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Abstract The first mentioning of the word ‘‘receptor’’ for

the structure with which a bioactive compound should react

for obtaining its specific influence on a physiological sys-

tem goes back to the years around 1900. The receptor

concept was adapted from the lock and key theory for the

enzyme substrate and blockers interactions. Through the

years the concept, in the beginning rather being a meta-

phor, not a model, was refined and became reality in recent

years. Not only the structures of receptors were elucidated,

also the receptor machineries were unraveled. Following a

brief historical review we will describe how the recent

breakthroughs in the experimental determination of G

protein-coupled receptor (GPCR) crystal structures can be

complemented by computational modeling, medicinal

chemistry, biochemical, and molecular pharmacological

studies to obtain new insights into the molecular determi-

nants of GPCR–ligand binding and activation. We will

furthermore discuss how this information can be used for

structure-based discovery of novel GPCR ligands that bind

specific (allosteric) binding sites with desired effects on

GPCR functional activity.

Keywords G protein-coupled receptor � GPCR medicinal

chemistry � Protein–ligand interactions � Histamine
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From Receptor Hypothesis to Receptor Binding

Metaphor

From the beginning of its existence mankind has needed

means to treat afflictions and diseases. A variety of natural

products, mainly obtained from plants were used for this

purpose. The selection of ‘‘medicines’’ was based on

experience, on observations. It took relatively long until

this changed and the selection primarily focused on prop-

erties of plants: shape, color, taste, etcetera (according to

the doctrine of signatures) [1]. Things changed dramati-

cally in the nineteenth century. First synthetic organic

chemistry emerged, followed by the milestone work of

Crum-Brown and Fraser [2]. The latter realized that it were

the properties of compounds (e.g. present in plants), which

determined their influence on biological systems. Shortly

after these developments overenthusiastic scientists sug-

gested that ‘‘soon pharmacopeia would be composed on

basis of structure–activity relationships’’ or ‘‘soon doctors

will have a series of medicines to influence practically any

physiological action’’. Obviously matters have developed

in a rather different manner. A major obstacle was the very

poor understanding of the underlying cause and underlying

mechanism of the diseases and method of action of any

medicine. Around the turn of the twentieth century the

receptor concept was introduced by scholars like Langley

and Ehrlich [3]. Comparisons were made with the lock and

key theory for substrates and blockers of enzymes as pro-

posed some 20 years before by the German biochemist

Fischer [4].

The defined ‘‘receptor’’ was nothing more than a

hypothesis, the lock and key idea being a useful metaphor,

which seemed to represent a kind of understanding of the

way a medicine reached its activity. Indeed, in the late

1960s the famous Dutch pharmacologist Ariëns (prime
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author of two milestone volumes of ‘‘Molecular Pharma-

cology’’ [5, 6]), sighed ‘‘when I am talking about receptors

I am talking about something I know nothing about’’. There

was not an accepted understanding about the chemical

structure of any receptor at all. Though another Dutch

scientist, Nauta had at that time—and most likely the first

one to do so—proposed that a ‘‘receptor might be protein in

a helix shape’’; in this proposal interactions between the

ligand and the protein should consist of polar and p–p
interactions, together with hydrogen bonds (Fig. 1a) [7]. In

the early days ligand–receptor interactions had been con-

sidered as being irreversible, but in the meantime it had

become clear that they rather were reversible in most cases.

Ariëns, not knowing what the chemical structure of a

receptor was, has been a very powerful engine for the

transfer of pharmacology from an in vivo science only into

an in vitro and more importantly into a molecular science.

