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Abstract Lectins are proteins capable of reversible

binding to the carbohydrates in glycoconjugates that can

regulate many physiological and pathological events.

Galectin-1, a b-galactoside-binding lectin, is expressed in

the central nervous system (CNS) and exhibits neuropro-

tective functions. Additionally, lectins isolated from plants

have demonstrated beneficial action in the CNS. One

example is a lectin with mannose-glucose affinity purified

from Canavalia brasiliensis seeds, ConBr, which displays

neuroprotective and antidepressant activity. On the other

hand, the effects of the galactose-binding lectin isolated

from Vatairea macrocarpa seeds (VML) on the CNS are

largely unknown. The aim of this study was to verify if

VML is able to alter neural function by evaluating sig-

naling enzymes, glial and inflammatory proteins in adult

mice hippocampus, as well as behavioral parameters. VML

administered by intracerebroventricular (i.c.v) route

increased the immobility time in the forced swimming test

(FST) 60 min after its injection through a carbohydrate

recognition domain-dependent mechanism. Furthermore,

under the same conditions, VML caused an enhancement

of COX-2, GFAP and S100B levels in mouse hippocam-

pus. However, phosphorylation of Akt, GSK-3b and

mitogen-activated protein kinases named ERK1/2, JNK1/2/3

and p38MAPK, was not changed by VML. The results

reported here suggest that VML may trigger neuroinflam-

matory response in mouse hippocampus and exhibit a

depressive-like activity. Taken together, our findings indi-

cate a dual role for galactose binding lectins in the mod-

ulation of CNS function.
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Abbreviations

ANOVA Analysis of variance

BDNF Brain derived neurotrophic factor

CNS Central nervous system

ConA Concanavalin A

COX Cyclooxygenase

CRD Carbohydrate recognition domain

ELISA Enzyme-linked immunosorbent assay

ERK Extracellular signal-regulated kinases

FST Forced swimming test

Gal-1 Galectin-1

GFAP Glial fibrillary acid protein

GSK Glycogen synthase kinase

JNK c-jun amino-terminal kinase

MAPK Mitogen-activated protein kinase

TNF-a Tumor necrosis factor
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Introduction

Glycobiology studies have revealed the importance of

sugar chains present in the glycoproteins, glycolipids and

cell-surface proteoglycans, as biosignaling molecules in

intercellular communication and control of intracellular

signaling pathways. These glycans have become recog-

nized as participants in neural cell interactions in the

developing and adult central nervous system (CNS) [1, 2].

The information and signals of carbohydrates can be rec-

ognized by proteins called lectins. These are a structurally

heterogeneous class of proteins that have the ability to bind

reversibly to carbohydrates present in the glycoconjugates

on the cell surface or in cells [3, 4].

In the brain, endogenous lectins with affinity for man-

nose/glucose and galactose are reported to play impor-

tant physiological roles [5–10]. Galectin-1 (Gal-1) is a

b-galactoside-specific lectin that belongs to the galectin

family and is expressed in the CNS [11]. This protein

promotes enhancement of endogenous neural stem/pro-

genitor cell proliferation and may decrease astrogliosis,

improving neurological recovery of mice following ische-

mia [12–15]. Furthermore, gal-1 increases production of

brain derived neurotrophic factor, which was associated

with the prevention of neuronal death [7, 16]. Recent

studies have also shown an important role of gal-1 in the

formation of hippocampal memory, and it shows potent

activity against neuroinflammation [17, 18].

Lectins from plants have been used as important tools in

glycobiology [19, 20]. The lectin Concanavalin A (ConA)

obtained from Canavalia ensiformis is a lectin with affinity

for D-mannose/D-glucose. It has been used in the study of

neuroplasticity [21, 22] and the isolation of synaptic gly-

coproteins and glutamate receptors [20, 23], as well as

studies of neurotransmitter release [24] and modulation of

receptors and transporters of monoamines [25]. Our group

has demonstrated that a lectin with affinity for manose/

glucose purified from Canavalia brasiliensis seeds (ConBr)

reduced seizures and cell death induced by quinolinic acid

[26], produced an antidepressant-like effect in the forced

swimming test (FST) [27], and protected hippocampal

slices against glutamate neurotoxicity [28].

