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Abstract Microglia is the resident innate immune cells

that sense pathogens and tissue injury in the central ner-

vous system. Microglia becomes activated in response to

injury, infection, and other stimuli that threaten neuronal

survival. Microglia activation plays an important role in

neurodegenerative diseases. Neochlorogenic acid (NCA) is

a natural polyphenolic compound found in dried fruits and

other plants. Although previous studies have shown that

phenolic acids including NCA have outstanding antioxi-

dant, antibacterial, antiviral, and antipyretic activities,

there has not yet been investigated for anti-inflammatory

effects. Therefore, for the first time we have examined the

potential of NCA to inhibit microglial activation and pro-

inflammatory responses in the brain. We found that

lipopolysaccharide-induced inducible nitric oxide synthase,

and cyclooxygenase-2 expression, and nitric oxide forma-

tion was suppressed by NCA in a dose-dependent manner

in BV2 microglia. NCA also inhibited the production of

pro-inflammatory mediators, tumor necrosis factor-a and

interleukin-1 beta. Furthermore, phosphorylated nuclear

factor-kappa B p65 and p38 mitogen-activated protein

kinase activation were blocked by NCA. Taken together,

these results suggest that NCA exerts neuroprotective

effects through the inhibition of pro-inflammatory path-

ways in activated microglia.
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Introduction

Microglia is the resident macrophages of the central nervous

system (CNS). They play a major role in the defense against

neuronal injury and contribute to homeostasis in the brain

[1–3]. However, activation of microglia can cause chronic

neuroinflammation due to inflammatory and pathophysio-

logical stimuli such as lipopolysaccharide (LPS). LPS is a

bacterial endotoxin and is widely used to create inflamma-

tion in the brain [4]. Activated microglia releases pro-in-

flammatory mediators and cytokines, including nitric oxide

(NO), cyclooxygenase-2 (COX-2), tumor necrosis factor-a
(TNF-a), and interleukin-1 beta (IL-1b), eventually leading
to neuronal dysfunction and cell death [5–7]. Clinical evi-

dence has shown that microglial activation and neuroin-

flammation are implicated in the pathogenesis of

neurodegenerative diseases including Alzheimer’s disease,

Parkinson’s disease, brain ischemia, and Huntington’s dis-

ease [8–10]. Thus, regulating microglial activation and pro-

inflammatory responses may help patients with neurode-

generative diseases by reducing brain damage or neuronal

cell death.

Neochlorogenic acid (NCA) (Fig. 1), an isomer of

chlorogenic acid, is a natural polyphenolic compound

found in some types of dried fruits and a variety of other

plant sources such as peaches [11]. Previous studies have

shown that phenolic acids have outstanding antioxidant,
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antibacterial, antiviral, and antipyretic activities [12–14].

In addition, geniposide, another phenolic acid, has shown

analgesic and anti-inflammatory effects [12, 15]. However,

the effects of NCA on inflammation have not yet been

investigated. Therefore, for the first time we examined the

potential of NCA to inhibit microglial activation and pro-

inflammatory responses in the brain.

Materials and Methods

Materials

Murine microglial BV2 cells were provided to us by Dr.

Myungsook Oh from Kyunghee University (Seoul, Korea).

LPS, NCA, dexamethasone, Griess reagent, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) reagent and dimethyl sulfoxide (DMSO) were pur-

chased from Sigma Aldrich (St. Louis, MO, USA). Cell

culture media [Dulbecco’s modified Eagle’s minimal

essential medium (DMEM)], antibiotic–antimycotic solu-

tion, fetal bovine serum (FBS) and other ingredients required

to culture BV2 cells were purchased from Life Technologies

(Grand Island, NY, USA). Protease and phosphatase inhi-

bitor cocktail tablets were supplied by Thermo Scientific

(Rockford, IL, USA). Primary and secondary antibodies

used for western blot analysis were purchased from Santa

Cruz Biotechnology (Santa Cruz, CA, USA), Cell Signaling

Technology (Danvers, MA, USA), and BDBiosciences (San

Jose, CA, USA). ELISA kits were obtained from Enzo Life

Sciences (Farmingdale, NY, USA).

Cell Culture and Treatment

Mouse BV2 microglial cells were maintained in DMEM,

supplemented with 5 % FBS and 1 % antibiotic–antimy-

cotic in a humidified incubator with 5 % CO2 at 37 �C.
NCA and dexamethasone as positive control were dis-

solved in DMSO to a final concentration of 10 mM for the

stock solution. Treatments with LPS and/or NCA were

carried out under serum-free conditions.

