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Abstract Transforming growth factor-b 1 (TGFb1) has a
diverse role in astrogliosis and neuronal survival, but the

underlying mechanism remains to be elucidated, especially

in traumatic brain injury (TBI). Here, we show that the

expression of TGFb1 was increased in the pericontusional

region, accompanied with astrogliosis and neuronal loss in

TBI rats. Moreover, TGFb1 knockdown not only reduced

the number of neurons and inhibited astrogliosis but also

resulted in a significant neurological dysfunction in rats

with TBI. Subsequently, Smad3, a key downstream signal

of TGFb1, was involved in pericontusional region after

TBI. These findings therefore indicate that TGFb1 is

involved in neuroprotection and astrogliosis, via activation

of down stream Smad3 signal in the brain after injury.

Keywords TGFb1 � Traumatic brain injury � RNA
interference � Neural protection

Introduction

Trauma is one of the leading killers under 44 years old,

especially from car accidents. Among all of trauma, more

than half consists of traumatic brain injury (TBI), and most

of the survivors suffer from permanent disabilities. With

the dramatic expansion of modern transportation and

industry, the incidence of TBI caused by traffic accidents

and falling is increased in recent years. About 50 million

TBI patients are admitted to the hospital each year, among

which 75,000–90,000 die. Therefore, a resurgence of

interest to the brain injury is coming and involved mech-

anism needs to be investigated [1–4].

Transforming growth factor-b (TGF-b) plays several

prominent roles in immune regulation [5–7]. As an

important neurotrophic factor in supporting cell survival

and proliferation [8–11], TGF-b was expressed in the

nervous system as three distinct yet highly homologous

isoforms, known as b1, b2 and b3. TGFb1 can mediate

signal transduction from cell membrane to nucleus through

the activation of TGF receptors [12, 13], which in turn

phosphorylate the smad family proteins [14]. In addition,

TGFb1 shares a positive role for neuronal survival in vitro,

and promotes astrogliosis [8–11]. In vivo, TGFb1 was

found to express in both forebrain subventricular and hip-

pocampal dentate gyrus [15]. Previous studies have showed

that administration of TGFb1 promotes the recovery of

wound after injury. However, the role of TGFb1 and

related signal in TBI is waiting to be elucidated.

In this study, we detected the temporal change of the

intrinsic TGFb1 expression in the brain of rats with TBI,
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then examined its roles and associated molecular mecha-

nism. The findings could help to understand the role of

endogenous TGFb1 and its implication that could be useful

for its clinic application involved in patients suffering from

TBI.

Methods

Animal Experiments

Adult Sprague–Dawley female rats (weighing 180–210 g)

were obtained from the Animal Experimental Center of

Kunming Medical University. This research was approved

by the Kunming Medical University Animal Care and all

procedures were performed according to the guidelines of

Chinese Academy of Sciences. Every effort was made to

reduce the number of animals used and to minimize the

suffering during the experiments. The rats were performed

each procedure and usage, shown in Table 1.

Animal Surgery

The modified Feeney method was used to prepare the strike

injury on the zona rolandica of rats [16, 17]. In brief, the rats

were anesthetized by intraperitoneal injection of 3.6 %

chloral hydrate (1 ml/100 g). A ‘‘V’’ shaped incision was

made 5 mm away from the frontal fontanel in the coronary

plane. The right parietal bonewas exposed.Adental drill was

used to make an opening through the bone at 2.5 mm from

the sagittal suture, and 1.5 mm from the arcuate suture. The

‘‘bone window’’ was enlarged to 5.0 mm 9 5.0 mm area.