He and his team introduced many in vitro models to

investigate the effect of selected compounds on organs;

these models lead eventually to the detection of subtypes of

receptors as present on the several tissues. The Ariëns team

developed a simple mathematical model for the receptor-

ligand interactions, thereby defining dissociation and

association constants, parameters like pD2 (the negative

logarithm of the dissociation constant) and pA2 (the neg-

ative logarithm of the concentration of the antagonist that

makes it needed to double the concentration of the agonist

to reach the same effect), partial agonism, and intrinsic

activity (a) [5, 6]. Interactions between agonists and

antagonists at a given receptor were considered to be either

Fig. 1 Structural investigations of the histamine H1 receptor (H1R)

from 1966 until now. a Nauta’s binding mode proposal of 4-meth-

yldiphenhydramine [7]. b The proposed binding mode of cetirizine in

a bacteriorhodopsin-based guinea pig H1R homology model [13]. c A

cartoon depiction of the H1R crystal structure with doxepin (sticks,

magenta carbon atoms) [15]. d Virtual screening for novel fragment-

like H1R ligands based on the doxepin-bound H1R crystal structure. A

combined scoring approach was applied in which both PLANTS and

molecular interaction fingerprint scoring (IFP). IFP evaluates the

binding mode similarity of a docked compound with respect to a

reference compound (in this case the co-crystallized doxepin) by

encoding the interactions of the docked compound with the binding

pocket residues into an interaction fingerprint and comparing this to

the fingerprint of the reference compound. This lead to the

identification of 19 novel inverse agonists, the structure of the

highest affinity hit, VUF13816 (Ki = 6 nM), is depicted [45]. e 2D

structures of the histamine ligands depicted in a–d and Fig. 2a–d
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of a competitive or a non-competitive nature [5, 6]. The

impact of the change of pharmacology into a molecular

science has been enormous. From now on the biological

effect of compounds could be expressed in real molecular

properties. Especially the parameter for agonistic activity

of a ligand became not only easily accessible but also very

useful to study structure–activity relationships.

From Ligand-Based to Receptor-Based Structure–

Activity Relationships

Also, in the 1960s, Hansch introduced the technology for

quantitative structure–activity relationships (QSAR) [8].

This approach came in reach when computers allowed the

determination of the mathematical relationship between

one parameter (in this case the biological activity) and

several others (in this case physicochemical properties of a

series of congeneric compounds). As it had happened

towards the end of the twentieth century it was thought that

by QSAR approaches (biological) activities of yet not

synthesized compounds could be predicted. Again the high

hopes were not justified, but the reason could likely have

been foreseen this time. For determining a so-called QSAR

formula the assumption is that all compounds under study

should interfere with the target—in our case the receptor—

in exactly the same way; the QSAR is based on the ther-

modynamics of the ligand–target interaction. It is likely the

fact that the metaphor of the lock and key for ligand–target

interferences was used as a model for these interactions,

implying that congeneric derivatives ‘‘reacted’’ in the same

way with the target, whereas it is nothing more than a

metaphor indeed. There was a big need to find out more

about the chemical nature of receptors and the mechanisms

that lead to receptor activation or blockade.

The next big leap forward came from biochemistry, the

discipline from which the receptor concept originated. The

role of secondary messengers became clear (c-AMP and

IP3). The primary structure of receptors could be estab-

lished, including receptor subtypes. Things went extremely

fast; dimers, heteromers, point mutations, chimeric recep-

tors, receptor up- and down-regulation, constitutive activ-

ity, reversed agonism, etcetera [9, 10]. Parallel to the

exciting progress in this field coming from biochemistry,

especially from cell biology, the exponential increase in

computing power contributed much to the understanding of

ligand-receptor interactions. Molecular modeling technol-

ogy took over from classical QSAR approaches. It became

very clear that closely related compounds, showing the

same pharmacological effect do not necessarily interfere

with the same target in the same molecular way. The time

was ripe for the change from metaphor to model; com-

pound design came within reach.

However, a next step had to be taken. The question of

the conformation of receptor molecules in their natural

environment had still not been solved. The first most

important finding was the elucidation of the electron cry-

omicroscopy structure [11] (and later X-ray structure [12])

of bacteriorhodopsin, which became the standard template

for the structurally closely related GPCRs. The first steps

towards molecular modeling on basis of the structure of the

target had become feasible, as will be exemplified in the

next paragraphs for the GPCR family of histamine recep-

tors that play important roles in allergy, acid secretion,

inflammation, and CNS disorders.

