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Abstract Previous studies demonstrated that a high fat diet

(HFD) results in a loss of working memory in mice correlated

with neuroinflammatory changes as well as synaptodendritic

abnormalities and brain insulin resistance. Cardiotrophin-1

(CT-1), a member of the gp130 cytokine family, has been

shown to potentially play a critical role in obesity and the

metabolic syndrome. Our recent studies have demonstrated

that CT-1 attenuates cognitive impairment and glucose-

uptake defects induced by amyloid-b in mouse brain through

inhibiting GSK-3b activity. In this study, we evaluated the

effect of CT-1 on cognitive impairment induced by brain

insulin resistance in mice fed a HFD, and explored its po-

tential mechanism. CT-1 (1 lg/day, intracerebroventricular

injection) was given for 14 days to mice that were fed with

either a HFD or normal diet for 18 weeks. After 20 weeks of

treatment, our results showed that in the HFD group, CT-1

significantly improved learning and memory deficits and al-

leviated neuroinflammation demonstrated by decreasing

brain levels of proinflammatory cytokine tumour necrosis

factor-a and interleukin-1b, and increasing brain levels

of anti-inflammatory cytokine IL-10. CT-1 significantly re-

duced body weight gain, restored normal levels of blood

glucose, fatty acids and cholesterol. Furthermore, CT-1 sig-

nificantly enhanced insulin/IGF signaling pathway as indi-

cated by increasing the expression levels of insulin receptor

substrate 1 (IRS-1) and the phosphorylation of Akt/GSK-3b,

and reducing the phosphorylation of IRS-1 in the hip-

pocampus compared to control. Moreover, CT-1 increased

the level of the post-synaptic protein, PSD95, and drebrin, a

dendritic spine-specific protein in the hippocampus. These

results indicate a previously unrecognized potential of CT-1

in alleviating high-fat diet induced cognitive impairment.
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Abbreviations

CT-1 Cardiotrophin-1

GSK-3b Glycogen synthase kinase-3b
HFD High fat diet

IL-10 Interleukin-10

IL-1b Interleukin-1b
IR Insulin resistance

IRS-1 Insulin receptor substrate 1

IIS Insulin/IGF signaling

PSD95 Postsynaptic density protein 95

SYP The action of synapsin I

TNF-a Tumor necrosis factor-a

Introduction

Obesity is defined as abnormal or excessive fat accumu-

lation and has become one of the most serious health
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problems with increased risk of several diseases such as

type-2 diabetes mellitus, insulin resistance, and metabolic

syndrome [1–4]. There is increasing evidence that a high-

fat diet can induce neuroinflammation and synaptic plas-

ticity impairment, ultimately resulting in neurodegen-

eration and cognitive deficits [5–7]. Recent findings

suggest that neuronal insulin resistance induced by high-

dietary cholesterol is a contributing factor [8]. There is a

substantial amount of experimental and clinical evidence

that brain insulin resistance and impaired insulin/IGF sig-

naling (IIS) are implicated in the pathogenesis of cognitive

impairment and neurodegeneration [9–14].

Cardiotrophin-1 (CT-1), a member of the gp130 cy-

tokine family, expressed at high levels in the embryonic

limb bud and secreted by differentiated myotubes [15, 16],

has been shown to exhibit impressive neuroprotective ef-

fects and delay the procession of motor neuron degen-

erative disorder in mouse models of amytrophic lateral

sclerosis (ALS) [17], progressive motor neuropathy (PMN)

[18, 19] and spinal muscular atrophy (SMA) [20] and in

adult rats with spinal cord injuries [21]. CT-1 is not only

expressed in peripheral tissues but also in the postnatal and

adult central nervous system [16, 22], including the hip-

pocampus, an important area for learning and memory. It

has been shown that CT-1 is a key regulator of glucose and

lipid metabolism in cell lines [23, 24], obesity-associated

animal models [25] and clinical obesity patients [26]. Re-

cently, one study reported that CT-1 attenuated inflam-

mation, improved insulin signaling, and eliminated hepatic

steatosis in high fat diet (HFD) induced obese mice [27].

