO begins with a reaction with

superoxide (O:�
2 ) to generate peroxynitrite (ONOO�):

O:�
2 þ :NO ! ONOO� ð2Þ

This remarkable chemistry occurs despite the dismuta-

tion of O:�
2 by superoxide dismutase at a bimolecular rate

of 1–2 9 109 M-1 s-1 [21]:

O:�
2 þ O:�

2 þ 2Hþ ! H2O2 ð3Þ

The reaction of �NO and O:�
2 , however, is 10 times faster

with a second-order rate constant of *1010 M-1 s-1 [22]

and ensures the generation of appreciable amounts of

peroxynitrite under physiological conditions. Peroxynitrite

then reacts with carbon dioxide to produce a nitrosoper-

oxocarboxylate adduct (ONOOCO�
2 ) that rapidly decom-

poses to nitric dioxide (�NO2) and carbonate radicals

ðCO:�
3 ) [23–25]:

ONOO� þ CO2 ! ONOOCO�
2 ! �NO2 þ CO:�

3 ð4Þ

These radicals act together to nitrate tyrosyl residues

[26]. This modification proceeds with the conversion of

tyrosyl residues to a radical by CO:�
3 followed by combi-

nation with �NO2 to form 3-nitrotyrosine:

TyrH þ CO:�
3 ! Tyr: þ HCO�

3 ð5Þ

Tyr: þ �NO2 ! Tyr � NO2 ð6Þ

Although there are other sources of �NO2 and CO:�
3 , the

abundance of CO2 in cells and the rate constant of

5.8 9 104 M-1 s-1 for reaction 5 ensures that this reaction

is the major source of these radicals.

Another route for the formation of �NO2 deserves

mention in light of the fact that manganese is bound to the

active site of glutamine synthetase. Peroxynitrite reacts

with transition metals in proteins such as the manganese in

Mn-superoxide dismutase [27–29]. The metals in these

sites act as Lewis acids and form Lewis adducts upon

reaction with peroxynitrite [22]. Such adducts typically

undergo homolysis to yield �NO2 and the corresponding

oxyradical-metal complex, which then rearranges to an

oxo-metal complex [22, 30]:

ONOO� þ MenX ! ONOO � MenX

! �NO2 þ �O � MenX

! �NO2 þ O ¼ Menþ1X

ð7Þ

Glutamine synthetase is regulated by �NO in a site-

specific and reversible manner. The generation of �NO by

either pharmacological means [31–35] or the applications

of cytokines [36, 37], results in the inhibition of glutamine

synthetase activity in vivo. This inhibition is prevented by

blockade of cellular nitric oxide synthase activity [31–33,

35–37], except in the case of benzodiazepine-treated

astrocytes [34]. Interestingly, the addition of nitric oxide

synthetase inhibitors alone increases glutamine synthetase

activity and suggests the activity of this enzyme is con-

trolled tonically by �NO [32, 35]. Benzodiazepines also

inhibit nitric oxide synthases, presumably by competing

with L-arginine for binding to these enzymes [38]. Thus,

nitric oxide synthase inhibition may account for the

increased glutamine synthetase activity in astrocytes trea-

ted with benzodiazepines and classical nitric oxide syn-

thase inhibitors [34]; the glutamine synthetase in these cells

appears to be either insensitive to further inhibition of nitric

oxide synthases or act synergistically with the additional

inhibitors. �NO-generating compounds also inhibit purified

glutamine synthetase [36] consistent with the above in vivo

observations.
�NO inhibits glutamine synthetase by promoting the

nitration of Tyr336 [36, 37] as described by reactions 2–7.

Glutamine synthetase is significantly nitrated by 5 lM per-

oxynitrite, a concentration likely to be physiologically rel-

evant [39]. The same amount of peroxynitrite does not

nitrate glyceraldehyde-3-phosphate dehydrogenase or inhibit

the activity of this enzyme [40]. Inactivation of glycer-

aldehyde-3-phosphate dehydrogenase only occurs at perox-

ynitrite concentrations of 100 lM and higher [40].

Glyceraldehyde-3-phosphate dehydrogenase is a sensitive

and major target of cellular oxidants, including those derived

from �NO [41]. The greater susceptibility of glutamine

synthetase to the actions of peroxynitrite, as compared to

that of glyceraldehyde-3-phosphate dehydrogenase, indi-

cates that the former enzyme is exquisitely sensitive to

tyrosyl nitration.

