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Abstract Thiamine is an essential vitamin that is neces-

sary to maintain the functional integrity of cells in the

brain. Its deficiency is the underlying cause of Wernicke’s

encephalopathy (WE), a disorder primarily associated with,

but not limited to, chronic alcoholism. Thiamine deficiency

leads to the development of impaired energy metabolism

due to mitochondrial dysfunction in focal regions of the

brain resulting in cerebral vulnerability. The consequences

of this include oxidative stress, excitotoxicity, inflamma-

tory responses, decreased neurogenesis, blood–brain bar-

rier disruption, lactic acidosis and a reduction in astrocyte

functional integrity involving a loss of glutamate trans-

porters and other astrocyte-specific proteins which together

contribute in a major way to the resulting neurodegenera-

tion. Exactly how these factors acting in concert lead to the

demise of neurons is unclear. In this review we reassess

their relative importance in the light of more recent find-

ings and discuss therapeutic possibilities that may provide

hope for the future for individuals with WE.
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Abbreviations

AD Alzheimer’s disease

ATN Anterior thalamic nuclei

BBB Blood–brain barrier

CNS Central nervous system

ER Endoplasmic reticulum

HD Huntington’s disease

a-KGDH Alpha-ketoglutarate dehydrogenase

IL-1b Interleukin-1 beta

NO Nitric oxide

NOS NO synthase

NSCs Neural stem cells

PD Parkinson’s disease

ROS Reactive oxygen species

SGZ Subgranular zone

O2
- Superoxide anion

SVZ Subventricular zone

TCA Tricarboxylic acid cycle

TD Thiamine deficiency

TNF-a Tumor necrosis factor-alpha

WE Wernicke’s encephalopathy

WKS Wernicke–Korsakoff syndrome

Introduction

Understanding the pathophysiology of a disease process is

crucial for effecting its successful treatment. Thiamine

deficiency (TD) represents a unique platform for the

investigation of neurodegeneration. Lack of this essential

vitamin results in a myriad of problems, mostly driven by

the resulting impaired metabolic function of the cell, which

in the brain can lead to Wernicke’s encephalopathy (WE),
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the neurological component of the Wernicke–Korsakoff

syndrome (WKS), and a condition most commonly

encountered in chronic alcoholics. In WE, initial dysfunc-

tion to key parts of the limbic system which can rapidly

progress to structural damage results in serious and often

life-threatening complications for those affected by this

disorder. Although administration of thiamine remains the

remedy for many of the metabolic-related problems asso-

ciated with WE, the propensity of these individuals to

return to their alcohol-associated habits leading to recurrent

bouts of TD represents a major obstacle to successful

treatment of the problem. Evidence suggest that TD occurs

in chronic alcoholics at a frequency of at least 25–31 % [1–

3] and up to 80 % [4, 5]. Significantly, reports suggest that

WE occurs in chronic alcoholics at a frequency of *35 %,

and in the population as a whole, the figure is *1.5 % [6].

When combined with the high percentage of adult cases of

WE that are diagnosed at post-mortem of approximately

80 % [7] and 60 % for pediatric cases of WE [8], one can

begin to appreciate the importance of, and urgency for,

understanding the pathophysiology of this illness and

establishing therapeutic strategies that are likely to have a

major positive impact.

Pathophysiologic Changes in TD

Thiamine is an important cofactor [9, 10] involved in

processes associated with the metabolism of lipids, glu-

cose, amino acids, and neurotransmitters [11]. The active

form of thiamine is phosphorylated to thiamine diphos-

phate [12] that is required for the proper functioning of

four major enzyme systems, (1) pyruvate dehydrogenase

(EC 1.2.4.1) complex which connects glycolysis with the

tricarboxylic acid (TCA) cycle, (2) a-ketoglutarate dehy-

drogenase (EC 1.2.4.2) (a-KGDH) complex, a key rate-

limiting enzyme of the TCA cycle involved in mitochondrial

energy metabolism, (3) transketolase (EC 2.2.1.1), which

plays an important role in nucleic acid and lipid biosynthesis

through the pentose phosphate shunt, and (4) branched-

chain a-keto-acid dehydrogenase (EC 1.2.4.4) complex,

which is involved in the metabolism of branched-chain

amino acids.