The lectin from seeds of Vatairea macrocarpa (VML) is

a protein with galactose/N-acetyl-galactosamine (Gal/Gal-

Nac)-binding activity that can strongly bind to N-acetyl-

galactosamine moieties. VML is constituted of four iden-

tical 26-kDa subunits, which, in solution, are folded into a

stable tetramer [29]. The peripheral biological effects of

VML include induction of leukocyte infiltration in rat paw

edema [30], neutrophil migration to peritoneal cavity and

macrophage activation via proinflammatory cytokine

release, such as the tumor necrosis factor (TNF-a) [31, 32].

Neuroinflammatory and glial responses are associated

with many neurological dysfunctions, including Alzhei-

mer’s disease and major depression [33–35]. Astrocyte

activation in response to brain injury usually involves

increase in glial fibrillary acid protein (GFAP) expression

and changes in S100B protein levels [36–38]. Moreover,

the activation and/or expression increment of cyclooxy-

genase-2 (COX-2), the rate-limiting enzyme in the for-

mation of prostaglandins, by proinflammatory cytokines

[39, 40] have also been implicated in the pathophysiology

of depression [41]. The signaling pathways involved in

COX-2 expression activation are diverse and include

MAPKs and Akt/GSK cascades [42, 43].

The purpose of the present work was to evaluate the action

of VML, a plant b-galactoside-binding lectin, on the neural

function and on neurochemical parameters. Therefore, our

study aimed to contribute with the comprehension of the

possible mechanisms triggered by b-galactoside-binding

lectin in the CNS function and on the neurochemical param-

eters of cell signaling as well as glial and inflamatory activity.

Our previous studies had demonstrated neuroprotective

effects of ConBr, a mannose/glucose plant lectin without

signals of neuroinflammatory response [26–28]. However,

ConBr also may display (in some models) proinflammatory

activity in the peripheral tissue [44]. Therefore, there is no a

necessary relationship of peripheral response with the CNS

activity regarding the induction of inflammation. At moment,

there are no studies in the literature which describe the effect

of plant lectins with b-galactoside affinity on the CNS. Using

the FST, it was found that VML administered by the intrac-

erebrovetricular (i.c.v) route induces an increase in immo-

bility time, an indicative of a depressive-like behavior.

Additionally, an enhancement of COX-2, GFAP and S100B

levels was observed in mouse hippocampus, suggesting the

neuroinflammatory activity of VML. Hence, our findings

provide basic knowledge regarding the central activity of

VML and suggest a possible dual role for galactose binding

lectins in the modulation of CNS function, considering the

neuroprotective effects already demonstrated for galectin-1.

Materials and Methods

Purification of Vatairea Macrocarpa Lectin

Vatairea macrocarpa lectin was purificated from the crude

extract of the seed by affinity chromatography on a Guar

gum gel. The purity of samples was confirmed by 12.5 %

electrophoresis gel following procedures described previ-

ously [45–47].

Vatairea macrocarpa lectin was dissolved in sterile

saline (NaCl 0.9 %). Moreover, aiming to verify the
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involvement of carbohydrate recognition domain (CRD) on

the behavioral alterations induced by VML, the lectin was

dissolved in a sterile saline solution containing galactose

0.1 M and maintained for 15 min at 25 �C [31]. The

denatured lectin was prepared by thermal denaturation,

boiling the solution content of VML for 10 min.

Animal Treatment

Male Swiss albino 6-week-old mice were used in this

study. Animals were maintained at 21–23 �C with free

access to water and food, under a 12:12 h light: dark cycle.

All experimental procedures were approved by the UFSC

Ethics Committee of Animal Experiments.

Vatairea macrocarpa lectin dissolved in sterile saline

was administered by intracerebroventricular (i.c.v) route in

a constant volume of 5 lL/site. The i.c.v injections were

performed under ether anesthesia according to the proce-

dure described previously by [48, 49]. Briefly, a 0.4 mm

external diameter hypodermic needle attached to a cannula,

which was linked to a 25 lL Hamilton syringe, was

inserted perpendicularly through the skull and no more

than 2 mm into the brain of the mice. A volume of 5 lL

was then administered into the left lateral ventricle. The

injection was given over 30 s, and the needle remained in

place for another 30 s in order to avoid the reflux of the

substances injected. The injection site was 1 mm to the left

from the mid-point on a line drawn through to the anterior

base of the ears. To ascertain that the drugs were admin-

istered exactly into the cerebral ventricle, the brains were

dissected and examined macroscopically after the test.

Results from mice presenting misplacement of the injection

site or any signs of cerebral haemorrhage were discarded

from statistical analysis.