NO Production Assay

NO production of LPS-activated BV2 cells was measured

by the Griess test. BV2 cells were plated into 96-well

plates at a density of 3 9 105 and treated with LPS (4 lg/
ml), Dexamethasone (10 lM) and NCA (0, 10, 50, and

100 lM) for 24 h. The culture supernatant from each

sample (50 ll) was mixed with the same volume of the

Griess reagent (1 % sulfanilamide, 0.1 % N-1-naph-

thylethylenediamine dihydrochloride in 5 % phosphoric

acid) and then incubated for 10 min at room temperature.

The absorbance values were measured at 540 nm using a

microplate reader, and NaNO2 was used as the standard to

determine NO2 concentrations.

MTT Cell Viability Assay

Cell viability was confirmed by the MTT assay. The

medium was removed from the wells, MTT was added, and

the samples were then incubated for 3 h at 37 �C. The
formazan crystals were dissolved by adding DMSO, and

the absorbance values were measured at 540 nm using a

microplate reader.

Enzyme Immunoassay

The inhibitory effects of NCA on the production of the

proinflammatory cytokines TNF-a and IL-1b were deter-

mined by an enzyme-linked immunosorbent assay

(ELISA). Conditioned media were analyzed as per the

manufacturer’s instructions with a mouse enzyme

immunoassay (EIA) kit (Enzo Life Sciences).

Western Blot Analysis

BV2 cells were seeded in 6-well plates. The cells were

lysed with Protein Extraction Solution (Elpis biotech,

Daejeon, Korea) and cell lysates were separated into the

nuclear and cytosol fractions using a nuclear/cytosol frac-

tion kit (Biovision Inc., Milpitas, CA, USA). The protein

concentration was measured using a protein assay dye

reagent with bovine serum albumin as the standard. The

same amount of protein from each sample was separated by

10 % sodium dodecyl sulfate–polyacrylamide gel elec-

trophoresis and transferred onto a nitrocellulose membrane.

The membranes were blocked with 5 % skimmed milk and

incubated with different primary antibodies inducible nitric

oxide synthase (iNOS), COX-2, b-actin, p38 mitogen-ac-

tivated protein kinase (p38 MAPK), phospho-p38 MAPK,

nuclear factor kappa B p65 (NF-jB p65), and phospho-NF-

jB p65 overnight at 4 �C. Then, the horseradish peroxi-

dase-conjugated secondary antibodies were incubated for

1 h. Antibody detection was carried out using ECL reagent

Fig. 1 The chemical structure of neochlorogenic acid (NCA)
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(Thermo Scientific, USA) and visualized by ChemiDoc

(Bio-Rad Laboratories, Hercules, CA, USA). The intensi-

ties of the bands were normalized to the b-actin band using

Image Lab Software (Bio-Rad).

Statistics Analysis

All statistical parameters were calculated using GraphPad

Prism 3.0 software (GraphPad Software Inc., San Diego,

CA, USA). Values were expressed as the mean ± standard

error of the mean (SEM). The results were analyzed by

one-way analysis of variance (ANOVA) followed by

Tukey’s post hoc test. Differences with a P value less than

0.05 were considered statistically significant.

Results

Inhibitory Effects of NCA on NO Production

in LPS-Induced BV2 Microglia Cells

To determine the effects of NCA on the LPS-induced

production of the inflammatory mediator NO in microglia,

the NO levels in the cell culture medium were measured

using the Griess assay (Fig. 2a). NCA or dexamethasone

treated alone was not any affected to NO production.

LPS-treated BV2 cells showed a marked increase of

cellular nitrite levels compared to the control group. In

the presence of NCA, NO production by LPS-induced

BV2 cells was inhibited in a dose-dependent manner, with

levels significantly inhibited after treatment with 50 and

100 lM NCA. Especially 100 lM NCA had similar

inhibitory effects to dexamethasone. Dexamethasone is

widely used as a positive control to anti-inflammatory

effect and used 10 lM, which had a marked effective

dose in previous studies [16].

No Effect of NCA on Cell Viability

The potential cytotoxicity of NCA on LPS-induced BV2

cells was evaluated using the MTT assay. Our results

showed that cell viability was not affected at any concen-

tration used (Fig. 2b), confirming that the inhibition of NO

production in LPS-induced BV2 cells was not due to

cytotoxic effects of NCA. Moreover, NCA was dissolved

in DMSO to less than 0.01 % and it was not affected to cell

death (data not shown).