From Customized GPCR Homology Models into a New

Era of GPCR Structural Biology

Although bacteriorhodopsin has a low sequence similarity

with GPCRs, the shared heptahelical fold allowed for low-

resolution homology modeling. By combining these

homology models with experimental data the structural

understanding of ligand-GPCR binding grew. This was, for

example, the approach in a study investigating the binding

mode of second-generation antihistamines in the histamine

H1 receptor (H1R) [13]. A bacteriorhodopsin-based homol-

ogy model (Fig. 1b) was used in combination with docking

studies, a ligand-based pharmacophore [14], and site-direc-

ted mutagenesis studies. This led to the first experimentally

supported binding-mode hypotheses for second-generation

antihistamines [13]. In this study the positively charged K5.39

residue was identified as an anchor for the carboxylate-

moiety of acrivastine and levocetirizine (Fig. 1b), which still

is key in the accepted binding-mode hypothesis for these

antihistamines (which was later confirmed by the H1R crystal

structure, Fig. 1c) [15]. Subsequently the structure of bovine

rhodopsin (the first crystallized GPCR) was elucidated in

2000 [16]. This allowed for more accurate homology mod-

eling, but still the average sequence similarity of many

GPCRs with bovine rhodopsin was low [17].

New Structural Insights into GPCR Ligand Binding

Mode Diversity

From that point in time it took over 7 years before the first

druggable GPCR was crystalized, namely the b2-adreno-

ceptor. A large array of techniques [18] including ther-

mostabilizing mutants, insertion of T4-lysozyme/

cytochrome b562/rubredoxin, addition of nanobodies and

covalently-bound ligands have yielded 110 GPCR crystal

structures to this date, comprising 25 different GPCRs in

four GPCR classes (class A, B, C, and frizzled). These

crystal structures have given unique insights into the

structural mechanism of ligand binding. Moreover, they
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show that the location for ligand binding is not as con-

served and static as assumed during the introduction of the

key and lock metaphor.

Several unique ligand-binding sites have been revealed

that differ between GPCRs, but also multiple binding sites

within a single GPCR have been identified. The most fre-

quently observed binding site is the so-called major pocket

(between TM 3, 5, 6, and 7), which is the orthosteric

binding site for many class A GPCRs, as exemplified by

the binding mode of doxepin in H1R [15] (3RZE, Figs. 1c,

2i) and epinephrine [19] and carazolol [20] in b2R (2RH1

and 4DLO, Fig. 2h). Opposite to this pocket is the minor

pocket (between TM 2, 3, and 7) that was (for the first

time) found to be occupied in the CXCR4 crystalized with

the small molecule IT1t [21] (3ODU, Fig. 2f). Larger

ligands have also been co-crystalized since then that

occupy both this major and minor pocket, e.g. antiretroviral

drug maraviroc in CCR5 [22] (4MBS, Fig. 2d) and beta-

blocker carvedilol in b1-adrenoceptor [23] (not shown).