Another member of the gp130 cytokine family, ciliary

neurotrophic factor (CNTF), has been demonstrated to be

effective in the reduction of body weight, together with an

improvement of insulin sensitivity in diabetes animal

models [28, 29]. Our previous studies have demonstrated

that CT-1 might improve learning and memory and glucose

uptake in Ab-induced Alzheimer’s disease mouse model

[30]. However, no reports are available which are aimed to

investigate whether CT-1 has a protective effect against

cognitive impairment induced by exposure to HFD and its

medical comorbidities in mice fed on a HFD. The purpose

of our present study is designed to investigate the potential

mechanism of protective effects of CT-1 on cognitive im-

pairment induced by exposure to HFD.

Materials and Methods

Animals

C57BL/6 mice were housed individually in plastic rodent

cages and maintained on a 12 h light/dark cycle with

ad libitum access to conventional standard rodent chow and

water, with the constant temperature (23 ± 1 �C) and

relative humidity (65 %). Protocols were conducted ac-

cording to the University Policies on the Use and Care of

Animals and were approved by the Institutional Animal

Experiment Committee of Henan University of Science

and Technology, China.

Group and Treatment

Forty 4-week-old male mice were randomized into four

groups: control diet (CD); CD ? CT-1 (CDC); HFD;

HFD ? CT-1 (HFDC), and assigned to either HFD or CD

chow (Research Diets, Inc., New Brunswick, NJ) for

20 weeks (n = 10 each). CD consisted of the following (in

Kcal): protein (19 %), carbohydrate (68 %), and fat

(13 %), and HFD consisted of the following (in Kcal):

protein (15 %), carbohydrate (43 %), and fat (42 %).

18 weeks later, CDC and HFDC groups were received

intracerebroventricular (i.c.v.) injection of recombinant

mouse CT-1 (1 lg/day) for 14 consecutive days. In paral-

lel, CD and HFD mice were administered saline via i.c.v.

injection in similar manner. The dose of CT-1 was selected

based on other experimental studies [25, 31]. The ex-

perimental procedures are shown in Fig. 1. After the be-

havioural testing, mice were sacrificed and brain tissue was

collected immediately for experiments or stored at -70 �C.

Surgery and i.c.v. Microinjections

Mice anesthetized with anesthetic ether, were shaved on

the dorsal skull surface and cleaned with 70 % isopropyl

alcohol followed by 10 % betadine iodine solution, then

were transferred to a stereotactic apparatus (Stoelting

Company, Wood Dale, IL, USA). A 26-gauge stainless-

steel guide cannula (Plastics One, Roanoke, VA, USA) was

directed toward the midhypothalamus in the third ventricle

using flat-skull coordinates from bregma (AP 0 mm, ML

0 mm, DV -5.1 mm). The guide cannula was secured with

cyanoacrylate gel (Plastics One) and acrylic dental cement

(Jet Denture Repair, Lang Dental Manufacturing Co.,

Wheeling, IL, USA); the incision was closed with 4-0 silk

suture (Syneture; Tyco Healthcare Group, Mansfield, MA,

USA). Mice were received 1 ll of 1 mg/ml recombinant

Fig. 1 Timeline of experimental procedure
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mouse CT-1 in PBS, or PBS alone, slowly infused through

a 30-gauge internal cannula (Plastics One) with a 2-ll

Hamilton syringe (Fisher Scientific; Nepean, ON, Canada).

Microinjections were administered over 14 consecutive

days. Correct placement of the cannula was confirmed by

injection of angiotensin II (50 ng). Animals not displaying

a prompt and sustained drinking response were excluded

from the study.