Inhibitory Effects of NCA on iNOS and COX-2

Protein Expression in LPS-Induced BV2 Microglia

Cells

In order to determine whether the inhibitory effect of NCA

on NO production was associated with a downstream

modulation of iNOS and COX-2 expression, we measured

the protein levels using western blotting. The protein levels

of these enzymes were analyzed in the whole cell lysates

24 h after treatment with LPS. As shown in Fig. 3, iNOS

and COX-2 levels were increased in LPS-induced BV2

cells, but this increase was significantly inhibited after

treatment with 50 and 100 lM NCA.

Effects of NCA on the LPS-Induced Release of Pro-

inflammatory Cytokines in BV2 Microglia Cells

The effects of NCA on the secretion of pro-inflammatory

cytokines such as TNF-a and IL-1b were investigated by

ELISA in LPS-induced BV2 microglial cells (Fig. 4). The

Fig. 2 Effects of neochlorogenic acid (NCA) on nitric oxide (NO)

production and cell viability in lipopolysaccharide (LPS)-stimulated

BV2 microglial cells. The cells were treated with or without LPS

(4 lg/ml) and NCA (10, 50, and 100 lM) for 24 h. Dexamethasone

(10 lM) was used for positive control. Then, a nitrite concentrations

in the medium were determined using the Griess reagent. b Cell

viability was confirmed by the MTT assay. Each value indicates the

mean ± SEM and represents results obtained from three independent

experiments. ###P\ 0.001 indicates that the mean value was

significantly different from the control group receiving no treatment.

*P\ 0.05 and ***P\ 0.001 indicate that the mean value was

significantly different from the group receiving LPS alone
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results showed that the expression of TNF-a and IL-1b
increased in LPS-induced BV2 cells, but these increases

were blocked in the NCA-treated group. Specifically,

treatments with 50 and 100 lM NCA significantly inhib-

ited the increase in TNF-a and IL-1b expression relative to

treatment with LPS alone.

Degradation Effects of NCA on Activation of p38

MAPK and Nuclear Translocation of NF-jB p65

in LPS-Induced BV2 Microglia Cells

To clarify that the inhibition of the increases of iNOS and

COX-2 expression was mediated by an NCA-induced

Fig. 3 Inhibitory effects of neochlorogenic acid (NCA) on inducible

nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein

induction in lipopolysaccharide (LPS)-stimulated BV2 microglial

cells. After treating with LPS (4 lg/ml) and NCA (10, 50, and

100 lM) for 24 h, the cell lysates were prepared and western blot

analysis was performed using anti-iNOS and anti-COX-2 antibodies.

Protein levels of iNOS (b) and COX-2 (d) were normalized to b-actin.

Representative band images from individual experiments are shown

in a and c. Each value indicates the mean ± SEM and represents

results obtained from three independent experiments. ###P\ 0.001

indicates that the mean value was significantly different from the

control group receiving no treatment. *P\ 0.05 and ***P\ 0.001

indicate that the mean value was significantly different from the group

receiving LPS alone

Fig. 4 Inhibitory effects of NCA on tumor necrosis factor-a (TNF-a)
and interleukin-1 beta (IL-1b) production in lipopolysaccharide

(LPS)-stimulated BV2 microglial cells. The cells were treated with

LPS (4 lg/ml) and NCA (10, 50, and 100 lM) for 24 h. The levels of

a TNF-a and b IL-1b present in the supernatants were measured by

ELISA. Results indicate the mean ± SEM and represent results

obtained from three independent experiments. #P\ 0.05 indicates

that mean value was significantly different from the control group

receiving no treatment. *P\ 0.05 and **P\ 0.01 indicate that mean

value was significantly different from the group receiving LPS alone
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blockade of LPS-induced microglial activation, the effects

of NCA on activation of phosphorylated p38 MAPK and

NF-jB p65 were examined. Figure 5a shows that NCA at

100 lM, the most effective concentration in other assays,

also attenuated the LPS-induced increase of p38 MAPK

phosphorylation compared with the group treated with LPS

alone. NCA also markedly attenuated the LPS-induced

increase of NF-jB p65 phosphorylation compared with the

group treated with LPS alone (Fig. 5b).

Discussion

NCA is reported to be a major bioactive component of

dried fruits and other plants, and has been demonstrated to

have various beneficial effects [12–14]. However, the

effects of NCA on inflammatory processes are still unclear.

Our present results provide, for the first time, evidence for

the anti-inflammatory effects of NCA. In this study, NCA

showed a reduction of LPS-induced NO production by

suppressing iNOS and COX-2 protein expression and

production of pro-inflammatory cytokines, such as TNF-a
and IL-1b, in BV2 microglia cells. In addition, phospho-

rylated p38 MAPK and NF-jB p65 were also inhibited by

NCA in activated microglia. These results suggest that

NCA exhibited anti-inflammatory effects in BV2 micro-

glial cells.