Some allosteric modulators have been shown to bind

higher up in the GPCRs (between the extracellular loops),

as shown for the muscarinic M2 receptor in an X-ray

structure with both an agonist (iperoxo) in the major pocket

and a positive allosteric modulator (PAM), LY2119620, in

the loop region [24] (4MQT, Fig. 2b). For multiple GPCRs

also dualsteric/bitopic/bivalent ligands have been devel-

oped that target multiple pockets (like maraviroc). Ergot-

amine is such a dualsteric agonist for the

5-hydroxytryptamine family, targeting both the loop-region

and the major pocket, and has been crystallized in the

5-HT2B and 5-HT1B [25] receptor (4IAR, Fig. 2c). Instead

of binding small molecules, many GPCRs are also known

protein/peptide-binders and therefore have a large open

pocket to accommodate these large(r) ligands. So far two

receptors have been crystalized in combination with a

large peptide ligand: the NTS1 receptor with a part of

neurotensin [26] (4BUO, Fig. 2a) and CXCR4 with pep-

tide-antagonist CVX15 [21]. More recently also non-class

A GPCRs have been crystalized. From class F (frizzled) the

SMO receptor has been crystalized, once in combination

with cyclopamine [27] (not shown) that also binds in the

loop region, and therefore has extensive contacts with the

extracellular loops, but also with the elongated

TM6 (compared to class A). The first class B GPCRs that

were crystalized are the glucagon receptor [28] and the

CRF1 receptor [29]. Although no density for a ligand could

be found in the glucagon receptor, in combination with

extensive site-specific mutagenesis a high-resolution model

of glucagon bound to its native receptor could be created.

In the CRF1 receptor an antagonist, CP-376395, was co-

crystallized and was found to bind in an unusual deep

binding pocket (within the cytoplasmic half) between TM

3, 5, and 6 (4K5Y, Fig. 2j) [30]. The mGlu1 receptor [31],

the first crystalized class C GPCR, was crystalized in

combination with a negative allosteric modulator (NAM)

binding in the major pocket (not shown). Also the mGlu5

receptor [32] was crystallized with a NAM (mavoglurant)

binding in the major pocket, however, mavoglurant extends

downward into the ion-binding site (not shown). Other

unique observations for class A GPCRs are the binding

mode of antagonist AZD1283 and agonist 2MeSADP in the

P2Y12 receptor [33] that binds perpendicular to other major

pocket binders and has contacts with TM4 (4NTJ, Fig. 2e),

and also a conserved ion-binding site that was found to be

present in several high-resolution X-ray structures (A2A

receptor [34], b1-adrenoceptor [35], d (opioid) receptor

[36], and PAR1 [37]). This ion binding site between TM1,

2, and 7 (4BVN, Fig. 2g) is tightly interacting with a water

network that was shown to influence the activation of

GPCRs [34–36, 38]. Moreover, the residues lining this ion-

binding site are relatively conserved and it is therefore

expected to be present in multiple GPCRs [36, 38].

The advances in the elucidation of GPCR structures in

the paste decade have been tremendous and show a high

diversity of ligand binding modes (Fig. 2). Interestingly,

the H1R crystal structure [15] (Fig. 1c) shows that the

antihistamine-receptor interaction model of Nauta [7]

(Fig. 1a) correctly captured important determinants of H1R

ligand binding, and confirms the previously proposed H1R-

antihistamine binding orientations based on protein

homology modeling and mutation studies (Fig. 1b) [13,

14]. These interaction models feature: (1) an essential

hydrogen-bond between the amine group of the ligand and

a polar H1R residue (a His residue in the Nauta model,

Asp3.32 in both homology model and X-ray structure), (2)

aromatic p–p stacking between the ligand and several

aromatic residues in TM helices 4, 5 and 6; and (3) an

anionic interaction site above the orthosteric H1R binding

pocket [39].

Molecular Determinants of (Selective) GPCR Ligand

Binding

Apart from the insights directly obtained from the GPCR

X-rays, the new crystal structures can be complemented

with experimental data and computational modeling to

construct and validate higher resolution homology models

that can be used to gain more insight in GPCRs that have

not (yet) been crystallized, as was for example recently

demonstrated for histamine H3 and H4 receptors [40, 41].

The integration of experimental ligand SAR and receptor

mutagenesis data with ligand-based and protein–ligand

based computer models allowed for the elucidation and

experimental validation of the binding modes of different

histamine H4 receptor ligand chemotypes (Fig. 3c) [40]

and the identification of molecular determinants of
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Fig. 2 Overlay of GPCR crystal structures and comparison of

different GPCR–ligand binding modes. a Neurotensin-peptide

(salmon) bound to the NTS1 receptor (PDB-code 4BUO [26]).