Behavioural Tests

Novel Object Recognition Test

The test procedure consisted of three sessions: habituation,

training, and retention. Each mouse was habituated to the

box (30 9 30 9 35 cm), with 10 min of exploration in the

absence of objects for 3 days (habituation session). During

the training session, two objects were placed at the back

corner of the box. A mouse was then placed in the box and

the total time spent exploring the two objects (blue

wooden cubes of size 3 cm) was recorded for 10 min.

During the retention session, the mice were placed back in

the same box 24 h after the training session, in which one

of the familiar objects used during the training was re-

placed with a novel object (a yellow wooden cylinder of

diameter 3 cm and height 3 cm). The animals were then

allowed to explore freely for 5 min, the exploration time

for the familiar (TF) or the new object (TN) during the test

phase was recorded. The exploration time for the familiar

(TF) or the new object (TN) during the test phase was

videotaped and analyzed using the Noldus Ethovision XT

software (Noldus Information Technology, Wageningen,

The Netherlands). Memory was defined by the recognition

index (RI) for the novel object as the following formula:

RI = TN/(TN ? TF). To control for odor cues, the OF

arena and the objects were thoroughly cleaned with 10 %

odorless soap, dried, and ventilated for a few minutes

between mice [32, 33].

Morris Water Maze

Spatial learning and memory was tested using the Morris

water maze, performed after the end of novel object

recognition test. The protocol for the Morris water maze

test was modified from previously reported methods [34,

35]. Briefly, the apparatus included a pool with a diameter

of 100 cm that was filled with opaque water at ap-

proximately 22 ± 1 �C. An escape platform (15 cm in

diameter) was placed 0.5 cm below the water surface.

Geometric objects with contrasting colours were set at the

remote ends of the water tank as references. Room tem-

perature was constant, and the lighting was even through-

out the room. Spatial memory is assessed by recording the

latency time for the animal to escape from the water onto a

submerged escape platform during the learning phase. The

mice were subjected to four trials per day for 5 consecutive

days. The mice were allowed to stay on the platform for

15 s before and after each trial. The time that it took for an

animal to reach the platform (latency period) was recorded.

Twenty-four hours after the learning phase, the mice swam

freely in the water tank without the platform for 60 s, and

the time spent in the region, and number of passes through

the region and the quadrant of the original platform were

recorded. Monitoring was performed with a video tracking

system (Noldus Ltd, Ethovision XT, Holland).

Body Weight and Biochemical Analysis

Body weight was measured every week. After 20 weeks on

a HFD, for glucose/insulin measurements, blood samples

were taken by tail venipuncture using heparin-coated cap-

illary tube [36]. For insulin measurements, whole blood

was centrifuged at 16,000g for 7 min to pellet blood cells.

The plasma was transferred to a fresh tube and placed on

dry ice, after which it was stored at -70 �C. Serum insulin

levels were measured with the appropriate enzyme-linked

immunosorbent assay kits (ALPCO Diagnostics, Wind-

ham, NH, USA). Plasma levels of non-esterified fatty acids

were measured using a non-esterified fatty acids assay C kit

(Wako Chemicals, Richmond, VA, USA) according to the

manufacturer’s instructions. Total cholesterol was mea-

sured directly in whole blood using a Cardiochek meter

(PTS, Indianapolis, IL, USA).

Elisa

Mouse hippocampus (n = 5 each) was sampled and

100 mg of tissue per animal was homogenized in 1.0 mL

of 0.9 % NaCl solution containing 0.1 % PMSF (Sigma,

MO, USA). After centrifugation at 14,000g for 15 min at

4 �C, the resulting supernatants were sampled in triplicate

to detect the levels of TNF-a, IL-1b, and IL-10 by an

ELISA kit (R&D Systems and Invitrogen) according to the

provided instructions. Standard curves were generated us-

ing purified recombinant protein supplied by the

manufacturers. Quantitation was performed on an ELISA

microplate reader (Molecular Devices Corp, San Diego,

CA). All samples were run in quadruplicate, with results

expressed as mean f standard error of the mean.

Western Blot Analysis

Following behavioral assessment, animals were deeply

anesthetized with isoflurane and sacrificed by decapitation.

