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Abstract The mortality of patients with malignant gliomas

remains high despite the advancement in multi-modal ther-

apy including surgery, radio- and chemotherapy. Glioma stem

cells (GSCs), sharing some characteristics with normal neural

stem cells (NSCs), contribute to the cellular origin for primary

gliomas and the recurrence of malignant gliomas after current

conventional therapy. Accordingly, targeting GSCs proves to

be a promising avenue of therapeutic intervention. The specific

tropism of NSCs to GSCs provides a novel platform for tar-

geted delivery of therapeutic agents. Tropism and mobilization

of NSCs are enhanced by hypoxia through upregulating che-

motactic cytokines and activating several signaling pathways.

Moreover, hypoxia-inducible factors (HIFs) produced under

hypoxic microenvironment of the stem cell niche play critical

roles in the growth and stemness phenotypes regulation of both

NSCs and GSCs. However, the definite cellular and molecular

mechanisms of HIFs involvement in the process remain

obscure. In this review, we focus on the pivotal roles of HIFs in

migration of NSCs to GSCs and potential roles of HIFs in

dictating the fates of migrated NSCs and targeted GSCs.
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Introduction

Malignant gliomas are the most common subtype of primary

brain tumors, and glioblastoma multiforme (GBM) is uni-

formly fatal with a mean survival of 14 months after diagnosis

despite aggressive surgery, radiation, and chemotherapies [1].

The discovery of a highly tumorigenic subpopulation of stem-

like cells, termed glioma stem cells (GSCs), lents support to a

new paradigm in cancer biology. GSCs are highly infiltrative

and possess stem-like characteristics similar with normal

neural stem cells (NSCs), including the expression of neural

stem cell markers, the capacity for self-renewal and long-term

proliferation, the formation of neurospheres and the ability to

differentiate into multiple nervous system lineages [2–4].

However, GSCs exhibit significant distinctions from normal

stem cells in chromosomal abnormalities, tumor formation

and increased radio-/chemoresistance. GSCs contribute to the

cellular origin for primary gliomas and the recurrence of

malignant gliomas after current multi-modality therapies

combining surgery, chemotherapy and radiotherapy, which

suggests that targeting GSCs might offer a new avenue of

therapeutic intervention [5–7].

Hypoxia is the essential characteristics of the solid

tumors. Cellular responses to hypoxia are commonly reg-

ulated by the hypoxia-inducible factors (HIFs). Hypoxia

has been identified to a critical aspect of the microenvi-

ronment in GSCs and generally signifies unfavorable

clinical outcome [8–14]. The fraction of brain tumor stem
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cells is increased under hypoxia in vitro [13, 15]. More-

over, hypoxia has been recognized as a major factor in

resistance to radiation and chemotherapies because

hypoxic cells prevent the radiation-induced DNA damage

[16–19] and express multidrug resistance genes [20–23].

Consequently, hypoxia potentially provides therapeutic

targets to sensitize glioma stem cells to cytotoxic therapies

to improve glioma patient treatments [24–27].

Recent researches indicate that NSCs can specifically

target malignant gliomas, which provides a novel platform

for targeted delivery of therapeutic agents to gliomas with

significant antitumor effects [28–32]. Chemotactic cyto-

kines induced by hypoxia-inducible factors (HIFs) are

responsible for directed migration of neural stem cells and

other stem cells to hypoxic areas [33–37]. Hypoxia induced

SDF-1/CXCR4, VEGF/VEGFR signaling pathways and

Matrix metalloproteinases (MMPs) have been identified to

mediate increased NSC tropism [38, 39]. The expression of

such chemotactic cytokines are more upregulated in GSCs

than their differentiated counterparts [7]. In this review, we

focus on the pivotal roles of hypoxia-inducible factors

(HIFs) in migration of NSCs to GSCs and the potential

roles of HIFs in dictating the fates of migrated NSCs and

targeted GSCs.