b PAM LY2119620 (orange) and agonist iperoxo (purple) bound to

muscarinic M2 receptor (PDB-code 4MQT [24]). c Ergotamine

(green) bound to 5-HT1B (PDB-code 4IAR [25]). d Maraviroc (blue)

bound to CCR5 (PDB-code 4MBS [22]). e Antagonist AZD1283

(slate) and agonist 2MeSADP (salmon) bound to P2Y12 receptor with

the ribbon of the agonist structure shown (PDB-codes 4PXZ [69],

4NTJ [33]). f IT1t (cyan) in CXCR4 (PDB-code 3ODU [21]). g A

sodium ion (purple) in the b1-adrenoceptor (PDB-code 4BVN [35]).

h Doxepin (magenta) bound to the histamine H1 receptor (PDB-code

3RZE [15]). i Carazolol (slate) and epinephrine (salmon) with the

ribbon of the active-state epinephrine structure shown (PDB-codes

2RH1 [20], 4DLO [19]). j CP-376395 (dark gray) bound to the CRF1

receptor (PDB-code 4K5Y [29]). The ribbon overlay of all crystal-

lized GPCRs also shows the Gs-protein coupled to the b2-adrenocep-

tor (PDB-code 3SN6 [58]). For selected residues the B&W numbers

[104] are indicated in gray (for class B the translated B&W

numbering is used as previously proposed, i.e., the translated B&W

positions 5.51, 5.54, and 6.51 correspond to positions 5.47b, 5.50b,

6.46b of the class B Wootten numbering scheme, respectively [30,

105]). In e, h only the interactions of the agonist are indicated (Color

figure online)
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histamine H3/H4 receptor selectivity (Fig. 3a) [41]. Sys-

tematic consideration of different H4R homology modeling

templates (b2-adrenoceptor and H1R crystal structures),

ligand binding poses, and ligand protonation states in

combination with docking and MD simulations enabled the

prediction of subtle differences in H4R ligand SAR and

ligand-specific mutation effects (Fig. 3c) [40]. H3/H4

selectivity hotspots identified by ligand-based 3D-QSAR

studies were linked to H4R specific residues in H4R

homology models (Fig. 3a) [41]. Subsequent mutagenesis

studies confirmed the role of these residues in the H4R

binding pocket that determine H3/H4 selectivity and vali-

dated the predicted ligand binding modes [41].

The increasing number of aminergic GPCR crystal

structures (Fig. 2) now for the first time allows the inte-

gration of (fragment-like) ligand affinity data, receptor

mutagenesis studies, and amino acid sequence analyses to

high-resolution structural chemogenomics analyses of

aminergic GPCR–ligand interactions [18, 39, 42]. Such

structure- and fragment-based chemogenomics analyses

enable a more accurate description and prediction of the

molecular and structural determinants of ligand affinity and

selectivity in different binding regions of (aminergic)

GPCRs [39, 42], and may ultimately be used to support the

design of ligands with desired polypharmacological pro-

files [43].

Structure-Based Discovery of Novel GPCR Ligands

The new GPCR crystal structures can not only improve the

understanding of ligand-binding and receptor activation

mechanisms, but can also facilitate the discovery of novel

GPCR ligands [44], as was for example demonstrated in

structure-based virtual screening studies against the hista-

mine H1 receptor crystal structure (Fig. 1d) [45]. After

docking 108,790 basic, fragment-like compounds in the

H1R crystal structure the resulting predicted binding modes

were scored using a combination of a ‘‘classical’’ energy-

based scoring function (ChemPLP using PLANTS [46])

and interaction fingerprint [47] (IFP) scoring method. The

IFP of doxepin in the crystal structure was used as a ref-

erence in comparison to the IFPs of the docked compounds.