The hippocampus (n = 5 each) was directly homogenised

in RIPA buffer containing 0.1 % PMSF and 0.1 % protease
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inhibitor cocktail (Sigma, MO, USA). The lysates were

centrifuged at 14,000g for 30 min at 4 �C and the super-

natant was used for protein analyses. The protein concen-

tration in supernatants was determined using the BCA

method. Equal amounts of soluble protein were separated

by SDS-PAGE and transferred onto a nitrocellulose

membrane (Immobilon NC; Millipore, Molsheim, France).

Immunoblotting was performed with antibodies specific for

phospho-IRS-1-Ser612 (3203), IRS-1 (3407), p-AKT-

Ser473 (4060), AKT (4691), p-GSK3b-Ser9 (9323),

GSK3b (9315) (Cell Signaling Technology), SYP

(ab8049), PSD-95 (ab18258), drebrin (ab12350) (Abcam).

Primary antibodies were visualised using anti-rabbit HRP-

conjugated secondary antibodies (Santa Cruz Biotech-

nology, Inc.) and a chemiluminescent detection system

(Western blotting Luminal Reagent; Santa Cruz Biotech-

nology, Inc.). Variations in sample loading were nor-

malised relative to GAPDH.

Statistical Analysis

All data were expressed as the mean ± SEM. For the

Morris water maze tests, escape latency in the hidden

platform trial were analysed with two-way ANOVA of

repeated measures, while one-way ANOVA was con-

ducted on the data obtained from the probe trial. The other

data were analysed by one-way ANOVA, followed by

LSD. All analyses were performed with SPSS statistical

package (version 13.0 for Windows, SPSS Inc., USA).

Differences were considered significant at a p value

\0.05.

Results

Behavioural Test

CT-1 Ameliorates Recognition Memory of HFD-Induced

Obese Mice in Novel Object Recognition

To evaluate cognitive function, a novel object recognition

test was carried out in CD mice, CDC mice, HFD mice and

HFDC mice. In the test section, there was a significant

overall group difference in the RI [F(3, 36) = 18.48,

p \ 0.01] among the four groups. Compared with CD

mice, the RI (p \ 0.01) was significantly reduced in HFD

mice. CT-1 markedly increased the RI by 45.4 %

(t36 = 3.99, p = 0.000) in the HFDC versus HFD group

(Fig. 2a). There was no significant difference in RI be-

tween CD mice and CDC mice (p [ 0.05). In addition,

there was no significant difference in the RI (Fig. 2b) in

training session between the four groups of mice

(p [ 0.05).

CT-1 Improves the Learning and Memory of HFD-Induced

Obese Mice in the Morris Water Maze

To assess spatial reference learning and memory function,

all mice underwent testing in the Morris water maze after

20 weeks administration. Spatial learning was assessed in

the hidden platform task in all mice. As shown in Fig. 3a,

there was a significant overall group difference in escape

latency among the four groups [group effect: F(3,

36) = 22.32, p \ 0.01; training day effect: F(4,

144) = 72.78, p \ 0.01; group 9 training day interaction:

F(12, 144) = 0.49, p [ 0.05]. In the hidden platform test,

the HFD group showed significantly increased escape la-

tencies from day 3 compared to CD controls (p \ 0.01 for

day 3–4; p \ 0.05 for day 5). When compared with the

HFD group, escape latencies were significantly decreased

in HFDC group from day 3 (t36 = -3.49, p = 0.001 for

day 3; t36 = -4.43, p = 0.000 for day 4; t36 = -2.47,

p = 0.018 for day 5). Note that all the mice had the same

level of performance at the start of the experiment (no

significant individual effects were observed in the first five

trials on day 1).

