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Abstract Astrocytes have a pivotal role in brain as

partners of neurons in homeostatic and metabolic pro-

cesses. Astrocytes also protect other types of brain cells

against the toxicity of reactive oxygen species and are

considered as first line of defence against the toxic poten-

tial of xenobiotics. A key component in many of the

astrocytic detoxification processes is the tripeptide gluta-

thione (GSH) which serves as electron donor in the GSH

peroxidase-catalyzed reduction of peroxides. In addition,

GSH is substrate in the detoxification of xenobiotics and

endogenous compounds by GSH-S-transferases which

generate GSH conjugates that are efficiently exported from

the cells by multidrug resistance proteins. Moreover, GSH

reacts with the reactive endogenous carbonyls methylgly-

oxal and formaldehyde to intermediates which are sub-

strates of detoxifying enzymes. In this article we will

review the current knowledge on the GSH metabolism of

astrocytes with a special emphasis on GSH-dependent

detoxification processes.
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Introduction

Glutathione (GSH, c-L-glutamyl-L-cysteinylglycine) is a

tripeptide which is present in millimolar concentrations in

most cell types including astrocytes [1]. GSH has essential

cellular functions in many detoxification processes. In

addition, to its chemical reaction with radicals and elec-

trophiles, GSH serves as substrate or cofactor of a large

number of detoxifying cellular enzymes [2]. Due to the

dependence of many cellular processes on GSH it is not

surprising that an impaired GSH metabolism has been

connected with human diseases [3–6]. This appears to be

especially the case for neurological disorders as ample

evidence connects disturbances in the GSH metabolism of

the brain with the progression of neurological disorders [7,

8], including Parkinson’s disease [9], Alzheimer’s disease

[10], multiple sclerosis [11] as well as schizophrenia and

bipolar disorder [12]. Also alterations of cognitive func-

tions with ageing have been correlated with a decline in

GSH content in brain and with impaired GSH-dependent

functions [13].

Astrocytes have been reviewed to have important

functions in synapse formation and modulation [14, 15], in

brain metabolism [16–21] in the defence against oxidative

stress [22–24], as well as in the homeostasis of essential

metals [24–27]. Astrocytes are also considered to play an

important role in the GSH metabolism of the brain [7, 16,

23, 28]. The high cellular GSH content and the strong

capacity of astrocytes for GSH-dependent detoxification

processes helps to protect these cells but also their neigh-

bours against the toxic potential of oxidants and toxins
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[28–30]. In addition, astrocytes supply essential precursors

for GSH synthesis to neighbouring neurons. In co-cultures,

the presence of astrocytes maintains [31] or increases GSH

levels in neurons [32, 33]. Especially the availability of

cysteine determines the level of neuronal GSH. The supply

by astrocytes of the cysteine required for neuronal GSH

synthesis includes the export of GSH from astrocytes,

extracellular processing of the exported GSH by ectoen-

zymes, and uptake of the GSH precursor amino acids into

neurons [8, 23, 28].

As astrocytes cover with their end feet almost com-

pletely the brain capillaries, astrocytes are the first paren-

chymal brain cells which come into contact with energy

substrates and amino acids that are delivered via the blood

to the brain [34]. However, astrocytes will also encounter

as first parenchymal brain cells potentially toxic com-

pounds which have crossed the blood brain barrier. Thus,

the strategically important localization of astrocytes as well

as their strong detoxification potential defines astrocytes as

first line of defence against toxins and xenobiotics that

enter the brain. The metabolism of GSH in brain and the

pivotal role of astrocytes in the GSH homeostasis of the

brain have previously been extensively reviewed [23, 28,

35–37]. Here we summarize the current knowledge on the

synthesis and metabolism of GSH in astrocytes with a

focus on the GSH-dependent detoxification processes in

these cells.