Hypoxia-Inducible Factors (HIFs)

Hypoxia occurs in tumors due to rapid cell proliferation

and aberrant blood vessel formation. Cellular responses to

hypoxia are commonly regulated by the hypoxia-inducible

factor (HIF) family of transcriptional factors [40, 41]. HIFs

consist of an alpha (HIF-a) and a beta (HIF-b) subunit.

Under conditions of abundant oxygen ([8–10 %), HIF-a
proteins are translated but rapidly degraded. As oxygen

levels decrease below 8–10 %, HIF-a proteins become

increasingly stabilized. Once stabilized, HIF-a proteins

bind to constitutively expressed HIF-b subunits in the

nucleus, thus binding to DNA and activating transcription

of hundreds of downstream genes that modulate cell sur-

vival, motility, metabolism, and angiogenesis [40, 42]. The

consequent stabilization of HIF proteins in hypoxic cancer

cells is thought to promote tumor progression, largely by

inducing the localized expression of specific target genes

encoding vascular endothelial growth factor (VEGF) and

proteins regulating cell motility and metastasis (CXCR4,

E-cadherin) [43–47]. HIF-1a is universally expressed while

HIF-2a shows a more restricted expression pattern. HIF-1a
and HIF-2a share some target genes, including VEGF,

whereas genes encoding glycolytic enzymes (PGK1,

ALDA) are unique HIF-1a targets and those encoding

TGF-a and cyclin D1 appear to be unique HIF-2a targets,

at least in certain cell types [48].

NSC Tropism to Glioma Cells is Enhanced by HIFs

Transplantation of neural stem cells (NSCs) for therapeutic

purposes was initially applied in Parkinson’s disease

[49, 50]. Since then, a number of in vitro and in vivo studies

have proved the promising application of NSC transplan-

tation in the treatments of human CNS diseases, particularly

for Parkinson’s and Huntington’s disease, spinal cord injury,

stroke and multiple sclerosis [51–56]. Until 2000, several

researches demonstrated that NSCs possessed the unique

migratory capacity and could efficiently cross the blood–

brain barrier to target brain tumors far from the original

transplanted site [57–59]. Subsequently, studies had pro-

posed that NSCs might possess some natural abilities to

suppress tumor growth and induce tumor cell apoptosis

[28, 29]. These attractive findings soon ignited the conjec-

tures of a novel therapeutic strategy to target these intrac-

table brain tumors. As a result, the NSC inherent tropism

towards brain tumors had led to the pursuit of applying NSC

as a promising therapeutic tool and/or vehicle for tracking

and suppression of malignant gliomas [32, 60–62].

Increasing evidences showed that stem cell migration

was largely dependent on integrin binding to the extracel-

lular matrix (ECM), various chemotactic cytokines and

several involved signaling pathways. During this progress

of migration, hypoxia has been identified to play a critical

role in promoting tropism and mobilization of multiple

stem cells, including NSCs (Fig. 1).

Several studies have found that hypoxic preconditioning

increased stem cell mobilization. Exposure of mesenchy-

mal stem cells to 1–3 % oxygen increased expression of

the CXC chemokine receptor-4 (CXCR4) and stem cell

migration rates [34, 35, 63–65]. Increased expression of

CXCR4 after exposure of NSCs to hypoxia was also

identified [38]. Ceradini et al. [66] and Chang et al. [67]

found that CXCR4 positive stem/progenitor cells showed

enhanced tropism to ischemic areas or tumor lesions, where

stromal cell-derived factor (SDF-1) was induced by HIF-1

and overexpressed. Increasing data demonstrated that SDF-

1/CXCR4 signaling induced by HIFs could be crucial for

homing and migration of multiple stem cell types.