In the probe test, the time spent in target quadrant and

the crossing-target numbers were measured for 60 s on the

6th day after the last acquisition test. As shown in Fig. 3b,

there was a significant overall group difference in the time

spent in target quadrant [F(3, 36) = 25.46, p \ 0.01] and

crossing-target number [F(3, 36) = 15.33, p \ 0.01]

amongst the four groups. The HFD mice showed an ob-

vious 48.8 % decrease in the time spent in target quadrant

and a 51.7 % decrease in crossing-target number compared

to the CD controls. The time in target quadrant and the

crossing-target number of the HFDC mice were sig-

nificantly increased by 54.5 % (t36 = 3.99, p = 0.000, vs.

Fig. 2 Effect of CT-1 on the recognition memory in HFD-induced

obese mice detected by a novel object recognition test. The RI in the

test section (a) and training section (b) of mice on a CD and treated

with CT-1 per se (CDC), HFD, high-fat diet and treated with CT-1

(HFDC) were measured. Values are presented as mean ± SEM. The

analysis was performed using one-way ANOVA with a LSD post hoc

test between groups (n = 10, **p \ 0.01 vs. CD mice; ##p \ 0.01 vs.

HFD mice)
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HFD group) and 57.1 % (t36 = 2.99, p = 0.005, vs. HFD

group), respectively. Moreover, the results suggested that

CT-1 treatment improved but not completely ameliorated

deficits in the probe test through comparing HFDC mice

with CDC mice. There was no significant difference in the

time in target quadrant and the crossing-target number

between CD mice and CDC mice (p [ 0.05). In addition,

there was no significant difference in swimming speed

(Fig. 3c) and path length (Fig. 3d) in the probe test be-

tween the four groups of mice (p [ 0.05).

CT-1 Reduces Body Weight Gain, Restores Abnormal

Glucose, Fatty Acid and Cholesterol Metabolism

to Near-Normal Levels in HFD-Induced Obese Mice

A substantial amount of evidence has demonstrated that

obesity can induce excess lipid accumulation, abnormalities

in intracellular energy fluxes and nutrient availability, might

be a chronic stimulus for insulin resistance and inflammation

[4]. On the basis of these observations, we further examined

body weight, the levels of blood insulin, glucose, free fatty

acids and cholesterol in each group. Our data showed that

after 20 weeks of a high fat diet, mice exhibited significant

differences in body weight [F(3, 36) = 22.51, p \ 0.01]

(Fig. 4a). Moreover, feeding a high fat diet to mice for

20 weeks caused significantly increased levels of blood in-

sulin [F(3, 36) = 48.00, p \ 0.01] (Fig. 4b), glucose [F(3,

36) = 29.07, p \ 0.01] (Fig. 4c), free fatty acids [F(3,

36) = 18.17, p \ 0.01] (Fig. 4d), and cholesterol [F(3,

36) = 34.94, p \ 0.01] (Fig. 4e). However, CT-1 treated

mice fed a HFD for 20 weeks markedly reversed the

metabolic changes (p \ 0.01 vs. HFD group). As shown Fig.

S1, during the CT-1 treatment there was no difference in

food intake among the CD mice and HFD mice. The food

intake was also decreased in CDC group but no statistically

significant versus the CD group. Moreover, CT-1 treatment

suppressed the food intake in the HFDC group versus the

HFD group (p \ 0.05).

CT-1 Alleviates Neuroinflammation in the Brain

of HFD-Induced Obese Mice

Neuroinflammatory molecules are important factors con-

tributing to the pathogenesis and development of cognitive

Fig. 3 Effect of CT-1 on learning and memory in HFD-induced

obese mice using the Morris water maze. Escape latency during

5 days of hidden platform tests (a), the time spent in target quadrant

and the crossing-target number in the probe test (b), swimming speed

(c), and path length (d) in the probe test were tabulated. All data are

presented as mean ± SEM (n = 10, **p \ 0.01 vs. CD mice;
##p \ 0.01 vs. HFD mice)
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impairment, and increased levels of inflammatory cytokines

can disrupt hippocampal synaptic plasticity. Thereafter, the

effect of CT-1 on the levels of neuroinflammatory mole-

cules, such as IL-1b, TNF-a, and IL-10 in the brain were

determined by ELISA. As shown in Fig. 5, there was a

significant overall group difference in the levels of TNF-a
[F(3, 16) = 31.52, p \ 0.01] (Fig. 5a), IL-10 [F(3,

16) = 29.72, p \ 0.01] (Fig. 5b), and IL-1b [F(3,

16) = 21.38, p \ 0.01] (Fig. 5c) amongst the four groups.