The cerebral cortex was exposed and a sterile clout was

placed on it. A metal cylinder weighing 60 g was dropped

vertically along a metal pole to strike the clout at a 10 cm

height with 50 g weight. This resulted in a moderate contu-

sion injury of the right zona rolandica. Post-operative care

included daily injection of 5 IU of penicillin, beginning from

the first day of operation till 3 days afterwards. Manual

evacuation of the urinary bladder had been performed until

the rats were humanely euthanized. The rats were given food

and drink ad libitum.

siRNA Preperation

Human herpes simplex virus (HSV) vector was prepared

for the construction of shRNA-TGFb1 [18]. shRNA tar-

geting the rat TGFb1 cDNA was synthesized by Shen-

DeYuan Biotech Company. The shRNA-TGFb1 gene and

the fluorescent marker GFP were simultaneously cloned

into HSV vector; the negative control vector only expresses

the GFP gene. HSV-sh TGFb1-GFP and HSV-GFP vectors

were then prepared for in vivo injection.

Injection of HSV-sh TGFb1 into Pericontusional

Regions

After brain contusion injury, 10 ll of HSV-sh TGFb1-GFP
or the control HSV-GFP were immediately injected into

the pericontusional regions (2sites located in inside and

outside of epicenter, 5 ll for each site) with the help of a

Hamilton micro syringe. The silencing effects of TGFb1
interference by the above stated agents were determined by

IHC, RT-PCR and Western blotting. The neurological

function was evaluated with neurological severity scores at

1, 7, 14, and 28 days post operation (dpo).

Neurological Function Evaluation

The neurological severity scores (NSS) is a composite of

motor, sensory, reflex and balance tests. One point was

scored for the inability to perform the test or for the lack of

a tested reflex; Therefore, the higher the score, the more

severe the neurological defects. Neurological function was

graded on a scale of 0–18 (normal score, 0; maximal deficit

score, 18). NSS evaluation was carried out in all testing

animals 1 week after injury and lasted for one additional

week, by a three researchers blinded to injury and treath-

ment condition.

Immunohistochemistry (IHC)

Rats were perfused with 500 ml of cold Phosphate-buf-

fered saline (PBS) for 5 min and 500 ml cold 4 %

paraformaldehyde solution for 30 min. The pericontusional

tissues in each group were harvested, post-fixed for 6–12 h,

and immersed in 0.1 M PBS containing 20 % sucrose

overnight. Immunohistochemistry was performed as

described previously [19, 20]. Sections of 10 lm thickness

were cut on a freezing microtome for free floating TGFb1
immunostaining. After rinsed with 0.01 M PBS and soaked

in PBS containing 3 % H2O2 for 30 min at room temper-

ature to quench the endogenous peroxidase activity,

Table 1 Animal grouping, number and experimental procedures

(days)

Group IHC RT-PCR/WB NSS

Sham 7,14 1,3,7,14 7,14

TBI 7,14 1,3,7,14 7,14

TBI ? vector 7,14 1,3,7,14 1,7,14,28

TBI ? shRNA 14 3,14 1,7,14,28

WB western blot, IHC immunohistochemistry (n = 5 in each sub-

group). RT-PCR reverse transcription-polymerase chain reaction and

WB share same sample. SCT spinal cord transection
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sections were immersed in PBS containing 5 % goat serum

and 0.3 % Triton at room temperature for 2 h. This was

followed by the incubation with anti-TGFb1 (1:200,abcam)

rabbit polyclonal antibody at 4 �C for 24 h and rinsed

again. Then they were incubated with biotinylated goat

anti-rabbit IgG antibody (1:100 dilution Vector Labs,

USA) for 1.5 h at room temperature and followed by avi-

din-biotinylated peroxidase complexes (1:250, ABC Elite,

Vector Labs). TGFb1 immunoreactivity was visualized

using diaminobenzidine and H2O2 as substrates for 5 min.

All sections from the sham-operated and experimental rats

were treated under identical conditions. Negative control

experiments in which normal goat serum was used to

substitute for the primary antibody were performed to

ascertain the specificity of antibody staining. In order to

compare the change on the TGFb1 expression in each

group, the number of TGFb1 positive neurons and astro-

cytes from three sections of each animal was counted. 5

animals of each group were used in the study to compare

the number of cells for TGFb1 by a stereology approach.