Since thiamine is required for decarboxylation in glucose

metabolism, TD leads to impaired oxidative metabolism

[13] associated with decreased ATP synthesis in the brain

[14]. This decreased energy production along with resulting

neuronal depolarization [15] are consequences of TD that

have the capability on their own to lead to subsequent glu-

tamate-mediated excitotoxicity and neurodegeneration [16,

17]. The impaired oxidative metabolism in TD leads to

major changes in cerebral function that include the utiliza-

tion of glucose [101], alterations in neurotransmitters [18,

19], oxidative/nitrosative stress [20, 21], lactic acidosis and

decreased brain pH [22], excitotoxicity [16, 23, 24],

inflammation [25], endoplasmic reticulum (ER) stress and

apoptosis [20, 26], and dysfunction of the blood–brain

barrier (BBB) which also constitutes a major part of the

neurovascular unit that is involved in the control of regional

blood flow [27–29]. Some of these important changes are

shown in Fig. 1. The BBB also constitutes the physical

barrier that regulates movement of blood nutrients into brain

from the systemic circulation, thus playing an additional

important role in preserving the integrity of the cerebral

microenvironment [30]. Damage to the BBB can lead to

altered blood flow [31] with subsequent neuronal loss and

neurodegenerative events [32].

Recent studies have indicated that astrocytes are a major

source of lactate production in brain [33], with the

increased lactic acidosis in TD being associated with

decreased pH in focal regions of the brain [34]. This lactate

production is a likely major contributor to the development

of the selective lesions inherent in this disorder. Reports

have also established that cerebral vulnerability is associ-

ated with the presence of edema in cases of WE [35, 36].

Previous findings indicate that TD leads to swelling of

astrocytes in association with altered levels of aquaporin-4

(AQP-4) [37], a major water channel protein that is

localized predominantly in these cells in brain (Fig. 1). As

swelling is an important feature of TD [38–40], and aci-

dosis is associated with cellular edema [41–43], it is

probable that astrocytes play a significant role in the

observed brain edema in WE. Lactic acidosis may play an

important role in these changes in AQP-4 levels, with

recent evidence in favor of this contention in which lactic

acid increases AQP-4 protein expression in astrocytes [44].

In addition, previous studies have established the impor-

tance of metabolite trafficking between astrocytes and

neurons, and the important role that astrocytes play in

supplying neurons with new carbon skeletons necessary for

maintenance of activity of their TCA cycle and efficient

oxidative metabolism [45]. Disruption of such trafficking

by impairment of astrocyte function due to targeting of

these cells in TD is therefore likely to lead to increased

vulnerability of neurons to dysfunction and the possibility

of cell death.

TD-induced focal damage occurs in selectively vulner-

able areas of the brain such as the thalamus, mammillary

bodies, inferior colliculus of the midbrain, and vestibular

nuclei and inferior olivary complex of the brainstem [46]. In

WKS, damage to the diencephalic–hippocampal circuitry

including thalamic nuclei and mammillary bodies causes

the chronic amnesic syndrome ‘‘diencephalic amnesia’’

typical of Korsakoff psychosis. The anterior thalamic nuclei

(ATN) are important for processing learning and memory

events, and isolated damage to ATN produces a persistent
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amnestic syndrome [47], similar to that observed in WKS

manifestations.

Clinical Aspects of TD

TD is considered to be a nutritional, metabolic, enzymatic,

and neuroinflammatory disease, affecting both the nervous

and cardiovascular systems. Beriberi, affecting primarily

the peripheral nervous system, is classified into neurolog-

ical (dry beriberi) leading to selective neurodegeneration,

and cardiovascular (wet beriberi) associated with heart

failure [48–50]. However neurological problems occur in

both forms of the illness [51, 52]. In dry beriberi, which is

predominately a neurological disorder, there is sensory–

motor peripheral neuropathy that is more distal in nature,

while in the wet type in addition to the presence of

peripheral neuropathy, there are edema-related manifesta-

tions that include congestive heart failure, cardiomegaly

and tachycardia [51, 53].