We observed a significant elevation in the levels of TNF-a
(p \ 0.01) and IL-1b (p \ 0.01), and a remarkable decrease

in the level of IL-10 (p \ 0.01) in the brain of HFD mice

compared to the CD controls. CT-1 markedly decreased the

levels of TNF-a by 41.4 % (t16 = -6.99, p = 0.000) and

IL-1b by 31.7 % (t16 = -5.94, p = 0.000), and increased

the level of IL-10 by 47.7 % (t16 = 4.76, p = 0.000) in the

HFDC versus HFD group.

CT-1 Attenuates Impaired Insulin Signalling

in HFD-Induced Obese Mice

In order to explore the effect of CT-1 on brain insulin sig-

naling, the expression levels of IRS-1 and the phosphorylation

of IRS-1, Akt/GSK-3b were investigated in hippocampus.

The levels of the IRS-1 (p \ 0.01), p-Akt (p \ 0.01), and

p-GSK-3b (p \ 0.01) were significantly decreased and the

level of the p-IRS-1 (p \ 0.01) was significantly increased in

HFD mice compared to the CD group. CT-1 significantly

attenuated insulin signalling impairments as evidenced by a

33.3 % increase in the expression levels of IRS-1 (t16 = 4.23,

p = 0.001), a 46.1 % decrease in the p-IRS-1 (t16 = -6.25,

p = 0.000), a 1.10-fold increase in the p-Akt (t16 = 8.85,

p = 0.000) and a 71.1 % increase (t16 = 6.68, p = 0.000) in

the p-GSK-3b in the hippocampus of the HFDC versus HFD

group (Fig. 6). In addition, there was no significant difference

in the levels of total Akt (p [ 0.05) and total GSK-3b
(p [ 0.05) between the four groups of mice (data not shown).

When p-IRS-1 was compared, there was no significant dif-

ference in the levels of total IRS-1 (p [ 0.05) between the

four groups of mice (data not shown).

CT-1 Increases the Expression of Synaptic Proteins

in HFD-Induced Obese Mice

To assess the variations of the expression of synapticpro-

teins, we tested the determined the expressions of synapsin I

Fig. 4 CT-1 reduces body weight gain and restores abnormal

glucose, fatty acid and cholesterol metabolism in HFD-induced obese

mice. Total body weight (a), blood insulin (b), glucose (c), free fatty

acids (d), and cholesterol levels (e) were performed. All data are

presented as mean ± SEM (n = 10, **p \ 0.01 vs. CD mice;
##p \ 0.01 vs. HFD mice)
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(SYP), the post-synaptic protein (PSD95), and drebrin in

hippocampus. The levels of PSD95 (p \ 0.01) and drebrin

(p \ 0.01) were significantly decreased in HFD mice com-

pared to the CD controls. CT-1 increased the levels of PSD95

by 44.4 % (t16 = 5.23, p = 0.000) and the levels of drebrin

by 48.9 % (t16 = 4.10, p = 0.001) in the HFDC versus HFD

group (Fig. 7). However, there was no significant difference

in the SYP expression between the four groups.

Discussion

In the present study, we found CT-1 improved HFD in-

duced cognitive deficits as indicated by enhancing learning

and memory (i.e., increasing the RI by 45.4 % in the novel

object recognition test and inducing a 57.1 % increase in

the crossing-target number in the probe test) in mice. The

results demonstrated that CT-1 reduced metabolic disorder,

alleviated neuroinflammation, enhanced IIS pathway, and

increased the post-synaptic protein expression in HFD in-

duced mice.