In vitro studies indicate that the nitration of Tyr336

residue of glutamine synthestase is reversible. Proteina-

ceous extracts from various tissues contain a putative

‘denitrase’ activity capable of removing nitrite from the

nitrotyrosyl residues of a variety of proteins [42–47]

including the nitrated Tyr336 on glutamine synthetase [39].

Denitrase activity has been attributed to the E3 component

of the a-ketoglutarate dehydrogenase complex [48], glu-

tathione S-transferase, and superoxide dismutase 1 [47].

This activity, however, has not been purified to homo-

geneity from any of the ‘denitrating’ extracts and thus the

identity of the actual denitrase(s) remains unknown.

Nonetheless, the existence of denitrase(s) coupled with the

demonstration of catalyzed removal of the nitro group from

nitrated Tyr336 on glutamine synthetase [39] lends support

to the idea that this enzyme is regulated under physiolog-

ical conditions by �NO.

Görg et al. [39] hypothesized that the nitration of

Tyr336 of glutamine synthetase2 inhibits this enzyme by

preventing the binding of purines. This hypothesis is sup-

ported by the structural analysis of glutamine synthetase.

2 Görg et al. [39] refers to this residue as Tyr335.

Neurochem Res (2015) 40:2544–2556 2547

123



Tyr336 together with Trp130, Arg262, and Pro208 form a

hydrophobic pocket that accommodates the adenine ring of

ATP and ADP [8]. As shown in Fig. 2, Tyr336 interacts

with the adenosine ring by way of aromatic planar stack-

ing. Nitration of the phenolic ring of Tyr336 would prevent

the formation of such a stack and thus interfere with the

binding of ATP or ADP.

The above observations suggest an interesting possibil-

ity for the loss of glutamine synthetase activity in neu-

rodegenerative diseases: namely, the inactivation of

denitrases. Such inactivation would ensure that Tyr336

remains nitrated and glutamine synthetase inhibited. Loss

of denitrase activity is thought to account, in part, for the

accumulation of nitrated proteins in the lungs of patients

with chronic obstructive pulmonary disease [46]. Similarly,

Shi et al. [48] argued that if the a-ketoglutarate dehydro-

genase E3 subunit is a significant denitrase, then the loss of

a-ketoglutarate dehydrogenase complex activity might

explain the surfeit of nitrated proteins in the Alzheimer

Disease brain [49–51]. In support of this argument, a-ke-

toglutarate dehydrogenase complex activity is significantly

diminished in the brains of AD patients [52]. The a-ke-

toglutarate dehydrogenase complex, however, is restricted

to mitochondria and the loss of the E3 denitrase activity is

unlikely to influence the nitration of cytosolic enzymes

such as glutamine synthetase. Nonetheless, the loss of

cellular denitrase activity may lead to sustained nitration of

glutamine synthetase in the brain. This is a distinct possi-

bility given the extent to which cytoplasmic proteins are

nitrated in the astrocytes of Alzheimer Disease brains [51].

Exposure of purified glutamine synthetase to supra-

physiological amounts of peroxynitrite results in S-nitro-

sylation and carbonylation of the enzyme and a profound

loss of activity [39]. These oxidative changes also promote

the degradation of glutamine synthetase by the 20S pro-

teasome [39], consistent with earlier reports of the

enhanced proteolysis of this enzyme following its oxida-

tion [53, 54]. In contrast, nitration of Tyr336 alone did not

promote the proteolytic degradation of glutamine syn-

thetase [39].

Site-Specific Inactivation of Glutamine Synthetase
by Hydroxyl Radicals

Mammalian glutamine synthetase is remarkably resistant to

oxidation by hydrogen peroxide [55, 56]. The combination

of reduced iron and hydrogen peroxide, however, causes a

profound loss of activity [55, 56]. Similar observations

were made with cultured astrocytes [56]. The glutamine

synthetase activity in these cells was not affected by

incubation in the presence of up to 10-4 M hydrogen

peroxide. Moreover, the inactivation of the cellular enzyme

by 10-3 M hydrogen peroxide required an intracellular

source of ferrous iron. Studies with the E.coli glutamine

synthetase indicate that this enzyme is inactivated by the

combination of iron and hydrogen peroxide in a site-

specific manner by the generation of hydroxyl radical

through Fenton chemistry:

Fe2þ þ H2O2 ! Fe3þ þ �OH þ OH� ð8Þ

The reactivity of this particular radical is diffusion

limited and therefore rarely reacts in a specific manner. In

the case of glutamine synthetase, the specificity is con-

ferred by the binding of ferrous iron to one of the metal

binding sites in the active site. The bound and reduced iron

can then reduce hydrogen peroxide to hydroxyl ion and

radical, with the latter oxidizing the histidinyl and argininyl

residues that bind the iron [57–59].