The behavioral analyses were performed 60 min after

VML i.c.v injection. The animals were submitted to open-

field task, and immediately after this, were submitted to the

forced swimming test. In another set of experiments, ani-

mals received a VML injection and 60 min afterwards,

they were immediately euthanized, hippocampi were dis-

sected, and biochemical analyses were carried out.

Open-Field Task

To assess the effects of VML on locomotor activity, mice

were evaluated in the open-field paradigm, as previously

described [48–51]. Animals were individually placed in a

wooden box (40 9 60 9 50 cm) with the floor divided

into 12 rectangles. The numbers of squares crossed with all

paws (i.e., crossings) were counted in a 6-min session. The

apparatus was cleaned with a solution of 10 % ethanol

between tests in order to hide animal clues.

Forced Swimming Test

Mice were individually forced to swim in an open cylin-

drical container (diameter 10 cm; height 25 cm), contain-

ing 19 cm of water (depth) at 25 ± 1 �C. The total

duration of immobility was measured during a 6-min per-

iod as described previously [50–52]. Each mouse was

considered to be immobile when it ceased struggling and

remained floating motionless in the water, making only

those movements necessary to keep its head above water

[53].

Western Blotting

To quantify MAPKs, Akt, GSK-3b phosphorylation and

COX-2 immunocontent, Western blotting analysis was

performed, as previously described [54]. Animals were

euthanized by decapitation, brains were excised from the

skull, and hippocampi were dissected into cold saline

solution, placed in liquid nitrogen and then stored at

-80 �C until use. Briefly, samples were mechanically

homogenized in 400 lL of Tris 50 mM pH7.0, EDTA

1 mM, NaF 100 mM, PMSF 0.1 mM, Na3VO4 2 mM,

Triton X-100 1 %, glycerol 10 %, and Amresco Protease

Inhibitor Cocktail catalog number M222 (Working con-

centration: AEBSF 0.50 mM, Aprotinin 0.30 lM, Bestatin

10.00 lM, E-64 10.00 lM, Leupeptin 10.00 lM, EDTA

50.00 lM). Lysates were centrifuged (10,0009g for

10 min, at 4 �C) to eliminate cellular debris. The super-

natants were diluted 1/1 (v/v) in Tris 100 mM pH 6.8,

EDTA 4 mM and SDS 8 %, followed by boiling for 5 min.

Thereafter, sample dilution (40 % glycerol, 100 mM Tris,

bromophenol blue, pH 6.8) in the ratio 25:100 (v/v) and

b-mercaptoethanol (final concentration 8 %) were added to

each sample. Protein content was estimated by the method

described by [55]. The same amount of protein (70 lg per

lane) for each sample was electrophoresed in 10 % SDS-

PAGE minigels and transferred to nitrocellulose mem-

branes using a semi-dry blotting apparatus (1.2 mA/cm2;

1.5 h). To verify transfer efficiency process, membranes

were stained with Ponceau Stain.

The membranes were blocked with 5 % skim milk in

TBS (Tris 10 mM, NaCl 150 mM, pH 7.5). The total and

phosphorylated forms of MAPKs, Akt and GSK-3b as well

as the total content of COX-2 and b-actin, were detected

after overnight incubation with specific antibodies diluted

in TBS-T containing 2 % BSA. The primary antibodies

were dilluted 1:1,000 for anti-phospho-JNK1/2/3 (Sigma-

Aldrich), anti-total-Akt (Sigma-Aldrich), anti-phospho

GSK-3b (Cell Signaling), anti-total GSK-3b (Cell Signal-

ing) and anti-COX-2 (Cell Signaling); 1:2,000 for anti-

phospho-ERK1/2 (Sigma-Aldrich), anti-phospho-Akt (Cell

Signaling); 1:5,000 for anti-total-JNK1/2 (Sigma-Aldrich);
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1:10,000 for anti-phospho-p38MAPK (Millipore) and anti-

total-p38MAPK (Sigma-Aldrich); 1:40,000 for anti-total-

ERK1/2 (Sigma-Aldrich). Moreover, the membranes were

incubated for 1 h at room temperature with horse radish

peroxidase (HRP)-conjugated anti-rabbit or anti-mouse

antibody for detection of the proteins. The reactions were

developed by chemiluminescence substrate (LumiGLO).