A substantial amount of evidence indicates that obesity

can contribute to the development of type-2 diabetes and

ultimately result in cognitive impairment that might be

caused by neuronal insulin resistance, brain inflammation

and defective neural signalling pathways [13, 37, 38].

Recent findings indicate that a HFD also induces insulin

resistance and IIS dysfunction [8, 39, 40], which is con-

sidered to be an underlying mechanism of neurotoxicity

[41]. Insulin promotes cell survival through the inhibition

of apoptosis-inducing peptides, facilitates neuronal growth

and differentiation by enhancing neurite outgrowth and

synapse formation, and regulates expression and localiza-

tion of GABA [42], NMDA [43, 44], and AMPA [45, 46]

receptors, and plays a critical role in synaptic plasticity [47,

48] and cognitive function [49–52]. Previous studies indi-

cated that disruption of insulin action in the brain leads to

deleterious neurobehavioral outcome and cognitive deficits

in HFD-induced animal model [13, 39, 53]. Consistent with

this, our results also demonstrate defective IIS, as indi-

cating by the decreased the expression levels of insulin

receptor substrate 1 (IRS-1) and the phosphorylation of

Fig. 5 CT-1 alleviates neuroinflammation in the brain of HFD-

induced obese mice. After 20 weeks of administration, brain tissue

from CD mice, HFD mice, CDC mice and HFDC mice were sampled

and total lysates were isolated. The levels of TNF-a (a), IL-10 (b),

and IL-1b (c) were detected by ELISA kits. All data are presented as

mean ± SEM (n = 5, **p \ 0.01 vs. CD mice; ##p \ 0.01 vs. HFD

mice)

Fig. 6 CT-1 improves insulin signalling dysfunctions by increasing

the expression levels of IRS-1 and the phosphorylation of Akt/GSK-

3b, and reducing the phosphorylation of IRS-1 in the hippocampus of

HFD-induced obese mice. The relative levels of IRS-1, p-IRS-1,

p-AKT and p-GSK-3b were detected by Western blotting from

hippocampus tissues of CD mice, HFD mice, CDC mice and HFDC

mice, and a representative experiment was shown (a). The quanti-

tative analysis of IRS-1, p-IRS-1 p-AKT, and p-GSK-3b using

GAPDH, IRS-1, AKT, and GSK-3b as normalization, respectively

(b). All data are presented as mean ± SEM (n = 5, **p \ 0.01 vs.

CD mice;, ##p \ 0.01 vs. HFD mice)
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IRS-1, Akt/GSK-3b, and impaired learning and memory in

HFD-induced obese mice. CT-1 has been shown to mod-

ulate insulin sensitivity and IIS through regulating the ex-

pression of the SOCS3 [24] and the peroxisome

proliferator-activated receptor c (PPARc) and insulin re-

ceptor substrate-1 protein [23], and the level of insulin-

stimulated Akt phosphorylation [25]. Furthermore, it has

been demonstrated that CT-1 can phosphorylates Akt and

prolongs cell survival in cardiac myocytes [54]. The

amelioration of insulin resistance and impaired IIS in CNS

is an effective way of preventing or reversing the cognitive

deficits and attenuating the atrophy that is observed in

obesity [55–58]. In this present study, CT-1 can attenuate

insulin signaling dysfunction that is observed in HFD-in-

duced obese mice to that which is observed in CD mice

(Fig. 5), suggesting that CT-1 may exert positive effect on

cognition.

Compelling evidence indicates that chronic low-grade

inflammation in brain is involved in the type-2 diabetes and

obesity-induced cognitive deficits. Neuroinflammatory cy-

tokines, such as tumor necrosis factor-a (TNF-a) and IL-1b
are activated and interleukin-10 (IL-10) are down-regulat-

ed in obesity-associated animal models and obese patients.