Glutamine Synthetase and Stroke

The role of glutamine synthetase in stroke is the subject of

numerous conflicting reports. One of the earliest changes

that occur during cerebral ischemia is an increase in the

extracellular amounts of glutamate. This was first demon-

strated in a landmark study by Benveniste et al. [60] using

rats and later confirmed in another remarkable study uti-

lizing human tissue [61]. The human study exploited the

temporary ischemia that occurs during the resection of the

temporal lobe for intractable epilepsy [61]. In rats, a

10-min period of ischemia produced an eightfold increase

in extracellular glutamate [60]. The increase in humans

was an astonishing 100-fold change [61]. This magnitude is

remarkable even taking into account the fact that the

resected tissue originated in brains of epileptics [61]. These

increases in glutamate are excitotoxic and are thought to

contribute to the damage due to ischemia.

The increases in extracellular glutamate were also

accompanied by decreases in the extracellular amounts of

glutamine [60, 61]. This is to be expected as the neurons

replenish the glutamate released during neurotransmission

with the hydrolysis of glutamine as catalyzed by glutami-

nase [62]. The decrement in extracellular glutamine,

however, did not match the increases in extracellular glu-

tamate [60, 61]. One explanation for this difference is an

inhibition of glutamine synthetase. This possibility was

corroborated, in part, by the research of Kranjc et al. [63]

(Table 1). These researchers induced hypoxia by exposing

rats to 8 % O2 for 3 h, which led to an approximate 20 %

reduction of glutamine synthetase specific activity in the

striatum, cortex, and hippocampus [63] (Table 1), the

regions most affected by stroke. Swamy et al. [64] also

reported an approximate 30 % loss of cortical glutamine

synthetase specific activity following 5 min of anoxia

2548 Neurochem Res (2015) 40:2544–2556
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(Table 1). In both of these studies, the cause for the

reductions of specific activity was not ascertained. Free

iron chelators mitigate the damage due to ischemia–

reperfusion injury, which suggest that this metal is liber-

ated during ischemia [65, 66]. The availability of free iron

during ischemia further suggests that the hydroxyl radical

is produced during oxygen starvation in the brain and may

inactivate glutamine synthetase.

Despite the considerable interest in stroke, little direct

data exist for the formation of nitrogen- or oxygen-centered

radicals during ischemia or reperfusion. Electron param-

agnetic spin (EPR) studies of rats, undergoing either four-

[67] or two-vessel [68] occlusions indicated little produc-

tion of �NO even after 2 h of ischemia [68]. The lack of

measurable �NO during ischemia is explicable. Oxygen and
�NO compete for binding to the a3 iron of mitochondrial

complex IV [69]. This complex normally catalyzes the

simultaneous four electron reduction of oxygen to water:

the final step of oxidative phosphorylation. The absence of

oxygen prevents the reduction of oxygen to water, but not

the oxidation of substrates by the tricarboxylic acid cycle.

Consequently, the mitochondrial electron transport chain

becomes highly charged with reducing equivalents. At the

same time, the a3 iron of complex IV primarily binds �NO.

Reperfusion of hypoxic cells by oxygen causes the dis-

placement of the �NO and the spurious reduction of the

incoming oxygen to superoxide by the highly charged

electron transport chain. Thus, during reperfusion, both

superoxide and �NO are available in close proximity for the

production of peroxynitrite. The relatively small number of

proteins that undergo tyrosyl nitration during experimental

hypoxia-reoxygenation [70] is probably a function of the

chemical environment/reactivity of the tyrosyl residue.

In contrast to the situation with �NO, EPR studies indi-

cate significant hydroxyl radial production during the

ischemia produced in the rat four-vessel occlusion model

[71] and this production may account for the decrements of

glutamine synthetase activity during cerebral oxygen star-

vation reported by Krajnc et al. [63] and Swamy et al. [64].

This hypothesis, however, remains to be confirmed.