All blocking and incubation steps were followed by

washing 39 (5 min) with TBS-T (Tris 10 mM, NaCl

150 mM, Tween-20 0.1 %, pH 7.5). All membranes were

incubated with mouse anti-b-actin (1:2,000) antibody to

verify that equal amounts of proteins were loaded on the

gel. The phosphorylation levels of MAPKs, Akt and GSK-

3b were determined as a ratio of optical density (OD) of

phosphorylated band/OD of total band, and the expression

of COX-2 was determined as a ratio of OD of COX-2 band/

OD of b-actin band. The bands were quantified using the

Scion Image� software.

The antibody against ERK1/2 detected two bands: one

at approximately 44 kDa and the second at approximately

42 kDa, corresponding, respectively, to the two ERK

isoforms, ERK1 and ERK2. Anti-p38MAPK detected a

single band of approximately 38 kDa. Anti-JNK1/2/3

detected two bands, one at approximately 54 kDa and the

second at approximately 46 kDa, corresponding, respec-

tively, to the three JNK isoforms, JNK2/3 and JNK1.

Anti-Akt detected a single band of approximately 60 kDa.

The GSK-3b antibody detected a single band at 46 kDa,

and the COX-2 antibody detected a single band at

70 kDa. The anti-b-actin antibody detected a single band

of approximately 45 kDa.

Quantification of S100B and GFAP

S100B content in the hippocampus was measured by

ELISA [56]. Fifty lL of sample plus 50 lL of Tris buffer

were incubated for 2 h on a microtiter plate previously

coated with monoclonal anti-S100B (SH-B1). Polyclonal

anti-S100B was incubated for 30 min, and then peroxidase-

conjugated anti-rabbit antibody was added for a further

30 min. A colorimetric reaction with o-phenylenediamine

was measured at 492 nm. The standard S100B curve ran-

ged from 0.019 to 10 ng/mL, and the results were

expressed as a percentage of control group. ELISA for

GFAP was carried out by coating the microtiter plate with

100 lL of diluted samples containing 30 lg of protein for

24 h at 4 �C. Incubation with a rabbit polyclonal anti-

GFAP for 2 h was followed by incubation with a secondary

antibody conjugated with peroxidase for 1 h at room

temperature; the standard GFAP curve ranged from 0.1 to

10 ng/mL, and the results were expressed as a percentage

of control group [56, 57].

Statistical Analysis

Comparisons between experimental and control groups were

performed by one-way ANOVA followed by Duncan’s Test.

A value of p \ 0.05 was considered to be significant.

Results

Depressive-Like Effect of VML in the FST

The results shown in Fig. 1a demonstrate that VML admin-

istered 60 min before FST increased the immobility time in

the FST, as revealed by one-way ANOVA [F(3, 24) = 3.94,

p \ 0.05], indicating a depressive-like effect elicited by the

lectin. Figure 1b shows that VML did not cause significant

changes in ambulation in the open-field task, as revealed by

one-way ANOVA [F(3, 24) = 0.88, p = 0.47].

Fig. 1 Effect of VML on immobility time in the FST and number of

crossings in the open-field task. Panel a shows the immobility time,

and Panel b shows the number of crossings 60 min after VML i.c.v

injection. Values are mean ± SEM. (n = 5–8). *p \ 0.05, when

compared with the control group (Duncan’s Test)
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Effect of VML Preincubated with Galactose

or Denatured Lectin on the Depressive-like Behavior

Induced by VML

Figure 2a shows that the incubation of VML preincubated

with galactose (0.1 M), a well-known monosaccharide

blocker of the lectin CRD, abolished the VML effect in the

FST evaluated at 60 min after VML injection [F(4,

31) = 3.27, p \ 0.05]. This result indicates that the effect

of VML in FST seems to be mediated by its carbohydrate-

binding domain. Furthermore, denatured lectin had no

effect on immobility time in the FST. Finally, neither

blocked nor denatured lectin produced changes in mouse

ambulation in the open-field task [F(4, 31) = 1.59,

p = 0.20], as shown in Fig. 2b.

Proinflammatory Effect Induced by VML

To verify the influence of VML in inflammatory response

in mouse hippocampus, the immunocontent of COX-2

were evaluated by Western blotting. Figure 3 shows that

VML injection at doses of 1.5 and 3.0 lg/site (i.c.v) was

able to enhance COX-2 levels in the mouse hippocampus

60 min after its administration [F(3, 17) = 3.58, p \ 0.05].

Evaluation of GFAP and S100B Expression

Glial activation is associated with many neurodegenerative

and neurotoxic effects. Figure 4a, b show, respectively,

that 60 min after its administration, VML (3.0 lg/site)

induced a remarkable increment in the levels of GFAP

[F(3, 19) = 4.22, p \ 0.05] and S100B [F(3, 20) = 3.11,

p \ 0.05) in the mouse hippocampus, as evaluated by

ELISA.