TD commonly occurs in patients with other co-mor-

bidities such as alcoholism, liver and gastrointestinal dis-

eases, head trauma, and seizures, but WE is the most

serious complication of TD. In TD there is lactic acidosis

with increased lactate levels in brain that can be detected in

peripheral blood [54]. However, other uncommon clinical

features may include stupor, hypotension and tachycardia,

hypothermia, bilateral visual changes and papilloedema,

convulsions, deafness, hallucinations and behavioural

change, hyperthermia, hypertonia and spastic paresis,

choreic dyskinesias and coma at the late-stage [55], which

provides a basis for potential misdiagnosis of the illness.

WE commonly presents with an abrupt onset of a triad of

neurological symptoms that consists of ophthalmoplegia,

gait ataxia and confusion [56, 57]. However in many cases,

these classic characteristics are not all present, leading to

potential complications in the diagnosis. Modified criteria

for clinical diagnosis of WE patients have been proposed that

would include the presence of two out of four signs; dietary

deficiencies, oculomotor abnormalities, cerebellar dysfunc-

tion, and either altered mental state or mild memory

impairment [58]. Although there is no specific investigation

to diagnose WE [59], magnetic resonance imaging is an

important tool for visualizing the localization of lesions and

in confirmation (or ruling out) of the illness [55, 60, 61].

Glutamate-Mediated Excitotoxicity

Over a number of years, strong evidence has been estab-

lished for the existence of a glutamate-mediated excito-

toxic event in TD. Earlier studies had shown reduced

Fig. 1 Some important processes involved in neurodegeneration in

thiamine deficiency (TD) and potential therapeutic approaches. TD leads

to impaired mitochondrial function that is associated with decreased

activity of thiamine-dependent enzymes. This produces decreased energy

production in the cell and lowered redox function resulting in net

production of oxidative stress in this organelle. Increased endoplasmic

reticulum (ER) stress is also a consequence of this reduced mitochondrial

function. The impaired mitochondrial function results in development of

an inflammatory process e.g. in microglial cells, and reactive oxygen

species-driven oxidative stress that extends outside the mitochondria and

into other parts of the cell, leading to decreased neurogenesis in neural

stem/progenitor cells. Loss of mitochondrial function is likely to produce

functional impairment of neurons directly, leading to overstimulation and

potential excitotoxic conditions within and between these cells (not

shown in this figure, oxidative stress and inflammation probably affect

neuronal functional integrity as well). Impaired mitochondrial function,

inflammation and oxidative stress also target astrocytes leading to

increased lactate production and loss of astrocyte-specific gene expres-

sion producing a downregulation of the glutamate transporters GLT-1

and GLAST that results in increased extracellular glutamate levels and

excitotoxicity. Since astrocytes also play a major role in establishing and

maintaining BBB integrity, targeting of these cells in TD is likely to be a

major contributing factor in the disruption of this barrier under these

conditions. In addition, alterations in levels of the astrocyte water channel

protein aquaporin (AQP)-4 are probably a major cause of the cerebral

edema observed in TD and WE. Astrocyte targeting also results in

disruption of astrocyte–neuronal trafficking of metabolites, thus further

increasing neuronal dysfunction and the risk of cell death. Collectively,

these resulting changes destabilize and impair neuronal function,

ultimately leading to neurodegeneration. Future therapeutic strategies

to be considered include novel glutamate receptor antagonists (e.g.

flupirtine) antioxidants, along with anti-inflammatory agents (e.g.

NSAIDS, minocycline, NP031112), b-lactam antibiotics (e.g. ceftriax-

one), stem cells, and the use of nanomedicine-based procedures that

could monitor or directly impact vulnerable brain regions (e.g. ‘‘ceria’’)
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incorporation of [14C]-glucose into glutamate [62] consis-

tent with reduced activities of KGDH, resulting in a

decrease in energy status in TD animals [14]. In addition,

treatment with the noncompetitive N-methyl-D-aspartate

(NMDA) glutamate receptor antagonist MK-801 was

shown to lead to a reduction in the extent of neuronal

damage in thiamine-deficient rats [63]. Identification of

increased interstitial glutamate concentration was then

reported that was limited to vulnerable brain regions in TD

[23, 24], thus providing the first direct evidence for glu-

tamate-mediated excitotoxicity, along with the presence of

excitotoxic-like lesions in damaged areas of the brain [64].