Fig. 3 Combined ligand-based and structure-based approaches elu-

cidate the structural determinants of H3 and H4 receptor ligand

binding and/or signaling. a A 3D-QSAR model capturing the

selectivity in affinity for the H3/H4 receptor for a series of

clobenpropit-analogues obtained by analysis of molecular interaction

fields (MIFs). Two hydrophobic hotspots (DRY.3 and DRY.4) that

were identified as selectivity determinants were subsequently mapped

onto a homology model that lead to the identification and experi-

mental validation of selectivity inducing residues in the binding

pocket [41]. b FLAP software was used to build ligand-based (LB)

and structure-based (SB) models through linear discriminant analysis

(LDA) of MIF fingerprints based on a library of true active and true

inactive fragment-like molecules. The resulting FLAP models were

used to screen a series of 156 090 fragment-like compounds and lead

to the identification of 18 new H3R ligands [54]. c Systematic

comparison of different modeling templates, protonation states and

binding modes of the ligands through application of docking and MD

simulations combined with SAR studies and site-directed mutagenesis

studies lead to the elucidation of the binding mode of H4R ligands

with different scaffolds [40]. d In vitro experiments identified that 47

out of a series of 48 JNJ-7777120 analogues were b-arrestin2-biased

agonists. Subsequently, a ligand-based FLAP analysis was performed

in order to gain more insight in the structure–activity relationship

(based on the b-arrestin2 signaling) of the 48 compounds. The

resulting FLAP model was combined with a homology modeling and

used to identify receptor regions that are important for biased H4R

signaling [78]. 2D structures of the depicted ligands are shown in

Fig. 1e
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Based on a retrospective validation cutoffs were selected

for the energy-based scores as well as the IFP-similarity

and subsequently 26 compounds were selected after visual

inspection. Experimental validation learned that 19 out of

the 26 selected compounds were novel fragment-like

inverse agonists. Structure-based virtual screening

[18] against other GPCR crystal structures have enabled

the discovery of new ligands for the b2-adrenoceptor [48,

49], CXCR4 [50], D3 receptor [51], and A2A receptor [52,

53].

Ligand-based and structure-based virtual screening

approaches can also be combined, as recently for example

demonstrated in H3 histamine receptor 3D-QSAR studies.

Ligand-based and protein-based molecules fingerprint

models (FLAP) from molecular interactions fields were

trained to discriminate known histamine H3 receptor

ligands from true inactive fragment-like compounds [42],

and were successfully applied to identify new fragment-

like H3R ligands from a chemical library of fragment-like

compounds (Fig. 3b) [54]. The growing amount of GPCR

crystal structures improves our understanding of ligand

binding and together with advances in computational

chemistry can lead to efficient identification of novel

GPCR ligands.

From Ligand Binding Mode to Receptor Signaling

The structural advances have also improved our under-

standing of the activation mechanism of GPCRs [55]. This

has lead to the replacement of the classical two-state model

with a model in which multiple transition states are pos-

sible [56, 57]. The crystal structure of a Gs-protein coupled

to the b2-adrenoceptor showed a large outward movement

of the intracellular half of TM 6 and an extension and small

outward movement of TM 5 [58]. Moreover, this crystal

structure uncovered a major movement of the a–helical

domain of Gas relative to its Ras-domain [58]. Crystal

structures of (pre-)activated b-arrestin highlighted the

movement of the finger, middle and lariat loop and a rel-

ative rotation of the individual lobes upon activation [59,

60]. Moreover, the structure of b-arrestin in combination

with the phosphorylated C-tail of the V2 receptor (V2R)

revealed a hydrogen-bonding network between the phos-

phorylated residues of C-tail of V2R and b-arrestin [60].

Recently also low-resolution models of b-arrestin bound to

a chimeric GPCR have been published, which were con-

structed based on single-particle negative-stain electron

microscopy density maps [61]. These models support a

biphasic mechanism [62] in which b-arrestin is first

recruited by the GPCR via its C-tail, after which the finger

loop of b-arrestin is inserted into the intracellular core of

the GPCR. Crystal structures of GPCR kinases (GRKs)

have been solved [63], but structures of GRK-GPCR

complexes have not yet been solved.