Cell Signaling Proteins Analysis

To verify the modulation of MAPKs in response to VML

administration, the phosphorylation levels of p38MAPK,

JNK1/2/3, and ERK1/2 were assessed by Western blotting

60 min after i.c.v administration of VML. The results

Fig. 2 Effect of of blocked and denatured VML on immobility time

in the FST and number of crossings in the open-field task. Panel

a shows the immobility time, and Panel b shows the number of

crossings 60 min after VML i.c.v injection. Values are mean ± SEM.

(n = 5–8). **p \ 0.01, when compared with all other groups

(Duncan’s Test). NAT: VML in native structure; VML Gal 0.1:

VML blocked with 0.1 M galactose; VML den: Denatured VML;

GAL 0.1: Galactose 0.1 M in sterile saline

Fig. 3 Effect of VML in COX-2 immunocontent in mouse hippo-

campus 60 min after VML i.c.v injection. Assay of COX-2 immu-

nocontent was carried out by Western blotting. The level of COX-2

protein was determined by computer-assisted densitometry as a ratio

of the OD of the phosphorylated band over the OD of the b-actin

band, and the data are expressed as a percentage of the control. The

values are presented as mean ± SEM (n = 5–6). *p \ 0.05, when

compared with control group (Duncan’s Test)
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depicted in Fig. 5a–c show that VML did not alter the

phosphorylation of p38MAPK [F(3, 20) = 0.082, p = 0.97],

JNK 46 kDa [F(3, 18) = 0.20, p = 0.90], JNK 54 kDa

[F(3, 28) = 0.97, p = 0.97], ERK1 [F(3, 16) = 1.76,

p = 0.20], or ERK2 [F(3, 16) = 1.29, p = 0.31]. More-

over, phosphorylation of Akt [F(3, 12) = 1.23, p = 0.33]

and GSK-3b [F(3,16) = 1.16, p = 0.35] was not altered by

VML (Fig. 5 panels d, e).

Discussion

Lectins are the foremost molecules studied in glycobiol-

ogy, and plant lectins can be an important tool to study the

role of carbohydrate/protein interaction in the modulation

of cell function. In the context of the CNS, little informa-

tion is available concerning the possible effects of lectins

on neural activity. Therefore, in the present study, we

aimed to contribute to the present body of knowledge by

studying the possible actions of VML, a galactose-binding

lectin, on neural function. Our results show that central

administration of VML produced an increase in the

immobility time in the FST, which is indicative of

depressive-like behavior. The FST is a behavioral despair

model classically used to study compounds with antide-

pressant properties, and its value is based on the observa-

tion that immobility time is reduced by many different

classes of antidepressant compounds [53]. However, the

utility of the FST can go beyond the verification of anti-

depressant activity of certain compounds. The increase in

the immobility time in the FST has been associated with

depressive-like behavior [49, 58–60]. From this perspec-

tive, it was demonstrated that i.c.v administration of TNF-a
increased the immobility time in the FST when adminis-

tered 60 min before the test [49], suggesting a depressive-

like effect of this cytokine, very similar to the effect we

observed with VML administration in the present study.

Vatairea macrocarpa lectin is a very stable protein that

binds to galactose/N-acetylgalactosamine in a large range

of pH values, and it can bind strongly to multiantennary

glycans of the N-acetyllactosamine type [29]. The effect of

VML in the FST appears to be dependent from its native

tridimensional structure and from the carbohydrate-binding

domain of the lectin, since VML action was abrogated,

respectively, by denaturation or blockage of its CRD by

galactose. Therefore, VML interaction with glycans is a

key step in anchoring the lectin on its target and promoting

its effects. It is noteworthy that the cerebral endogenous

lectin gal-1 displays its neuroprotective response in a

manner that is dependent on its CRD interaction with b-

galactosides [14]. Thus, VML induces a depressive-like

behavior in mice, suggesting a possible deleterious activity

on neural function.