Microglia is sensitive to changes in their microenvi-

ronment and is activated in response to infection or injury.

Microglia-mediated neuroinflammation is a major compo-

nent enhancing neurodegeneration. Overactivation and

dysregulation of microglia cause neuronal death and brain

injury, most likely due to the production of high levels of

cytotoxic and pro-inflammatory factors [17–19]. Microglial

activation is pivotal in the initiation of neuroinflammation

and prolonged activation of microglial cells leads to

excessive release of NO by iNOS in the brain [20]. NO

plays an important role in cell survival and NO can induce

Fig. 5 Inhibitory effects of neochlorogenic acid (NCA) on activation

of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear

translocation of NF-jB p65 in liposaccharide (LPS)- stimulated BV2

microglia cells. The cells were treated with LPS (4 lg/ml) and NCA

(0 and 100 lM) for 30 min. The effects of NCA on phosphorylation

of p38 MAPK and NF-jB p65 were investigated using western

blotting analysis. For p38 MAPK detection, antibodies directed

against phosphorylated p38 MAPK (p-p38) and total p38 MAPK were

used in whole protein lysate. For NF-jB p65 detection, antibodies

directed against phosphorylated NF-jB p65 (p-p65) and total NF-jB

p65 were used in the nuclear fraction. Levels of p-p38 (b) and p-p65

(d) were normalized to total p38 MAPK and total NF-jB p65.

Representative band images from each experiment are shown in a and
c. Each value indicates the mean ± SEM and represents results

obtained from three independent experiments. #P\ 0.05 and
##P\ 0.01 indicate that mean value was significantly different from

the control group receiving no treatment. *P\ 0.05 indicates that

mean value was significantly different from the group receiving LPS

alone
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neuronal cell death [21]. COX-2 is upregulated in response

to various inflammatory stimuli and NO functions to

enhance its expression and activity [22]. A number of

studies have shown that the expression of iNOS and COX-

2, key enzymes for NO, is upregulated in activated glial

cells. Pro-inflammatory cytokines such as TNF-a and IL-

1b are also initiators of the inflammatory response and

mediators in the pathogenesis of neurodegenerative disor-

ders [23, 24]. Previous evidence has demonstrated the

damaging and inflammatory effects of these cytokines in

neuropathology [25]. Thus, downregulation of these

inflammatory molecules could be beneficial for alleviating

the progression of neurodegeneration caused by microglial

activation. In the present study, treating LPS-stimulated

BV2 cells with NCA effectively decreased iNOS, COX-2,

TNF-a, and IL-1b levels and the release of their respective

end-products, including NO. Further, the MTT assay

results demonstrated that this effect was not due to any

cytotoxicity of NCA.

The critical transcription factor, NF-jB p65, is part of a

well-known signaling cascade that contributes to the pro-

duction of an array of inflammatory mediators including

COX-2, iNOS, and cytokines. Generation and amplifica-

tion of TNF-a and IL-1b have been reported to be regu-

lated by NF-jB p65 [26–28]. In addition to NF-jB p65

signaling, MAPKs are also important signaling molecules

involved in the production of pro-inflammatory mediators

and cytokines and the modulation of NF-jB p65 in

microglia [29, 30]. One of the MAPK families, p38, is

related to LPS signaling in microglial cells, which respond

to pro-inflammatory cytokines [31, 32]. In this study, we

detected the inhibitory effects of NCA on LPS-induced

activation of NF-jB p65 and p38 MAPK. These results

suggest that NCA-mediated inhibition of pro-inflammatory

mediators and cytokines is associated with the downregu-

lation of the MAPK signaling pathway.

In conclusion, the present study demonstrates that NCA

inhibits LPS-induced NO production by iNOS and COX-2

protein expression in BV2 microglial cells. NCA also

inhibits the production of the pro-inflammatory cytokines,

TNF-a and IL-1b, and inflammation mediated via phos-

phorylated NF-jB p65 and p38 MAPK. Our findings sug-

gest that NCA may provide a beneficial effect in the

treatment of inflammatory brain damage induced by

microglial activation, which should be verified through

more precise in vivo model experiments. To our best

knowledge, in vivo studies on permeability of NCA into

brain and anti-inflammatory effect have not performed. We

hope that these studies would contribute to the treatment of

neurological disorder involved in microglial activation.
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