Immunofluorescence

To detect the cell types and amount of TGFb1 transfection

in the brain, immunofluorecent staining was performed by

a routing method. Briefly, sections from each group were

harvested and washed with PBS, then fixed with 4 %

paraformaldehyde for 10 min. The sections were then by

permeabilized with 0.1 % Triton X-100 at room tempera-

ture for another 30 min. Then sections were incubated with

5 % normal goat serum for 30 min. Subsequently, rabbit

anti TGFb1 antibody (1:200, Abcam) and mouse anti-

NeuN (Zhongshan company, 1:500) or mouse anti-GFAP

(Milipore, 1:500) were added on sections, respectively, and

sections were kept overnight at 4 �C. Then sections were

washed with PBS three times, and incubated with Cy3 and

488 conjugated secondary antibody (1:200; millpore) in the

dark at 37 �C for 1 h. This was followed by last washing,

the DAPI was added to counterstain nuclei for 10 min.

Images of stained cells from 5 fields in each sections were

harvested and counted by using a Leica microscope.

Western Blotting Analysis

Western blotting analysis was performed as described in

previous studies [21, 22]. To investigate the level of

TGFb1 and Smad3, the downstream signaling molecules,

the rats from respective group were killed. After carefully

removing the brain meninges, the brain tissues from peri-

contusional region were homogenized on ice in Lysis

Buffer containing 0.05 M Tris–HCl (pH 7.4, Amresco),

0.5 M EDTA (Amresco), 30 % TritonX-100 (Amresco),

NaCl (Amresco), 10 % SDS (Sigma) and 1 mM PMSF

(Amresco), and centrifuged at 12,000 rpm for 30 min. The

supernatant was stored at -80 �C until analysis. Protein

concentration was determined with BCA reagent (Sigma,

St. Louis, MO, USA). Protein samples were elec-

trophoresed on 12 % SDS–polyacrylamide gel (SDS-

PAGE) and transferred to the nitrocellulose membrane.

The membrane was blocked with phosphate-buffered saline

containing 0.05 % Tween-20 (PBST) and 10 % nonfat dry

milk overnight at 4 �C for 12 h. It was washed three times

for 10 min each time, then rinsed with PBST and incubated

with the primary antibodies specific for TGFb1 and Smad3

(1:200, abacam, Rabbit monoclonal antibody) at 4 �C for

24 h. After washing three times for 10 min each, the

membrane was incubated with a HRP-conjugated goat anti-

rabbit Ig G (1:500; Vector Laboratories, CA) for 2 h at

room temperature, and washed as described above. It was

then developed with an ECM kit and visualized by a Bio-

Gel Imagining system equipped with Genius synaptic gene

tool software. Densitometry analysis for TGFb1 and

Smad3 were performed respectively, using b-actin (1:500,

Santa Cruz) as internal control.

Reverse Transcription Polymerase Chain Reaction

(RT-PCR)

RT-PCR was used to determine the expression level of

TGFb1 and Smad3 in pericontusional tissues, as referenced

in previous reports [23, 24]. Total RNA was isolated from

brain sample (weighing 50 mg), using Trizol (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s

instruction. The concentration was measured using a

Nanodrop spectrophotometer (ND-1000) and the total

RNA was subjected to a reverse transcription procedure

using the Revert Aid according to the manufacturer’s rec-

ommendation. PCR primers are as follows: b-actin
(227 bp) sense: 50 -GTAAAGACCTCTATGCCAACA-30;
and antisense: 50 GGACTCATCGTACTCCTGCT 30;
TGFb1 (332 bp) sense: 50GTGAGCACTGAAGCG
AAAGC30 and antisense: 50 TAATGGTGGACCGCAACA
AC 30. Smads (413 bp) Sense: 50 CTGGCTACCTGAGT
GAAGATG 30;antisense: 50 GTTGGGAGACTGGACGA
AA 30. PCR was performed using 2 PCR Master Mix

(Fermentas Company) in 0.2 ml thin walled reaction tubes,

using the ‘‘hot-start’’ method. Reagents were assembled in

a final volume of 25 ml, and the final concentrations of

reagents were as follows: 1.5 ml first strand cDNA, 0.5 ml

forward primer, 0.5 ml reverse primer, 12.5 ml 2 PCR

Master Mix, and 10 ml RNase-free water to 25 ml. Sam-

ples were initially denatured at 94 �C for 5 min, then 1 min

denaturation at 94 �C, 1 min annealing at 52.5 �C for b-
actin and 54 �C for TGFb1, and Smad3 1 min extension at

72 �C. The whole reverse transcription procedure was

repeated for 30 cycles with a final extension step at 72 �C
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for 10 min. Aliquots (25 ml) of the PCR reaction were run

on 1 % agarose gels, and the size of the reaction products

was determined after ethidium bromide staining. Rat b-
actin was amplified as an internal control, using rat-specific

primer.