GSH Metabolism of Astrocytes

GSH Synthesis and Consumption

GSH is synthesized in astrocytes by two ATP-consuming

cytosolic enzymes (Fig. 1), as in other cell types. In the

first reaction, glutamate cysteine ligase (GCL) catalyzes

the formation of the dipeptide c-glutamylcysteine (cGlu-
Cys) from the amino acids glutamate and cysteine. This

reaction is the rate limiting and regulated step in cellular

GSH synthesis. The current knowledge on structure,

function and regulation of GCL in GSH synthesis has

recently been summarized [38]. The second reaction

involved in GSH synthesis is catalyzed by GSH synthetase

(GSH-Syn) which adds glycine in an ATP-driven reaction

to cGluCys to generate the tripeptide GSH (Fig. 1). The

activity of both GCL and GSH-Syn has been determined in

cultured astrocytes [39–41]. Continuous synthesis of GSH

is required in astrocytes to compensate for a continuous

consumption of GSH in these cells. This has been dem-

onstrated by exposure of cultured astrocytes to the GCL

inhibitor buthionine sulfoximine (BSO), which lowers the

astrocytic GSH content with a half-time of around 5 h [42].

The cellular content of GSH is determined by the rates

of its synthesis and consumption. Concerning the synthesis

of GSH, the activity of the enzymes involved in GSH

synthesis, the intracellular availability of the substrates

glutamate, cysteine and glycine as well as a feedback

inhibition of GCL by high cellular GSH concentrations

determine the rate of GSH synthesis. Accordingly, various

compounds and treatments which foster GSH synthesis

increase cellular GSH contents in cultured astrocytes

(Table 1). In addition, also the inhibition of GSH con-

sumption, for example the inhibition of GSH export, can

contribute to an elevated cellular GSH content. At least

cultured astrocytes from mice that are deficient of the

multidrug resistance protein (Mrp) 1, the transporter pre-

dominantly responsible for astrocytic GSH export, contain

higher specific GSH contents compared to cultures from

wildtype mice [43].

The transcription of the GCL and GSH-Syn genes is

regulated by the cis-acting antioxidant response element

(ARE) which itself is controlled by the nuclear transcrip-

tion factor erythroid-2-related factor 2 (Nrf2) [44, 45].

Under unstressed conditions Nrf2 is present in the cytosol

in its inactive form, bound and targeted for degradation by

the Kelch-like ECH-associated protein 1 (KEAP1). During

oxidative stress or in presence of Nrf2 activators, Nrf2 is

released from KEAP1 and translocates into the nucleus

where it induces the transcription of genes of various
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Glu Cys
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enitsyCulG
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Fig. 1 Synthesis of GSH in astrocytes. GSH is synthesized by the

consecutive reactions of glutamate cysteine ligase (GCL) and GSH

synthetase (GSH-Syn) from the amino acid substrates glutamate

(Glu), cysteine (Cys) and glycine (Gly). Preferred extracellular amino

acid precursors for astrocytic GSH synthesis are the GSH substrates

glutamate and glycine which are taken up into astrocytes by the

excitatory amino acid transporters (EAATs) 1 or 2 and by the glycine

transporter GlyT1, respectively. The cysteine required as substrate for

GSH synthesis is predominately derived from extracellular cystine

which is taken up into astrocytes by the cystine-glutamate antiporter

XC
-
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detoxifying and antioxidant enzymes [44, 45]. In astro-

cytes, synthesis of both GCL and GSH-Syn, as well as of

other proteins involved in GSH-dependent detoxification

processes, are stimulated via the Nrf2 pathway during

oxidative stress and by the presence of Nrf2-activators [44,

46]. Accordingly, a number of different compounds which

activate the Nrf2-ARE pathway increase the GSH content

of cultured astrocytes [41, 44, 46–51].

In addition to the activity of GSH synthesis enzymes,

the availability of the amino acid precursors determines

and limits astrocytic GSH synthesis [1, 35]. The substrate

amino acids for GSH synthesis can either be directly taken

up from the extracellular space or they can be generated

from cellular or extracellular precursor molecules. Astro-

cytes express the sodium-dependent excitatory amino acid

transporter (EAAT) 1 and 2 [52] and the glycine

transporter GlyT1 [53] which allow efficient accumulation

of the GSH substrates glutamate and glycine (Fig. 1). The

best extracellular source of the cysteine required for

astrocytic GSH synthesis is cystine which is reduced after

uptake in astrocytes to cysteine [54, 55]. Astrocytes take up

cystine predominately by the cystine-glutamate antiporter

XC
-, but also other transporters have been discussed to

contribute to this import [56, 57]. In addition to these

amino acids, astrocytes can use a large number of other

amino acids, metabolites or peptides as precursors of

the GSH synthesis substrates glutamate, cysteine or glycine

[1, 58].