CT-1 possesses anti-inflammatory effects, as have been

reported in other gp130-dependent cytokines. Previous

studies indicated that CT-1 decreases the levels of TNF-a
and IL-1b, and increases the level of IL-10 in cell lines [59]

and animal models [59, 60]. Consistent with this, our re-

sults show that CT-1 can repress the levels of TNF-a and

IL-1b, and up-regulate anti-inflammatory cytokine IL-10 in

brain. It has been demonstrated that IL-10 suppresses NF-

jB activation and TNF-a production. Furthermore, CT-1

can inhibit TNF-a production in vivo and in vitro [59]. CT-

1’s ability to anti-inflammation may be caused by an im-

provement of insulin sensibility or/and an inhibition of NF-

jB signal pathway. However, this hypothesis needs to be

investigated further. Neuroinflammatory cytokines have an

inhibitory effect on the tyrosine kinase activity of the IR

and IGF-1R [61, 62], thus reduced the IIS cascade and

associated down-stream mechanisms, and exacerbated in-

sulin resistance, compounding the impact of obesity on the

learning and memory loss.

Our results also indicated that CT-1 increased the level

of the post-synaptic protein, PSD95, and drebrin, a den-

dritic spine-specific protein in the hippocampus compared

with the control mice (Fig. 6). An inadequate IIS might

have led to the reduction in the levels of PSD95 since its

expression is known to be regulated by insulin signaling

via PI3K-Akt-mTOR pathway [63]. The actin-binding

protein, drebrin, is involved in shaping the dendritic spine

morphology which is closely associated with spine function

in learning and memory [64]. The receptors which access

this pathway include those that recognize growth factors,

hormones, antigens and inflammatory stimuli, and the

cellular events known to be regulated include cell growth,

survival, proliferation and movement [65]. It is an obvious

connection between IIS and drebrin expression based on

the observation that enhancement of IIS positively reg-

ulates the expression of drebrin via PI3K pathway [66].

Meanwhile, this present study observed unaltered levels of

presynaptic protein synaptophysin in HFD-induced obese

mice, suggesting that altered IIS was perhaps responsible

for the observed postsynaptic changes. However, this hy-

pothesis needs to be investigated further.

The hypothalamus plays an important role in regulating

food intake and energy expenditure. Recent studies have

shown that AMPK and its down-stream signaling pathways

comprise a crucial regulatory system for food intake and

body weight [67–69]. Activation of AMPK in the hy-

pothalamus increases feeding and body weight gain,

Fig. 7 CT-1 restores low levels of synaptic protein in the hippocam-

pus of HFD-induced obese mice. The relative level of SYP, PSD95,

and drebrin was detected by Western blotting from hippocampus

tissues of CD mice, HFD mice, CDC mice and HFDC mice, and a

representative experiment was shown (a). The quantitative analysis of

SYP, PSD95, and drebrin using GAPDH as normalization (b). All

data are presented as mean ± SEM (n = 5, **p \ 0.01 vs. CD mice;
##p \ 0.01 vs. HFD mice)
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whereas inhibition of hypothalamic AMPK activity pro-

motes a reduction of food intake and weight lost [67, 70,

71]. Furthermore, previous studies have demonstrated that

regulation of AMPK activity is involved in the improve-

ment of CT-1 on metabolic disorders [27]. Interestingly,

our results show that CT-1 treatment can significantly re-

duce food intake (Fig. 4a) and inhibit hypothalamic AMPK

activity (data not shown). Based on these, we speculate that

hypothalamic AMPK may be participated in the effects of

CT-1 on food intake and body weight. However, this hy-

pothesis needs to be investigated further. In this present

study, the illumination of CT-1 on food intake is limited

and the further studies are required to delineate the un-

derlying mechanism.

In conclusion, CT-1 prevents obesity and reverses HFD-

induced cognitive deficits. The enhancement of insulin/

IGF-1 signaling and the inhibition of neuroinflammation in

the mouse brain may be involved in the mechanisms by

which CT-1 affects HFD-induced cognitive damage. CT-1

could be recommended as a possible candidate for the

prevention and therapy of cognitive deficits induced by

HFD.
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