Statistic Analysis

All statistical analyses were performed using the statistical

software SPSS11.0. A student t test was performed for two

sets of data, while one-way ANOVA with a LSD-t (equal

variance assumed) or Dunnett’s T3 (equal variance not

assumed) post hoc test was performed for the comparison

of three sets of data. A p value less than 0.05 was used to

denote statistical significance.

Results

Changes of Neurological Scores After TBI

A significant neurological dysfunction, as indicated by

increased NSS scores, was seen in rats at 7 days after TBI

(dpo) (Fig. 1). Despite NSS scores was slightly reduction

in rats at 14 dpo compared to 7 dpo, it was also obvious

abnormality, compared to sham control rats. These showed

that TBI caused a persistent neurological deficit in rats.

Impact of TBI on TGFb1 Expression in Injury Brain

To understand the involvement of TGFb1 in neural injury

or recovery after TBI, RT-PCR and Western blotting

analysis were used to determine its expressional levels in

the brain of rats after TBI. The data showed that the level

of TGFb1 mRNA was upregulated at 1, 3, 7, 14 dpo, while

the level of TGFb1 protein exhibited a slight delay and

reached a statistic significance at 14 dpo in the pericontu-

sional region after TBI (Fig. 2a–d).

Localization of TGF-b1 and Its Change

By immunofluorescent double labeling staining. We detect

the localization of TGFb1 in neurons(Fig. 3a–d) and

astrocytes (Fig. 3e–h). Moreover, by immuno enzyme his-

tochemical staining, we quantify the number of TGFb1
positive neurons in each group. The data showed TGFb1
immunostaining in neurons was remarkably decreased from

7 to 14 dpo, while TGFb1 positive astrocytes exhibited a

significant increase at 14 dpo in the pericontusional region

of TBI, compared with sham one (Fig. 3l–m).

Fig. 1 Defective neurological scores after TBI. TBI rats exhibit

significant neurological dysfunctions 7 and 14 days post operation

(dpo), when compared with sham operated controls, as determined by

NSS assessment

Fig. 2 Effect of TBI on TGFb1 expression and astrogliosis. A

representing image shows the levels of RT-PCR products in the brain

samples from different groups (a). Quantitative histograms showed

the changes of mRNA levels after TBI shown in (b) (*P\ 0.05,

compared with other group). c showed that Western blotting analysis

of TGFb1 in the brain samples from different groups. Quantitative

histograms on the changes of TGFb1 protein levels after TBI was

shown in (d) (*Compared with other group, P\ 0.05)
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Fig. 3 Localization of TGFb1 and its change. TGFb1 was co-

localized in neurons, shown in (a–d), and TGFb1 positive astrocytes

in (e–h). Immunohistochemical enzyme-linked staining of TGFb1 in

brain section from sham, 7, and 14 dpo, shown in (i–k), respectively.

l, m show quantitative data of TGFb1 staining on the number of

positive cells. The arrows highlight TGFb1 positive cells, and scale

bar is 50 lm in (g). *P\ 0.05, compared with other group. Scale bar

50 lm, shown in (a)
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Morphological Evidences of TGFb1 shRNA

Interference

Under fluorescence microscope, both neurons and astro-

cytes could emit green fluorescence, indicating that HSV

shTGFb1 has successfully transfected into host cells. These
cells could be double labelled by NeuN or GFAP markers,

confirming they are neurons (Fig. 4a–c) or astrocytes,

respectively (Fig. 4d–g). Compared with the staining of

TGFb1 in TBI rats, HSV-shTGFb1 decreased greatly the

staining intensity of TGFb1 in neurons and astrocytes

(Fig. 4h, i).