Astrocytes need GSH as substrate for various pathways

(Fig. 2). GSH is essential for the detoxification of radicals

and peroxides (Fig. 3) as well as the reactive carbonyls

formaldehyde and methylglyoxal (Fig. 4). In these path-

ways GSH is not consumed as it is regenerated by the final

enzymatic steps of the respective pathways (Figs. 3, 4). In

contrast, the conjugation of GSH by GSH-S-transferases

(GSTs) to electrophilic compounds and the export of GSH

from the cells (Fig. 2) lower cellular GSH contents and

require GSH synthesis to replenish a high cytosolic GSH

concentration.

GSH Redox Cycling

Radicals and peroxides are continuously generated in

oxygen-consuming cells and a network of cellular antiox-

idative mechanisms prevent an accumulation of such

reactive oxygen species (ROS) and ROS-induced oxidative

damage of cellular macromolecules. GSH is involved in

two important types of antioxidative reactions (Fig. 3a–c).

GSH can react directly with radicals such as superoxide or

hydroxyl radicals in non-enzymatic reactions, thereby

reducing these radicals (Fig. 3a). In addition, GSH serves

as electron donor for the reduction of organic hydroper-

oxides (Fig. 3b) or hydrogen peroxide (Fig. 3c) in reac-

tions catalyzed by glutathione peroxidases (GPx). In both

types of reactions, GSH is oxidized to glutathione disulfide

(GSSG) (Fig. 3a–c).

For vertebrates, 8 isoforms of GPx have been described

which differ in their catalytic center, their substrate pref-

erence and in their subcellular localization [59]. Of those

isoforms, GPx1 is expressed in cultured astrocytes and

contributes substantially to the detoxification of hydrogen

peroxide and organic hydroperoxides [60, 61]. In addition,

cultured astrocytes express GPx3 and enhance the secretion

of this isoform after exposure to angiogenin [62]. In vivo,

astrocytes strongly upregulate the expression of GPx4 after

brain injury [63].

The GSSG generated by GSH-dependent reduction of

ROS is reduced by the flavoenzyme glutathione reductase

(GR) (Fig. 3d). This enzyme is expressed and active in

Table 1 Substances that increase GSH contents in astrocytes

Substance Reference

Acrylonitrile [157]

Ammonium [90, 158]

Anethole dithiolethione [159]

Arsenite [91]

Arsenate [89]

Cadmium chloride [89, 91]

Catalpol [160]

Copper chloride [89, 92]

Copper oxide nanoparticles [93]

Curcumin [41, 87]

1[2-Cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl]

trifluoroethylamide

[46]

1,25-Dihydroxyvitamine D3 [161]

Dimethylfumarate [162]

Epigallocatechin-3-gallate [137]

Ethylpyruvate [48]

Fibroblast growth factor 1 [95]

Glutamate [163]

GSH ethyl ester [164]

3H-1,2-dithiole-3-thione [165]

High glucose [70]

Methylmercury [166]

Monomethylfumarate [47]

Quercetin [41]

Resveratrol [167]

Tumor necrosis factor a [168]

Tertiary butyl hydroquinone [41, 49, 95]

Tetrathiomolybdate [93]

Thyroid hormone [169]

This table lists compounds and treatments that have been reported to

increase cellular GSH levels in cultured astrocytes within an incu-

bation period of 24 h
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cultured astrocytes [64, 65]. GR needs NADPH as electron

donor [66], which is generated in the cytosol of astrocytes

mainly by the pentose phosphate pathway [67–70]. Due to

the low micromolar KM-values of GR for NADPH and

GSSG [66], the small amounts of GSSG generated during

normal metabolism are rapidly reduced to GSH. Thus, for

unstressed conditions GSSG is hardly detectable in astro-

cytes and the ratio of GSH to GSSG is very high. However,

if GR in astrocytes is inhibited by exposure to carmustin or

zinc ions, GSSG accumulates in the cells and the normally

high ratio of GSH to GSSG decreases [71]. During oxi-

dative stress GR can become rate limiting for GSH-GSSG

redox cycling which causes a transient increase in cellular

GSSG levels and a corresponding decline in the GSH to

GSSG ratio [68, 72, 73]. Under such conditions, GSSG can

be exported from astrocytes (Fig. 2) by Mrp1 [43, 74, 75].