With few exceptions, glutamine synthetase activity is

either restored or increased following ischemia and during

Table 1 Glutamine synthetase levels in mammalian stroke models

Species Vessels occluded
Ischemia

(min)

Hypoxia

(min)

Anoxia

(min)

Reperfusion

(h)
Striatum Cortex Hippocampus a

Rat

4. Vertebral &

carotid arteries
30 - -

3 Activity EM Activity Activity
[72]

24 Activity EM Activity Activity

2: Middle cerebral

arteries
30 - - 2 Activity Activity Activity [73]

1: Middle cerebral

artery

180 - - 3 IMH IMH [74]

120 - - 72 Activity Activity Activity [75]

180 - - 1 Activity Activity [76]

60 - - 24 Activity WB Activity WB [77]

120 - - 72 Activity Activity Activity [78]

120 - - 70 Activity Activity Activity [79]

None

- 180 -

0 to 0.25 Activity mRNA Activity mRNA Activity mRNA

[63]
1 to 3 Activity mRNA Activity mRNA Activity mRNA

6 Activity mRNA Activity mRNA Activity mRNA

24 Activity mRNA Activity mRNA Activity mRNA

- - 5
0 Activity

[64]
5 Activity

Pial vessels 1440 0 Activity mRNA [80]

Gerbil
2: Middle cerebral

arteries
10 - -

1 to 3 Activity
[81]

24 Activity

Piglet None - 30 - 1 to 72 IMH IMH [82]

Shown are the effects of various stroke models on glutamine synthetase specific activity, amounts, and where measured: mRNA. The amounts

of glutamine were determined by specific activity measurements (reported as activity in the table), electron microscopy (EM), Western blotting

(WB), and immunohistochemistry (IMH). No change, increases or decreases are indicated by blue, green and red lettering, respectively
a References
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reperfusion [63, 64, 72–82] (Table 1). These changes

occurred notwithstanding the production of both the �NO

and hydroxyl radicals as measured directly by EPR [67, 68]

and indirectly by other measures [64, 73, 75, 76, 78–81].

The initial rise in �NO is probably due to the displacement

of this molecule from cytochrome c oxidase, while the later

elevation is due to the activation of �NO synthase by the

increases in cytosolic calcium elicited by glutamate acting

via the NMDA and AMPA receptors [83–87]. As noted

above, reperfusion also generates superoxide [68]. The

application of superoxide dismutase during reperfusion

increases the EPR signal due to �NO [68] by preventing

reaction 2. Thus, reperfusion is replete with the reactive

species that have been shown to inactivate glutamine

synthetase.

After the initial losses of activity following hypoxia,

glutamine synthetase activities increase to greater than

control levels in the striatum, within an hour of reperfusion,

and to control levels in the cortex and hippocampus 3 h

after the resumption of blood flow [63] (Table 1). Similar

changes were reported in a gerbil model of ischemia–

reperfusion except that the restoration of glutamine syn-

thetase activity took greater than 3 h (Table 1, [81]). The

difference in recovery time could reflect the differences in

species used (rat vs. gerbil) as well as the severity and

length of oxygen deprivation (hypoxia for 180 min due to

the inhalation of 8 % O2 versus ischemia due to bicarotid

occlusion for 10 min). As noted earlier, five min of anoxia

resulted in an approximate 30 % loss of cortical glutamine

synthetase specific activity, which was paralleled by sim-

ilar losses of activity in the cerebellum and brain stem [64].

These activities continued to decline during reperfusion in

contrast to most of the studies shown in Table 1. This

difference may be attributed to the use of anoxia, which

while brief profoundly affected the cerebellum and brain

stem: two brain regions not adversely damaged by ische-

mia–reperfusion or hypoxia-reperfusion (see references in

Table 1). The extent of damage may also account for the

loss of glutamine synthetase immunoreactivity following

ischemia–reperfusion in piglet brains; holes were evident

in the histological sections presented in this study and may

reflect cerebral vascular differences in response to anoxia

between pigs and rats [88]. In general, though, reperfusion

in the rodent models of frontal cerebral ischemia is not

accompanied by a sustained loss of glutamine synthetase

activity.

The above conclusion is consistent with the earliest

experimental investigations of the specific activity of glu-

tamine synthetase in ischemia–reperfusion injury in rats

and the clinical observations of infants who had died of

strokes [89]. Petito et al. [72] observed increased specific

activity in the cortex, striatum, and hippocampus at three

and 24 h following ischemia (Table 1). The increases in

glutamine synthetase specific activity described by Petito

et al. [72] were substantiated by other studies of ischemia–

reperfusion [74–76, 78, 79] and hypoxia reperfusion in rats

[63]. These increases were accompanied by the redistri-

bution of the glutamine synthetase immunoreactivity to the

astrocytic processes [72, 74]. Neurons abut astrocytic

processes. The mobilization of glutamine synthetase may

therefore serve to position the enzyme near the affected

nerves.