This was also consistent with description of the ultra-

structural appearance of the affected thalamus being sim-

ilar to that seen in excitotoxic-mediated necrosis [65, 66].

More recently, loss of the astrocytic glutamate trans-

porters Glutamate Transporter 1 (GLT-1) and Glutamate/

Aspartate Transporter (GLAST) has been reported to be

localized to vulnerable brain regions in TD [16] (Fig. 1).

These astrocytic transporters provide the major spatial

buffering of extracellular glutamate levels in brain [67].

Along with loss of the GLAST protein in an astrocyte

model of TD [68] and the recent findings of a considerable

downregulation of GLT-1 and GLAST in human post-

mortem cases of WE [69], these reports have together

provided considerable credence for implication of excito-

toxicity as a major cause of the histological lesions

observed in TD and WE. In addition, studies indicate that

levels of complexin I and II, presynaptic terminal proteins

that play an important role in the regulation of neuro-

transmitter release [70, 71] are downregulated in vulnera-

ble brain regions in TD [72]. Given that complexins play

an important regulatory role in the release of glutamate and

GABA at the synaptic cleft, altered expression of these

proteins may reflect either enhanced or reduced release of

glutamate and/or GABA by neurons. This effect on com-

plexin levels is reversible with antioxidants such as N-

acetylcysteine [72], suggesting an involvement of oxidative

stress. Further studies are required to establish the exact

significance of these changes in the levels of both proteins

in TD. Recently, studies have identified the presence of

complexin II but not complexin I in astrocytes [73], with

complexin II being known to be associated with excitatory

synapses [74]. Since recent studies have indicated that

astrocytes contain similar cellular machinery to that of the

presynaptic terminal for exocytotic release of neurotrans-

mitter and release glutamate in a vesicular manner similar

to that at the synaptic cleft [75, 76], it is possible these cells

release glutamate during TD in a manner similar to that of

neurons that may accentuate the rise of extracellular glu-

tamate concentration and contribute to excitotoxic cell

death.

Role of Oxidative Stress in TD

Physiologically, the brain is more sensitive to oxidative

stress due to its high oxygen consumption where neurons

use more oxygen than they produce from the mitochondria

[77]. Oxidative stress occurs due to imbalance between

synthesis and elimination of reactive oxygen species (ROS)

as a result of failure of the redox mechanisms of the cell.

The increased net production of ROS such as superoxide

anion (O2
-) and nitric oxide (NO) forming reactive nitro-

gen species (nitrosative stress) lead to activation of NMDA

receptors [78] and increased extracellular glutamate levels

resulting in excitotoxicity, BBB disruption, activation of

microglia, and induction of apoptosis [77], all features of

TD [21]. Excessive NO production can also cause disrup-

tion of the BBB [79], allowing the passage of multiple

vascular factors from the systemic circulation into the brain

that can cause cell death [80]. Peroxynitrite, ONOO-

which is formed from NO and O2
-, is a strong neurotoxic

oxidizing and nitrating agent and thus can play a role in

neuronal loss and tissue damage in neurodegenerative

diseases [17, 77, 81].

In TD, the reduction in thiamine-dependent enzyme

activity, particularly that of the a-KGDH complex, leads

to mitochondrial dysfunction and hence decreased TCA

cycle activity in endothelial cells, astrocytes and

microglia that result in oxidative stress due to induction

of both endothelial and inducible forms of NOS (eNOS

and iNOS respectively) and the production of ROS, along

with increased production of cytokines through microglial

activation [79, 82, 83] (Fig. 1). Interestingly, TD also

causes stress of the ER which results from excessive

accumulation of unfolded or misfolded proteins in the ER

lumen leading to overexpression of four ER stress

markers, glucose-regulated protein 78, growth arrest and

DNA damage-inducible protein 153 (CCAAT/enhancer

binding protein homologous protein), phosphorylation of

eukaryotic initiation factor 2a and cleavage of caspase-12

[84]. Nitrosative stress can occur as well, inducing neu-

rodegeneration in a similar way to that produced by

oxidative stress [85, 86].