GSH Export and Extracellular GSH Metabolism

Cultured astrocytes have been shown to export up to 10 %

of their GSH per hour [76]. The astrocytic GSH export is

predominately mediated by Mrp1 [43, 77] which belongs to

the Mrp family of ATP-driven export pumps [78–80]. In

addition to Mrp1, astrocytes express a number of other

Mrps and other potential GSH exporters in culture and

in vivo [43, 81–86], but the contribution of these trans-

porters in astrocytic export processes remains to be eluci-

dated. GSH has also been shown to be released from

astrocytes via gap junction hemichannels under certain

conditions [87, 88].

The KM-value for GSH export from astrocytes is around

25 mM [89] and the cytosolic GSH concentration of

untreated astrocytes is around 8 mM [1]. Consequently,

treatments which increase the GSH concentration in

astrocytes should lead to an increase in the rate of cellular

GSH export. This has been confirmed for astrocytes that

contained higher GSH contents due to a pre-incubation

with ammonium [90], arsenate [89], arsenite [91], cad-

mium chloride [89, 91], copper chloride [89, 92], copper

oxide nanoparticles [93], nitric oxide [94] or with fibroblast

growth factor 1 and tertiary butyl hydroquinone [95].

Recently a number of compounds have been reported to

strongly stimulate rapid GSH export from viable astro-

cytes, including formaldehyde [96], arsenate and arsenite

[97, 98] and antiretroviral protease inhibitors [99, 100].

Although all of these stimulated GSH export processes

were almost completely prevented by inhibition of Mrp1,

the molecular mechanism how such structurally very

diverse compounds accelerate Mrp1-mediated GSH export

GSSGGSH-THA

GS-X

GSH

Mrp 1

GS-X

X

Mrp 1GSSGGSH

GST

Mrp 1

GR

GPx

E

A B

C

E

D

Fig. 2 GSH-dependent metabolism in astrocytes. A GSH reacts with

carbonyls (formaldehyde or methylglyoxal) to GSH-thiohemiacetals

(GSH-THA) which serve as substrates for detoxifying reactions

catalyzed by the enzymes (E) alcohol dehydrogenase (ADH) 3 or

glyoxalase 1. B The GSH-dependent reduction of peroxide by

glutathione peroxidases (GPx) produces GSSG which is rapidly

reduced by glutathione reductase (GR) to regenerate GSH. C If

substantial amounts of GSSG accumulate in astrocytes, these cells

export GSSG via multidrug resistance protein (Mrp) 1. D Conjugation

of GSH to electrophilic compounds (X) in reactions that are catalyzed

by GSH-S-transferases (GSTs). GSH-conjugates (GS-X) are exported

from astrocytes via Mrp1 or other transporters. E Mrp1-mediated

export of GSH from astrocytes
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Fig. 3 GSH-GSSG redox cycling in astrocytes. GSH reacts with

radicals (R�) in an enzyme-independent reaction (a) or with organic

hydroperoxides (b) or hydrogen peroxide (c) in GPx-catalyzed

reactions to GSSG and the reduced derivative of the respective

reactive oxygen species (ROS). The GSSG generated during the

GSH-dependent reduction of ROS (a–c) is reduced by GR in an

NADPH-dependent reaction (d)
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remains unclear. At least for the formaldehyde-stimulated

GSH export from astrocytes it was shown that the

Vmax-value for the export was strongly increased while the

KM-values remained unchanged [89], suggesting that

formaldehyde treatment of astrocytes may lead to a

recruitment of Mrp1 from intracellular vesicles into the

plasma membrane. Such a translocation of Mrp1 between

intracellular and membrane location has previously been

shown for bilirubin-treated astrocytes [101]. Also the

upregulation of Mrp1 in astrocytes appears to increase

GSH export. At least the upregulation of Mrp1 expression

by a treatment of cultured astrocytes with the HIV1

envelope glycoprotein gp120 was accompanied by an ele-

vated export of GSH and GSSG [102].