The mechanisms which cause the increases in glutamine

synthetase specific activity in the ischemia–reperfusion

paradigms are not known. Elevations in glutamine syn-

thetase mRNA, were observed in the striatum, cortex, and

hippocampus following hypoxia and reperfusion (Table 1,

[63]). Glucocorticoids promote the transcription of GLUL

in astrocytes [90–92] and the levels of these hormones

cFig. 3 Major metabolic fate of the L-glutamate and L-glutamine

carbon skeletons. This schematic shows some of the major metabolic

pathways for the metabolism of L-glutamate and L-glutamine carbon

skeletons in mammalian organs with particularly emphasis on the

brain. These pathways are likely to be affected by changes in

glutamine synthetase activity. L-Glutamate is converted to L-glu-

tamine and GABA by glutamine synthetase and glutamate decar-

boxylase, respectively. L-Glutamate may also be converted to a-

ketoglutarate by the glutamate dehydrogenase reaction or by

transamination with, for example, oxaloacetate or pyruvate. The

products of the two transamination reactions are L-alanine and L-

aspartate, respectively. Finally, L-glutamate is also a precursor for L-

proline. L-Glutamine may be converted back to L-glutamate by the

glutaminase reaction. In order to prevent futile cycling in the brain

these two enzymes are localized preferentially to astrocytes and

neurons, respectively, and are components of the glutamine cycle (see

the text). L-Glutamine may also undergo transamination to a-

ketoglutaramate, a reaction catalyzed by at least two glutamine

transaminases. a-Ketoglutaramate is hydrolyzed to a-ketoglutarate by

x-amidase. Note that two carbons from pyruvate can enter the TCA

cycle to contribute to the carbon skeletons of oxaloacetate and a-

ketoglutarate. a-Ketoglutarate carbon may be converted to oxaloac-

etate carbon through the TCA cycle. The brain contains considerable

pyruvate carboxylase activity, so that pyruvate may also be converted

to oxaloacetate anaplerotically. Transamination of oxaloacetate with

a-ketoglutarate yields L-aspartate, which is a precursor of pyrimidine

carbon and nitrogen. The conversion of L-aspartate to b-alanine is

catalyzed by L-aspartate 1-decarboxylase, an enzyme present in

bacteria and fruit flies but not in mammalian brain. b-Alanine can,

however, be formed in mammalian tissues by the action of b-

ureidopropionase on b-ureidopropionate (a metabolite of uracil). b-

Alanine and its metabolite carnosine (b-alanine L-histidine) are well

represented in brain. Nitrogen (N) transfer reactions involving

glutamine amide are not shown. However, these are important in

ammonia production catalyzed by, for example, glutamate dehydro-

genase, glutaminase and x-amidase, and in supplying N to the

following metabolites: CMP (one N), AMP (two Ns), GMP (three

Ns), asparagine, NAD?, and glucosamine 6-phosphate. Aspartate N is

incorporated into pyrimidines (as noted above) and also into purines.

The de novo biosynthetic routes for purines and pyrimidines are

important in liver, whereas the salvage pathways are important in

brain. Note that for simplicity only the major products of the

pathways depicted in this figure are shown—cofactors and some

additional products are omitted.
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increase in stroke [93, 94]. Increased transcription of GLUL

due to glucocorticoids occurs over several hours [90, 92]

and this observation suggests that the elevations in glu-

tamine synthetase mRNA results from an, as yet uniden-

tified, stabilization of this message. Changes in

transcription alone would not account for increased glu-

tamine synthetase activity following oxygen deprivation in

the brain. Lin and Dunn [95] estimated the half-life of

glutamine synthetase in the rat brain to be 3.8 days and

therefore the mRNA increases must be accompanied by

comparable changes in translation. It may be that during

oxygen starvation and reperfusion, the net synthesis of

glutamine synthetase is accelerated as an emergency

measure to cope with attendant increase in astrocytic glu-

tamate. The activities of the bacterial and plant glutamine

synthetase are increased by adenylation and phosphoryla-

tion, respectively [9, 96]. No such post-translational mod-

ifications, though, have been reported for the mammalian

enzymes [97].