Several studies have reported that VML produces

peripheral proinflammatory responses in rodents, with

induction of neutrophil migration to peritoneal cavity and

activation of macrophages [30–32]. The peripheral proin-

flammatory activity of VML appears to be associated with

the release of certain cytokines, mostly TNF-a, although it

was apparently independent on COX [31, 32]. COX is a rate-

limiting enzyme in the metabolism of arachidonic acid to

prostaglandins that exists in two distinct isoforms, COX-1

and COX-2. COX-1 is constitutively expressed and is related

to physiological functions, whereas COX-2 is inducible and

plays a more important role in inflammation [39, 40]. The

present study indicates that VML induced an increase COX-

2 levels in the mouse hippocampus (Fig. 3). Increased COX-

2 expression and activity is associated with depressive dis-

orders in animal models [61–65], and it has been reported

that COX-2 inhibitors may be useful in the treatment of

depression [41, 65]. Thus, early inflammatory responses

induced by VML, including COX-2 activation, might be

Fig. 4 Effect of VML in GFAP and S100B immunocontent in mouse

hippocampus 60 min after VML i.c.v injection. Assay of GFAP and

S100B immunocontent was carried out by ELISA, and the data are

expressed as a percentage of the control. The values are presented as

mean ± SEM (n = 5–6). *p \ 0.05, when compared with control

group (Duncan’s Test)
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involved in the observed behavioral alterations. However,

this possibility needs to be addressed in future studies.

The proinflammatory action of VML, both in peripheral

tissues and on CNS, is an important finding because some

lectins may exert different effects according to the

administration route. ConBr, for example, was apparently

not able to induce neuroinflammatory response and pro-

duced a neuroprotective activity in the hippocampus when

administered via i.c.v [26]. Moreover, ConBr can induce

pro-inflammatory response when administered intraperito-

neally [44]. Our study shows that VML stimulates the

expression of COX-2 in the hippocampus, an action that

differs from the effect of VML observed in response to

intraperitoneal administration, which occurs independent

on COX-2 activity [31, 32]. Furthermore, VML adminis-

tered intraperitoneally at a dose that produces

Fig. 5 Western blot analysis of phosphorylated ERK 1/2 (a), JNK

1/2/3 (b), p38MAPK (c), Akt (d) and GSK-3b (e) in the mouse

hippocampus 60 min after VML i.c.v administration. The phosphor-

ylation level of each protein was determined by computer-assisted

densitometry as a ratio of the OD of the phosphorylated band over

the OD of the total band, and the data are expressed as a percentage

of the control. The values are presented as mean ± SEM (n = 5–6)

Neurochem Res (2013) 38:2375–2384 2381
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proinflammatory activity [31] did not alter the immobility

time in the FST, the number of crossings in the open-field

task, and the immunocontent of COX-2 in mice hippo-

campus 60 min after its administration (data not shown).

Thus, the mechanisms involved in the inflammatory

response promoted by VML can be different for the brain

tissue compared with its effects on peripheral tissues.

Our study further indicates that VML (3.0 lg/site)

induces a significant increase in GFAP content in mouse

hippocampus. It is well documented that astrocyte activa-

tion with further astrogliosis causes cell hypertrophy and

increased GFAP expression that may play a key role in

neuroinflammation [36, 66]. Therefore, one possible

explanation for the effect of VML on GFAP expression

might be a neuroinflammatory response induced by the

lectin. However, this possibility deserves to be tested

further.

Vatairea macrocarpa lectin also induces an increase in

S100B levels in mouse hippocampus 60 min after i.c.v

administration. Similarly, Ye et al. [67] reported that the

depressive-like behavior induced by chronic mild stress, an

animal model of depression, is accompanied by increased

S100B expression in rat hippocampus. Additionally, a high

serum level of S100B has been reported in depressive

patients [68, 69].

The MAPK and Akt/GSK cascades are associated with

various cellular effects, such as cell death or cell survival

responses, neuroplasticity or inflammatory processes [70,

71]. MAPKs (ERK1/2, p38MAPK and JNKs) may also be

associated with the behavioral modification observed in the

FST [72]. Moreover, modulation of GSK-3b may be rela-

ted to the development of depressive disorders [73, 74] and

may modulate COX-2 expression in the hippocampus [43].

However, our study shows that the phosphorylation state of

all these enzymes was not altered 60 min after VML

injection.

In conclusion, the results reported here demonstrate, for

the first time, that the lectin from V. macrocarpa seeds,

(VML), was able to change the neural function and cause a

depressive-like effect as well as activate neuroinflammatory

markers. In spite of having carbohydrate affinity similar to

gal-1, these results suggest that VML may exert neurotoxic

effects in mouse hippocampus, rather than neuroprotective

action, as already reported for gal-1. Therefore, our findings

suggest a possible dual role of galactose binding lectins in the

modulation of CNS function.
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