Despite the improvements, structure-based prediction of

the functional efficacy of GPCR ligands remains chal-

lenging [47, 64] and requires multiple GPCR structures

bound to ligands of different functional classes (partial/full

agonist, antagonist, inverse agonist) [65]. The 31

b-adrenoceptors (b1R/b2R) structures, covering multiple

receptor activation states in combination with 19 ligands

with different functional effects, show how subtle differ-

ences in the binding pocket can accommodate ligands with

different functional activities (Fig. 2h) [47, 64], and give

insights into the molecular mechanisms of G-protein

binding (Fig. 2) [58] and activation [56]. Structure-based

virtual screening studies against agonist-bound b-adreno-

ceptor crystal structures (Fig. 2h) [47, 64], agonist-cus-

tomized models [64], and different agonist-bound MD

simulation snapshots indeed enables the selective identifi-

cation of agonists (over antagonists and inverse agonists).

Comparison of the inactive antagonist/inverse agonist

bound and the (active/active-like) agonist bound crystal

structures of the b2-adrenoceptor (Fig. 2h) [19, 58, 66],

rhodopsin [67], adenosine A2A receptor [68], P2Y12

(Fig. 2e) [69], and muscarinic M2 receptor (Fig. 2b) [24]

shows that activation of the muscarinic M2 receptor and

P2Y12 are associated with larger structural changes in the

orthosteric ligand-binding site compared to the relatively

small changes observed for b2-adrenoceptor, rhodopsin,

and A2A receptor. These new structural insights into GPCR

activation suggest that a detailed understanding of the

GPCR specific ligand-binding modes [70–72] and confor-

mational changes [73–75] associated with (specific) sig-

naling pathways are required for the development of

selective structure-based virtual screening strategies for

agonists over antagonists (or vice versa) or ultimately even

for biased ligands.

In the absence of such crystal structural information

(which is still the case for most GPCRs), experimentally

guided (e.g. mutagenesis studies) protein modeling can be

used to: (1) predict ligand-stabilized conformational

changes in the ligand binding site (for example the con-

struction of the agonist-bound b2-adrenoceptor based on

the antagonist bound crystal structure [64]), and/or (2) the

molecular mechanisms of signal transduction between the

ligand binding site and the intracellular site (as was for

example shown for histamine H1 [76] and H4 [77] recep-

tors). Alternatively, ligand-based computational models

can be trained using experimental ligand functional effi-

cacy data, as was for example recently demonstrated in 3D-

QSAR modeling studies to predict b-arrestin2 recruitment

efficacies of a series of histamine H4 receptor ligands

(Fig. 3d) [78]. Interestingly, the only H4R ligand that was

not b-arrestin2 biased (but displayed an equal preference
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for the Gai and b-arrestin2 pathway) was an outlier of the

3D-QSAR model [78].

Alternative (Allosteric) Ligand Binding Sites

Allosteric modulators can alter orthosteric ligand affinity

and/or efficacy, potentially with higher receptor selectivity

due to lower sequence similarity between allosteric sites of

different receptor subtypes (compared to the conserved

orthosteric pocket) [39, 79, 80]. The TM binding sites of

several crystal structures of class A (chemokine receptors

CXCR4 [21] and CCR5 [22], Fig. 2d, f), class B (glucagon

[28] and CRF1 [29] receptors, Fig. 2j) and class C (mGlu1

[31] and mGlu5 [32] receptors) GPCRs represent allosteric

binding pockets that overlap with/are adjacent to (class A

[75, 81] and class B [30]) or are located far away from

(class C [31, 32]) the orthosteric binding sites of the cor-

responding receptors. Recent GPCR crystal structures fur-

thermore show that ligands cannot only target the TM

binding site (Fig. 2) [75, 81], but can also interact with

(allosteric) binding sites in the extracellular loop region

(e.g. class A NTS1 receptor [26], class F SMO receptor

[27], class A muscarinic M2 receptor [24], Fig. 2a, b), or

deep in the TM domain below the ‘‘classical’’ TM binding

site (class B CRF1 receptor [29], Fig. 2j). In the recent

muscarinic M2 receptor crystal structure an orthosteric

agonist (iperoxo) and a positive allosteric modulator

(LY2119620) are bound simultaneously (Fig. 2b), provid-

ing new insights into the molecular mechanism of allosteric

modulation and activation of GPCRs [24]. Most virtual

screening and structure-based ligand design studies have

focused on the TM binding sites [82, 83], but these alter-

native ligand binding sites identified in GPCR crystal

structures, as well as the intracellular G protein binding site

(Fig. 2) [58] and GPCR dimer interfaces [84, 85] provide

novel sites to target with small molecules to regulate GPCR

function [86, 87]. Moreover, the simultaneous consider-

ation of GPCR–ligand interactions in both orthosteric and

allosteric pockets in molecular dynamics simulations [88]