GSH which has been exported from astrocytes is a

substrate of the ectoenzyme c-glutamyl transpeptidase (c-
GT) [76]. c-GT transfers the c-glutamyl moiety of GSH to

an acceptor which can be an amino acid, a peptide but also

water [103]. Extracellular processing by c-GT of the GSH

released from astrocytes is a crucial step in the supply of

GSH precursors from astrocytes to neurons [33]. A product

of the reaction catalyzed by astrocytic c-GT is the dipep-

tide CysGly which is either taken up into astrocytes by the

dipeptide transporter PepT2 [104] or can be cleaved by the

neuronal aminopeptidase N [105] to provide cysteine and

glycine to neurons. These amino acids are efficiently taken

up by neurons [106, 107] and can be used as substrates for

neuronal GSH synthesis [33, 55].

GSH in Astrocytic Detoxification Processes

GSH and Peroxide Detoxification

Among the peroxides that are continuously produced by

the cellular metabolism, hydrogen peroxide is quantita-

tively the most important one. This peroxide is formed

predominantly by disproportionation of superoxide which

can occur enzyme-independently or is catalyzed by

superoxide dismutases [22]. Superoxide itself is generated

in mitochondria as byproduct of respiratory chain com-

plexes and enzymes [108] and as product of the NADPH

oxidase reaction [109]. Hydrogen peroxide is also formed

in the reactions of some oxidases, for example monoamine

oxidases [110]. A second class of cellular peroxides are

organic hydroperoxides which include stereospecifically-

defined prostaglandin and leukotrine hydroperoxides that

are products of cyclooxygenases and lipooxygenases,

respectively, as well as various hydroperoxides that are

generated by unspecific oxidation of polyunsaturated fatty

acids in membranes by radical-mediated lipid peroxidation

[111].

Cellular hydrogen peroxide is detoxified in astrocytes

predominantly by the enzymes GPx and catalase [22].

Cultured astrocytes efficiently dispose of exogenous

hydrogen peroxide with half-times in the minute range [72,

112–114]. The specific clearance rates of astrocytes for

hydrogen peroxide are similar to values reported for cul-

tured neurons and microglial cells but higher than those

found for cultured oligodendrocytes [22, 113, 115, 116]. In

hydrogen peroxide clearance both the GSH system and

catalase are involved and the capacity of each of the two

contributing enzyme systems is sufficiently high to com-

pensate at least in part for an impairment of the other

system [72, 112]. Cultured astrocytes also efficiently dis-

pose of exogenous organic hydroperoxides such as tertiary

butyl hydroperoxide (tBHP) and cumene hydroperoxide

(CHP) with half-times similar to that for hydrogen perox-

ide [61, 68, 73, 114, 117]. As inhibition of catalase does not

affect the clearance of organic hydroperoxides by astro-

cytes, only the GSH system appears to be involved in the

disposal of these peroxides [61, 68, 73, 117]. This view is

supported by the strong increase in the half-time of the

peroxides in astrocytes that had been pre-incubated with

BSO to lower cellular GSH contents, with mercaptosucci-

nate to inhibit GPx or in the absence of glucose which

GSH
Formaldehyde

S-Hydroxymethly-GSH

NAD+

NADH

S-Formyl-GSH

H2O

GSH

Formate

ADH 3

Hydrolase

GSH
Methylglyoxal

Methylglyoxal-GSH-THA

S-D-Lactoyl-GSH

H2O

GSH

D-Lactate

Glo 1

Glo 2
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Fig. 4 GSH-dependent detoxification of formaldehyde and methyl-

glyoxal in astrocytes. GSH reacts with formaldehyde (a) or methyl-

glyoxal (b) in enzyme-independent reactions to the respective

thiohemiacetals (THA). S-Hydroxymethyl-GSH is substrate of alco-

holdehydrogenase (ADH) 3 and becomes oxidized to S-formyl-GSH

which is subsequently hydrolyzed to formate and GSH (a).
The methylglyoxal-GSH-THA is converted by glyoxalase (Glo) 1 to

S-D-lactoyl-GSH which is the substrate of Glo2 to become hydro-

lyzed to D-lactate and GSH (b)
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slows NADPH regeneration by pentose phosphate pathway

[68, 73].

Another class of enzymes which can contribute to the

cellular peroxide disposal are peroxiredoxins [2, 118].