Effect of TGFb1 shRNA Interference on Astrogliosis

and Neuronal Spared

To test whether the elevated TGFb1 expression con-

tributes to neurological morphology after TBI, the

knockdown of TGFb1 was performed with the shRNA

approach. RT-PCR (Fig. 5a) and Western blotting analy-

sis (Fig. 5b) confirmed a significant decrease on TGFb1
expression in HSV-shRNA injection group (Fig. 5c).

Colocalization of TGFb1 with NeuN and GFAP con-

firmed TGFb1 could express both in neurons and astro-

cytes (Fig. 5d, e). Consistently, when compared with

Fig. 4 Effect of HSV-shTGFb1 transfection on GFP in the brain.

Labeled HSV-sh TGFb1 staining cell was shown in (a). NeuN

staining was shown in (b). c is merged together with DAPI staining

(blue). d–g show astrocytes transfected with TGFb1-GFP and stained

by GFAP, DAPI and merged,respectively. h showed the strong GFP

expression in neurons of TBI rats, while sh-TGFb1 transfection

weakens the TGF-b expression in neurons, greatly (i). Scale bar

50 lm, shown in (a, d, h) (Color figure online)
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empty vector treated rats, the number of TGFb1 positive

neurons and astrocytes around injected site was all

decreased dramatically (Fig. 5f–h).

TGFb1 Knockdown Decreased Smad3 Expression

Consistent with the change of TGFb1, shRNA interference

for TGFb1 significantly decrease the expression of Smad3,

a downstream molecule of TGFb1 (Fig. 6a–c).

Effect of TGFb1 Knockdown on Neural Recovery

in TBI Rats

To determine the role of endogenous TGFb1 in neural

recovery after TBI, we compared the behavior between the

control rats and TGFb1 silencing rats. Based on the NSS

evaluation, despite no significant change could be seen on

NSS scores in rats with TGFb1 knockdown at 1, 7 and

14 dpo compared with the control, the NSS score exhibited

significant increase, compared with control at 28 dpo

Fig. 5 Effect of TGFb1 shRNA
interference on neuron and

astrogliosis. Image of RT-PCR

product and WB from the

pericontusional regions in

shRNA treatment, group and

TBI control was shown in (a, b),
respectively. Quantitative

histograms for mRNA and

protein of TGFb1 was shown in

(c). The localization of TGFb1
in neurons (TGFb1:red;
NeuN:green; Merged) and

astrocytes (TGFb1:red;
GFAP:green; Merged),

respectively. f Immunostaining

of TGFb1 in the brain treated

with control HSV;

g Immunostaining of TGFb1 in
the brain treated with TGFb1-
shRNA HSV; h Quantitative

results show the changes in

TGFb1 immunoreactive

astrocytes and neurons after TBI

and treatment with shRNA to

TGFb1. Thin arrows pointed

astrocytes and thick arrows is

for neurons. Scale bar is 50 lm
in (d, e), and 100 lm in (f, g)
(Color figure online)

Fig. 6 Effect of TGFb1
silencing on the expression of

Smad3 in the brain.

Representative images of RT-

PCR (a) and Western blotting

analysis (b) for Smad3 from the

cortex at 3 and 14 dpo.

Quantitative analysis of mRNA

and protein levels of Smad3 is

shown in Fig. 6c
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(P\ 0.05) (Fig. 7). This showed that TGFb1 knockdown

aggravates the neurological deficit in TBI rats.

Discussion

TBI remains a leading cause of mortality and immobility in

the younger population and causes severe burdens for

families and societies. Previous reports have found that

astrocytes are activated following trauma [25], while acti-

vated actrocytes may share diverse effects in response to

injury. One hand, astrogliosis may be beneficial because

proliferating astrocytes could fill cavity and wound induced

by injury, then diminish the lesion area [26–28], which can

contribute to the trauma recovery. On the other hand,

astrogliosis could induce the scar formation so as to retard

the nerve regeneration, and induce a barrier of neurite

growth to impair the functional recovery [29, 30]. In this

study, we confirmed the decrease of neuronal number

occurred following TBI, which could be related to dys-

function in TBI models. Several studies have pointed that

TBI result in extensive damage in several regions like

cortex, hippocampus, and even spinal cord [31, 32].