Inflammatory Processes in TD

The inflammatory process that develops in TD includes a

series of events that can be summarised as follows: alter-

ation in glial cell morphology, which leads to swelling and

the appearance of phagocytic vacuoles, and increased mi-

croglial reactivity, which results in the upregulation of

inflammatory genes, transcripts and transcription factors,

and production of pro-inflammatory molecules [87, 88].
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During TD, alterations in glial cell morphology occur in

both astrocytes and oligodendrocytes, with glial swelling of

both cytoplasmic and nuclear compartments being the first

ultrastructural abnormality to occur [37, 38]. Generally, the

initial swelling of glial cells develops into two types of

cerebral edema, cytotoxic (mostly common in ischemic

and hypoxic states) and vasogenic edema (mostly common

in trauma, tumors, and cerebrovascular insults). In TD, the

type of edema that is encountered is initially of the cyto-

toxic type [38]. However, it is also possible that astrocytic

dysfunction plays an important role in altering the BBB

with consequent vasogenic edema in TD leading to brain

tissue swelling [89], a finding previously confirmed using

neuroimaging in cases of WE and in experimental models

of TD [80, 90, 91].

Microglia are the most immunoresponsive cells in the

CNS, being the principal resident immune cells and the

primary mediators of neuroinflammation [92, 93] which

put them at the first line of neuroprotection against exog-

enous harmful triggers such as viruses and bacteria [94,

95]. Thus, they are similar to peripheral macrophages [93].

Evidence suggests that microglial activation is one of the

initial TD-induced cellular events to occur [25]. However,

in TD the activated microglia lead to a sequelae of events

themselves that contribute to the overall neurological dis-

order [96]. This includes the production of pro-inflamma-

tory cytokines such as interleukin-1b (IL-1b), and IL-6,

and tumor necrosis factor-a (TNF-a) [97], and upregula-

tion of inflammatory genes, transcripts and transcription

factors in thalamus and inferior colliculus [98]. It is con-

ceivable that at different stages of their activation,

microglia wander between neuroprotection and neurotox-

icity, and thus dual opposed responses within the brain

[99]. However, this inflammatory response may exert a

major influence on astrocyte function (Fig. 1). Pro-

inflammatory cytokines IL-1b and TNF-a can also induce

transcription factors CCAAT/enhancer binding protein b
and d in astrocytes that cause progression of the inflam-

matory response to the surrounding area through a second

peak of activation [100].

Neuroinflammation can also lead to disruption of the

BBB with decreased cerebral blood flow, a condition that

may contribute to neuronal cell loss and progression of

neurodegenerative maladies such as Alzheimer’s disease

(AD). This is collectively due to the effect of pro-

inflammatory cytokines, secretion of endothelin-1 that

suppresses blood flow, and overexpression of vascular

genes causing increased synthesis of proteins leading to

hypercontractile vascular smooth muscle state and gene

expression changes that regulate Ca2? homeostasis [32].

Such changes may also contribute to reported changes in

local cerebral blood flow in vulnerable brain regions

during TD [101].

Future Therapeutic Strategies in TD

Thiamine is crucial to many metabolic processes in the

brain. The finding that WE occurs in the population at a

frequency of about 1.5 % [6] makes this disorder an

important health care issue. WE is a medical emergency

that needs to be treated with high doses of intravenous

vitamin B in order to hinder the development of the chronic

and debilitating condition of Korsakoff psychosis. Future

non-conventional therapies in TD will depend largely on

the use of strategies that can either prevent or inhibit

mechanisms involved in the neurodegenerative process

occurring in this illness (see Fig. 1), particularly in light of

recurrent TD, a common occurrence in cases of WE.

A move towards the use of agents that exert an anti-

inflammatory influence such as non-steroidal anti-inflam-

matory drugs (NSAIDS) is presently being taken to

investigate their potential benefit in several neurodegen-

erative maladies including Parkinson’s disease (PD) [87,

102], and which may also be beneficial in treating WE.

Previous studies have shown promising results for the

treatment of TD using the anti-inflammatory drug mino-

cycline, which also possesses anti-oxidant and anti-apop-

totic characteristics, in which it delayed the onset of major

neurological impairment in rats by over 24 h [96]. In

addition, studies have reported that treatment with the

b-lactam antibiotic ceftriaxone was able to prevent loss of

the GLT-1b splice-variant in animals with TD and improve

glutamate uptake into astrocytes under TD conditions

[103]. Ceftriaxone has previously been shown to have the

ability to upregulate GLT-1 [104]. Furthermore, the use of

NP031112, a compound that protects against inflammation

and excitotoxic-mediated cell death is being considered as

a possible therapeutic strategy in brain disorders, and may

also be beneficial in treating WE cases [105].