Concerning GSH dependent processes, especially perox-

iredoxin 6 is of interest as this peroxiredoxin requires for

peroxide reduction GSH and involves GSTs [2]. Perox-

iredoxin 6 is expressed in cultured astrocytes and its

expression is upregulated by the Nrf2 activator tertiary

butyl hydroquinone which accelerates the clearance of

tBHP and increases the resistance of astrocytes towards

hydrogen peroxide and tBHP [114].

The ability of cultured astrocytes to detoxify hydrogen

peroxide is affected by ageing. At least cultured astrocytes

derived from old mice have a slower hydrogen peroxide

clearance rate than astrocytes cultured from young mice

[119]. This may be caused by a lowered GR activity and an

increased GSH export rate observed for astrocytes cultured

from old mice [119].

GSH-GSSG redox cycling is the base of the GSH-

dependent peroxide detoxification in astrocytes. During the

GPx-catalyzed reduction of peroxides, GSH becomes oxi-

dized to GSSG (Fig. 3b, c) which is subsequently reduced

to GSH by GR (Fig. 3d). For cultured astrocytes this is

demonstrated by the transient occurrence of GSSG in

cultures that had been exposed to hydrogen peroxide [60,

72, 117, 120], tBHP [73] or CHP [61, 68]. Among the

different isoforms of GPx, especially the cytosolic isoform

GPx1 appears to be important for astrocytic peroxide

detoxification as astrocytes cultured from GPx1-deficient

mice dispose hydrogen peroxide and CHP much slower

than wild type cells, did not show a transient increase in

cellular GSSG contents and were more vulnerable towards

peroxide mediated toxicity [60, 61].

Severe oxidative stress or conditions that make GR rate

limiting for GSH-GSSG redox cycling lead to a strong

accumulation of cellular GSSG. Under such conditions,

astrocytes export efficiently GSSG via Mrp1. This has been

demonstrated for astrocytes which have been exposed to

chronic hydrogen peroxide stress [43, 74], to high con-

centrations of dopamine [75] or to zinc chlorid [71].

GSH as Cofactor in the Detoxification of Reactive

Carbonyls

GSH is the essential substrate for the cellular pathways that

detoxify the reactive carbonyls formaldehyde and methyl-

glyoxal. These carbonyls are endogenously generated

during normal metabolism and react non-enzymatically

with GSH to thiohemiacetals which serve as substrates for

an enzymatic conversion of the respective carbonyl to a

less reactive compound which can be released from cells

(Fig. 4). Efficient detoxification of formaldehyde and

methylglyoxal appears to be especially important for the

brain as disturbances of the respective metabolic pathways

have been connected with neurological disorders and age-

ing [121–123]. Recent studies suggest that astrocytes have

a prominent role in the detoxification of formaldehyde and

methylglyoxal in brain.

Formaldehyde

Formaldehyde is generated in substantial amounts in the

human body during normal metabolism. The formaldehyde

concentration in blood is around 0.1 mM [124], while

formaldehyde concentrations in brain have been reported to

be even higher [125]. The steady state formaldehyde con-

centrations in brain are maintained low due to the effective

action of enzymes which oxidize formaldehyde to formate

[122]. Cellular formaldehyde oxidation involves either the

mitochondrial aldehyde dehydrogenase (ADH) 2 and/or the

cytosolic GSH-dependent formaldehyde dehydrogenase

(ADH3) [122]. The ADH3 reaction requires the presence

of S-hydroxymethyl-GSH which is generated by the

enzyme-independent reaction of formaldehyde with GSH

(Fig. 4a). Oxidation of S-hydroxymethyl-GSH by ADH3

generates S-formyl-GSH which is hydrolyzed by a thiolase

to regenerate GSH and to generate formate [122].

Cultured astrocytes contain the mRNAs of enzymes

which generate and oxidize formaldehyde including ADH3

[126], suggesting that astrocytes are able to produce and to

detoxify formaldehyde. Indeed, cultured astrocytes remove

exogenously applied formaldehyde very efficiently with a

rate of around 0.2 lmol/(h 9 mg) [126]. The KM-value for

formaldehyde clearance by cultured astrocytes is around

0.19 mM, suggesting that the cytosolic ADH3 which has a

low micromolar KM-value for its substrate S-hydroxy-

methyl-GSH contributes substantially to astrocytic form-

aldehyde oxidation [126].