Therefore, the neurological dysfunctions may be related to

the neuronal loss in these regions. Simultaneously, we

found a limited improvement with the time on neurological

functions in TBI rats, suggesting that neuroplasticity exists

in rats after brain injury.

The mechanism underlying spontaneous neurological

improvement after injury is not fully understood. Neu-

rotrophic factors such as nerve growth factor and brain

derived neurotrophic factor may play important roles in

neuroplasticity after TBI [33–36], but the role of TGFb1 in

neural recovery remains to be determined. Previously,

using PCR analyses, Huang found that the maximum

mRNA expression for TGFb1 was seen at 12 h and 3 days

in injured cortex under hypoxia induced by TBI [37]. In

addition, TGFb1 increases at 2 h in the combined model of

TBI and hemorrhage, [38]. Moreover, we elucidated the

expressional change of TGFb1 in TBI brain, which showed

that the increase in TGFb1 mRNA from 1 day to 14 days

and protein exhibited a delay increase at 14 days. These

suggested that role of TGFb1 in injured brain may involve

in mechanism both injury and recovery. As to talk the

reason of TGFb1 increase with delay after mRNA, there

are two possibility: TGFb1 may be degraded in the process

of synthesis, which may involve the post-translation regu-

lating mechanism. The other possibility is that synthesized

TGFb1 may be immediately transported to other region or

as material for other growth factor synthesis.

The functional role of TGFb1 in TBI is controversial.

While studies showed that TGFb1 is an important neu-

rotrophic factor with neuroprotective functions, other

studies reported the detrimental effect on functional

recovery induced from TGF-b1 for astrogliosis [8, 36]. In

addition, TGFb1 is involving in spinal cord injury [39],

neural encephalopathy, which is related to microglia acti-

vation [40, 41]. In this study, expression of TGF-b1 was

located in both neurons and astrocytes, and increased

mRNA level for TGFb1 was maintained for 2 weeks after

injury, This suggests that TGFb1 is important in TBI.

Perhaps, effect of TGFb1 is not only responsible for

astrocytes but also neurons. Increased TGF-b1 expression

may be partially useful to the neural recovery at 14 days.

The underlying mechanism may be dependent on neuronal

survival. Previous have showed that TGFb1 signal is nec-

essary for cell survival in interneurons and spinal ganglion

neurons [42, 43]. Recent study also reported TGFb1 signal

is available to generation of new neurons [44].

In order to test the exact role of TGFb1 after TBI, we

performed the RNA interference, so as to knockdown

endogenous TGFb1. TGFb1 knockdown leads to a signif-

icant decrease in the number of neurons, which is accom-

panied by functional impairment in rat with TBI.

Moreover, Smad3, a downstream molecule of IGFb1 [45],

has been substantially decreased in HSV-sh TGFb1 treated

animals. These showed the Smad3, known as TGFb1 sig-

nal, has been inhibited in TGFb1 knockdown condition.

Together, we suggest that TBI could induce the expression

of TGFb1 in neurons and astrocytes in pericontusinal

regions from TBI rats, while HSV-TGFb1 isRNA injection

could effectively decreased functional recovery in TBI rats

and they are related to smad signal. Therefore, we conclude

that endogenous TGFb1 should be a beneficial factor in

TBI condition. Our findings provide a novel evidence to

understand the role of endogenous TGFb1 and associated

Smad3 signal in TBI rats. It may provide novel cues to

Fig. 7 Effect of TGFb1 knockdown on behavior of TBI rats.

Histograms shows the behavioral change caused by TGFb1 silencing
after TBI. TGFb1 silencing significant increases NSS at 28 dpo after

injury, compared with TBI rats without TGFb1 interference
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target TGFb1 to promote functional restoration for the

treatment of TBI in future studies.
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