One mechanism for increasing the net protein synthesis

is to slow proteolysis. The degradation of glutamine syn-

thetase is, however, stimulated by oxidation of its residues

[98, 99], and in particular, nitration of the tyrosyl residues

[39]. This observation coupled with the known sensitivity

of glutamine synthetase to oxidative inactivation lead to the

conclusion that glutamine synthetase is protected from the

oxidative stress during stroke. The protection of glutamine

synthesis may reflect the superior defenses of the astro-

cytes, as compared to neurons, against damaging levels of

oxygen-and nitrogen-centered reactive species or the

activity of denitrases as discussed earlier. Peinado et al.

[70] reported increased tyrosyl nitration of cortical glu-

tamine synthetase following hypoxia and reperfusion. The

identity of the nitrated tyrosyl residues was not established

and therefore may not include Tyr336, which when nitrated

inactivates glutamine synthetase [39]. Human glutamine

synthetase consists of 373 amino acids of which 15 are

tyrosyl residues. It was also not established which of the

pools of glutamine synthetase—astrocytic or neuronal—

was nitrated.

Cellular measures to preserve astrocytic glutamine syn-

thetase are understandable given the central role played by

glutamine in metabolism and cellular repair (Fig. 3).

Demonstrating the roles of glutamine and glutamine synth-

ease in stroke, though, remain to be established, as do the

mechanisms regulating this activity in the brain. The

prevalence of cerebral strokes in aging human populations

highlights the need for better strategies for the treatment of

this pathology. Cerebral glutamine synthetase specific

activity is increased in a significant number of stroke studies

(Table 1). Treatments that lowered the clinical correlates of

stroke also normalize the increases in glutamine synthetase

activity [73, 75, 78, 79]. Thus, it is possible that increased

activity contributes to glutamate excitotoxicity by supplying

glutamine to neurons for eventual release as glutamate. This

idea was the basis for the use of a glutamine synthetase

inhibitor—MSO—to treat the G93A superoxide dismutase 1

murine model of amyotrophic lateral sclerosis [100–102].

The administration of MSO decreased both the contents of

glutamate and glutamine in the G93A superoxide dismutase

1 mice [102]. As we have discussed in early work, MSO may

be safe to use in humans [15, 103, 104]. These observations

suggest that the inhibition of glutamine synthetase by com-

pounds such as MSO may provide avenues for the treatment

of cerebral strokes.

Conclusions

In the brain, glutamine synthetase is predominantly located

in the astrocytes. The enzyme is crucial for maintenance of

cerebral nitrogen homeostasis, detoxification of cerebral

ammonia, and effective recycling of the neurotransmitters

glutamate and GABA between neurons and astrocytes.

Many studies on the level of cerebral glutamine synthetase

in various animal models of ischemia–reperfusion (and in a

few cases anoxia- or hypoxia-reperfusion) have been

reported. Despite the variety of models used in these

studies and the disparate times at which the analysis of

brain specimens were carried out, most studies have

reported an increase in the specific activity of cerebral

glutamine synthetase at time of sacrifice (Table 1). This

finding is remarkable given the fact that glutamine syn-

thetase is well documented to be especially sensitive to

inactivation by reactive oxygen- or nitrogen-centered rad-

icals and that the turnover time of glutamine synthetase in

the normal brain is longer than the reperfusion times (ex-

cept perhaps in the study by Lee et al. [82]). The mecha-

nism by which ischemia–reperfusion results in increased

levels of active cerebral glutamine synthetase must await

further study. Nevertheless, an increase in the specific

activity of cerebral glutamine synthetase has clinical

implications. An overproduction of glutamine in astrocytes

is a contributing factor to the neurotoxicity associated with

hyperammonemia [104] and may contribute to the pro-

duction of excess excitatory glutamate in a mouse model of

amyotrophic lateral sclerosis [100–102]. It is interesting

that a potent inhibitor of glutamine synthetase, namely

MSO, is neuroprotective in animal models of hyperam-

monemia [103, 104] and in a mouse model of amyotrophic

lateral sclerosis [100–102]. We hypothesize that cerebral

ischemia–reperfusion injury may result, at least in part,

from overproduction of glutamine, which in turn may result

in increased levels of excitatory glutamate. Based on this

hypothesis, we further suggest that, as noted for animal

models of hyperammonemia and amyotrophic lateral
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sclerosis, prior treatment with MSO may be beneficial in

animal models of stroke.
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