Astrocytes convert the majority ([90 %) of exogenously

applied formaldehyde to formate that is subsequently

exported from the cells [126], indicating that the S-formyl-

GSH generated by the ADH3 reaction is rapidly hydro-

lyzed in these cells to GSH and formate. The observed rate

of formaldehyde oxidation to formate by astrocytes is with

0.23 lmol/(h 9 mg) in a range similar to that of glucose

consumption (0.73 lmol/(h 9 mg) [126], underlining the

high capacity of astrocytes to detoxify formaldehyde. A

similar formaldehyde clearance rate was recently reported

for cultured neurons, although these cells release less for-

mate than astrocytes [127]. The formate generated via

formaldehyde oxidation may also be harmful for brain

cells, as formate-induced inhibition of mitochondrial res-

piration is the likely reason for the observed accelerated

glycolytic flux in formaldehyde-treated astrocytes and

neurons [126, 127].
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Methylglyoxal

Methylglyoxal is a ubiquitous product of cellular glucose

metabolism and is predominately formed by non-enzy-

matic decomposition of the glycolysis intermediates gly-

ceraldehyde-3-phosphate and dihydroxyacetone phosphate

[128]. In order to avoid unspecific glycation reactions of

proteins, the reactive methylglyoxal is efficiently detoxified

in cells by the GSH-dependent glyoxalase system which

consists of the two enzymes glyoxalase 1 and glyoxalase 2.

The enzyme-independent reaction of methylglyoxal with

GSH generates a thiohemiacetal that is the substrate of

glyoxalase 1 (Fig. 4b). This enzyme converts the thio-

hemiacetal to the thioester S-D-lactoyl-GSH which is

subsequently hydrolyzed by glyoxalase 2 to GSH and D-

lactate [128].

In brain, especially astrocytes appear to have a highly

efficient glyoxalase system to detoxify methylglyoxal.

Both glyoxalase 1 and glyoxalase 2 are strongly expressed

in cultured astrocytes and the specific activity determined

for this enzyme is higher in astrocytes than in cultured

neurons [129]. Strong immunoreactivity for glyoxalase 1

was also found for astrocytes in mouse and rat brain [129,

130]. Cultured astrocytes convert exogenously applied

methylglyoxal more efficiently to D-lactate than neurons

[129]. Also the higher toxic potential of methylglyoxal to

cultured neurons compared with cultured astrocytes as well

as the protection by astrocytes of co-cultured neurons

against methylglyoxal induced toxicity demonstrates the

high capacity of astrocytes to detoxify this carbonyl [129].

Conjugation of GSH with Endogenous Compounds

and Xenobiotics

GSH is an essential substrate for the cellular detoxification

of endogenous and exogenous compounds by GSTs which

covalently conjugate GSH via its thiol group to the

respective electrophilic substrate (Fig. 2). Although this

type of detoxification lowers the cellular GSH concentra-

tion, it is of advantage as GSH-conjugates are in most cases

less toxic than their precursors and will be actively

exported from cells by Mrps [79, 85]. Endogenous sub-

strates of GSTs are for example intermediates of the

eicosanoid metabolisms but also lipid peroxides and reac-

tive aldehydes such as 4-hydroxynonenal [131]. In addi-

tion, various electrophilic compounds of exogenous origin

(xenobiotics) are substrates of GSTs [132]. For cultured

astrocytes a large number of reactive compounds have been

reported to rapidly lower the cellular GSH content

(Table 2). However, it is currently not known to which

extent astrocytic GSTs contribute to the rapid reactions of

such compounds with GSH.

GSTs represent a large superfamily of enzymes which

are encoded by a polymorphic gene superfamily [133,

134]. GSTs differ in their cellular localization (cytosolic,

microsomal or mitochondrial). However, already for the

cytosolic GSTs seven subfamilies (alpha, mu, pi, sigma,

theta, omega and zeta) have been classified [133, 134].