and structure-based virtual screening studies [87]. In silico

discovery of (fragment-like) ligands in multiple distinct

binding sites offer opportunities for the structure-based

design of bitopic ligands [89, 90] that target both orthos-

teric and allosteric binding sites (e.g. by fragment linking,

merging, or growing [91]).

From Receptor Structure (Dynamics) to Rational

Optimization of Ligand Binding (Kinetics)

GPCR crystal structures and homology models have been

successfully used to identify new ligands [44], and exten-

sively used to guide and/or explain SAR and site-directed

mutagenesis studies (e.g. Figs. 1, 3), and rational structure-

based ligand optimization [44, 83] has now become feasible

for more and more GPCRs (as for example illustrated for the

A2A [92–94]). Moreover, the new GPCR crystal structures

in combination with molecular dynamics simulations give

insights into receptor flexibility and (potential) ligand access

and exit channels [95–97]. The association and dissociation

pathways revealed by computer simulations in combination

with experimental studies (e.g. mutagenesis data and/or

biophysical measurements [93, 98, 99]) can ultimately be

used to relate ligand structure to kinetic properties, thereby

changing the focus from solely affinity-based optimizations

to optimization of kinetic properties (as for example illus-

trated for the histamine H4 receptor [100]). Furthermore

consideration of water molecules in GPCR binding sites that

can mediate, facilitate, or hamper receptor-ligand

(un)binding (dynamics) may be required to improve the

resolution of GPCR–ligand interaction predictions [101].

Computational and biophysical assessment of the thermo-

dynamics of water interaction networks allow the identifi-

cation of energetically favorable water molecules that may

be targeted and/or unfavorable (‘‘unhappy’’) water mole-

cules that can be displaced in structure-based ligand opti-

mization studies [93, 102] to improve GPCR–ligand binding

affinity and kinetics [93, 103].

Conclusion

As a working model, an educational model, a metaphor,

and a hypothesis the lock and key theory was and still is

very valuable. The recent breakthroughs in the elucidation

of GPCR structures illustrate how structural biology,

molecular pharmacology, medicinal chemistry, and com-

putational modeling methods can help to identify the dif-

ferent molecular keys that fit and trigger or block one or

more of the unique locks each receptor has. GPCR crystal

structures display a large diversity of GPCR–ligand bind-

ing modes and GPCR–ligand specific conformational

changes associated with different receptor activation states.

The investigation and ultimately the prediction of the

molecular determinants and dynamics of GPCR–ligand

binding (kinetics) and receptor activation therefore require

the combination of static crystal structural information with

experimental and computational studies. After the progress

from receptor theory, metaphor, to three-dimensional

structural view of GPCR–ligand interactions, integrated

GPCR research approaches can enable the steps towards

structure-based discovery and optimization of novel

ligands that bind specific (allosteric) binding sites with

desired effects on GPCR functional activity.
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1. Böhme J (1621) The signature of all things [Signatura Rerum].

Translated by John Ellistone. London, 1651

2. Brown AC, Fraser TR (1868) On the connection between

chemical constitution and physiological action; with special

reference to the physiological action of the salts of the ammo-

nium bases derived from strychnia, brucia, thebaia, codeia,

morphia, and nicotia. J Anat Physiol 2(2):224–242

3. Prull CR (2003) Part of a scientific master plan? Paul Ehrlich

and the origins of his receptor concept. Med Hist 47(3):332–356

4. Fischer E (1894) Einfluss der Configuration auf die Wirkung der

Enzyme. Ber Dtsch Chem Ges 27(3):2985–2993
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