Since TD results in both necrosis and apoptotic cell

death [26], small anti-apoptotic drugs which are more able

to cross the BBB and hence can directly affect the brain

also represent another group of compounds for which a

possible therapeutic avenue may exist [106]. The potential

for use of glutamate receptor antagonists should also be

considered, and has been used in the past with beneficial

effects in both neurodegenerative disease states [107] and

in experimental TD [63]. Flupirtine, which is a centrally-

acting, non-opioid analgesic with muscle relaxant proper-

ties, but which interestingly possesses NMDA antagonist

properties could also prove beneficial in treating TD.

Recently, the potential therapeutic benefit of stem cells

in treating a wide range of illnesses including neurode-

generative diseases has gained considerable momentum

[108]. These cells which have the ability for both indefinite

self-renewal and differentiation into one or more special-

ized mature cell types hold the potential for successfully
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treating and even curing many disease states in which loss

of a particular cell type or function is a major factor. These

cells are currently being used in clinical trials to treat ill-

nesses such as PD, stroke, Huntington’s disease (HD) and

amyotrophic lateral sclerosis [108]. In the past, the adult

brain was considered to be non-neurogenic and non-

regenerative in nature. Nowadays, the concept of neuro-

genesis and the existence of neural stem cells (NSCs) have

been widely adopted in the scientific field [109]. NSCs give

rise to differentiated neurons or glial cells in specific

regions within an adult brain that favour neurogenesis; most

notably in the subventricular zone (SVZ) of the lateral

ventricles and the subgranular zone of the hippocampal

dentate gyrus [110, 111]. Neurogenesis can be increased as

in AD [112] but with decreased survival of newly born adult

neurons, decreased neurogenesis also occurs in PD [113]

and is increased in HD [114], and is aberrant in the epileptic

rat dentate gyrus [115]. Following a stroke, migration of the

newly born neuroblasts occurs from SVZ to the border of

the vascular insult leading to simultaneous enhancement of

post-stroke neurogenesis and angiogenesis [116, 117]. In

the case of TD, neurogenesis is reduced in both major

neurogenic areas of the brain [118–120]. Identifying the

underlying basis of this suppressed production of neurons

may facilitate the development of therapeutic approaches

that will allow repair of the damage in vulnerable regions of

the brain in this disorder. During TD, loss of mitochondrial

function is a major feature, and studies have demonstrated

that irradiation of animals leads to decreased neurogenesis,

but co-treatment with thiamine can prevent this effect [121],

suggesting that impaired neurogenesis may involve a loss of

mitochondrial functional integrity. Thus, improved mito-

chondrial function may be an important therapeutic tool for

maintaining neuroblast production and survival in the face

of a damaging insult to the brain. Interestingly, some neu-

rodegenerative disease states such as AD display evidence

of decreased thiamine status, e.g. low plasma thiamine

levels along with decreased activities of a-KGDH complex

and transketolase [122, 123], suggesting that thiamine may

have a positive role to play in these illnesses. Use of thia-

mine as a therapeutic approach in such cases may therefore

increase mitochondrial function in neuroblasts, thus pro-

moting their survival.

Other potential therapeutic approaches involve the use

of nanoparticles (i.e. diameter \100 nm), e.g. cerium

oxide, or ‘‘ceria’’ to reverse oxidative stress that is

encountered in many neurological conditions by their

prolonged antioxidant properties that can lead to

improvement of neurological function [124]. Such

nanomaterials can also be used in the diagnosis of neuro-

degenerative diseases, however caution is required at this

stage as our knowledge in this field of nanomedicine is still

in its infantile stages [125].

Conclusions

TD produces a complex pathophysiology that is multifac-

torial in nature. While significant progress has been made

over the last 10 years in terms of our understanding of this

illness, a clearer picture is still required in order to effec-

tively treat and potentially reverse the neuropsychiatric

problems associated with WKS including the chronic

debilitating Korsakoff psychosis. Given the pace of

developing technology, however, the next 10 years should

prove engaging.
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