Little is known on the expression and functions of the

various isoforms of GSTs in brain astrocytes. Rodent

astrocytes were shown to express mu- and alpha-type GSTs

as well as microsomal GSTs [135–138]. GST activity was

also found in mitochondrial fractions of cultured astrocytes

[139]. Chromatographic methods allowed to separate the

cytosol of cultured astrocytes into several fractions which

differed regarding their GST activity towards various GST

substrates [140]. The expression of members of different

GSTs in astrocytes is likely to be regulated separately. At

least a treatment of astrocytes with conditioned media from

activated microglial cells increased the expression of GST-

pi1 and GST-mu3, while treatment with conditioned media

from non-activated microglial cells only increased GST-

pi1 but decreased GST-mu3 expression [141]. As another

trigger ethyl pyruvate was identified to elevate GST levels

in primary astrocytes via activation of Nrf2 [48].

Alterations in the expression of GST isoenzymes in

brain have been connected to neurological disorders

including Alzheimeŕs disease [142], epilepsy [143] and

Parkinsońs disease [144, 145]. However, it remains to be

elucidated whether the expression or activity of astrocytic

GSTs are altered in such diseases.

Table 2 Substances that acutely lower astrocytic GSH contents

Compound References

Acrylonitrile [170]

3-Bromopyruvate [171]

Chloroacetate [172]

Diethylmaleate [173–176]

Dimethylfumarate [51, 162]

Deoxyribose [177]

Ethacrinic acid [139]

Formaldehyde [96]

4-Hydroxynonenal [50, 137]

Jodoacetamide [178]

Jodoacetate [175, 178]

Methylmercury [166]

Monochlorobimane [179]

Monomethyfumarate [162]

Tetrachlorocarbon [173]

L-trans-pyrrolidine-2,4-dicarboxylate [180]

This table lists compounds that have been reported to decrease cellular

GSH levels in cultured astrocytes within minutes to hours
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Conclusions and Perspectives

Astrocytes have a key function in the GSH-dependent

detoxification processes in brain. These cells have a high

capacity for GPx-catalyzed peroxide reduction, for the

detoxification of methylglyoxal and formaldehyde, as well

as for the GST-catalyzed conjugation reactions of xenobi-

otics and endogenous compounds. As all these processes

require sufficiently high concentrations of intracellular

GSH in astrocytes, the different detoxification processes

may under certain conditions interfere with each other and

even compete for the substrate GSH. For example, an acute

decline of cellular GSH by an alkylating substance will

lower GSH-dependent peroxide reduction. Furthermore,

impairments of astrocytic GSH synthesis, recycling and

export are likely to affect the GSH-dependent detoxifica-

tion processes in astrocytes which may harm these cells

directly but may also increase the toxic potential of oxi-

dants and toxins for other brain cells. At least the protec-

tion by astrocytes of co-cultured neurons against various

toxins is compromized, if astrocytes contain low levels of

GSH [146–148].

Most of the data described in this review article were

obtained in experiments performed on cultured primary

astrocytes which are considered as a suitable model system

to investigate properties and metabolic functions of astro-

cytes [149, 150]. Confirmation of a given cell culture result

on GSH-dependent detoxification processes for the in vivo

situation is in many cases difficult to obtain and remains a

challenge. Nevertheless, results from future studies on the

GSH-dependent pathways in astrocytes in vivo are highly

warranted.

Although GSH synthesis takes place exclusively in the

cytosol, the presence of GSH has been reported for many

other cellular compartment, including nucleus [151],

mitochondria [152] and lysosomes [153]. For astrocytes, at

least the presence of GSH and GSH-dependent enzymes in

mitochondria as well as the transport of GSH in astrocytic

mitochondria have been investigated [139, 154, 155].

Future studies are now required to elucidate in more detail

the subcellular distribution of GSH in astrocytes, the par-

ticular functions of GSH in the different compartments and

the transport mechanisms which are responsible for intra-

cellular trafficking of GSH in astrocytes.

Impairments in GSH-dependent detoxification processes

in astrocytes as well as the supply of GSH precursors by

astrocytes to neurons are likely to contribute to distur-

bances in brain GSH homeostasis as well as to neural

damage and cognitive impairments reported for neurolog-

ical disorders which have been connected with alteration in

GSH metabolism in the brain. Accordingly, strategies

which would help astrocytes to maintain a high cellular

GSH concentration, including delivery of GSH as pro-

drugs or with carriers [156], could prove beneficial for the

defence of the brain against oxidative stress and toxins.
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