Chemokines induced by hypoxia, such as VEGF, EGF

and several other factors, have also been identified to

enhance NSC tropism. Zhao et al. [38] demonstrated that

knockdown of HIF-1a in glioma cells blocked the hypoxia-

induced migration of NSCs, which was due to decreased

expression of SDF-1, VEGF and urokinase-type plasmin-

ogen activator (uPA) in glioma cells. Schmidt et al. [68]

showed that tumor-upregulated VEGF was able to induce a

long-range attraction of transplanted human NSCs toward

brain tumors from distant sites. Data from our group

showed that GSCs, compared to their differentiated cells,

secreted much greater amounts of VEGF and bFGF [7].
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These findings strongly suggest that GSCs potentially

possess enhanced chemotaxis for NSC tropism compared

with the differentiated cells, which had been further iden-

tified in our recent study (data unpublished).

The HIFs mediated NSCs tropism may involve activa-

tion of MMPs, VEGF, and some other molecular pathways.

Activation of MMPs induced by hypoxia around injured

tissues and tumors are identified to enhance NSC mobili-

zation. Ingraham et al. [39] demonstrated that in 1 % O2,

levels of HIF-1a were increased and adherence of NSCs to

basement membrane-coated plates was reduced. Notably, a

fivefold increase in MMP-9 mRNA was confirmed and

specific inhibition of MMP-9 activity prevented the

increase in proliferation and migration of NSCs. The

increased MMP-9 expression and NSC migration were

induced via activated Wnt/b-catenin signaling pathway. In

line with this finding, several other studies showed that low

O2 affected cell proliferation and activated the canonical

Wnt signaling pathway, the downstream effectors of which

had a wide variety of transcriptional gene targets, including

MMP-9 and VEGF [69–71]. Existent data suggested that

upregulated expression of chemokines and activation of

MMPs by injured tissues and tumors act as signals for

attraction of NSCs in hypoxic circumstance [33, 38, 72].

HIFs played an essential and pivotal role in hypoxia-

induced NSC mobilization, possibly via the involvement of

their downstream genes including MMPs and VEGF. These

provide a novel insight into the mechanisms responsible for

NSC mobilization and may be of great help in the devel-

opment of new clinical mobilizing agents.

Taken together, large numbers of studies have been

exploring the tropism of NSCs especially during the pro-

gress of neural injuries and brain tumors. HIFs have been

identified to play important roles in initiating and pro-

moting the process. Nonetheless, the definite mechanisms

remain to be elucidated.

Influences of HIFs on NSC Fates

Neural stem cells (NSCs) have been recognized as the pro-

genitor cells of the nervous system possessing a self-renewing

capacity to differentiate into neurons, astrocytes and oligo-

dendrocytes in the mature nervous system. In the mammalian

central nervous system, oxygen plays a critical role in regu-

lating the growth and differentiation state of neural stem/

progenitor cells [73–79] (Fig. 2). Commitment of NSCs

toward specific phenotypes is strongly pre-conditioned by

oxygen tension. Physiological hypoxia (2.0–5.0 %) enhances

both NSC self-renewal and neurogenic abilities through HIF-

1a [80–82], while atmospheric culture conditions (20 % O2)

promotes NSC differentiation to astrocyte [82, 83]. In the

brain, oxygen sensing is found to be integrated into normal

signaling pathways controlling NSC proliferation and cell fate

choice in their niche. Gustafsson et al. [84] showed that

hypoxia blocked neuronal and myogenic differentiation in a

Notch-dependent manner. The notch signaling pathway is a

highly conserved cell signaling system present in most mul-

ticellular organisms. Hypoxia activated Notch-responsive

promoters and increased expression of Notch direct down-

stream genes. The Notch intracellular domain (NICD) inter-

acts with HIF-1a, thereby blocking terminal differentiation of

neural precursors. Under increased oxygen concentrations,

such interaction is abolished, allowing neural precursors to

differentiate. This interaction between HIF-1a and Notch was

also found in medulloblastoma stem cells in another study by

Pistollato et al., in which they found that hypoxia, by main-

taining Notch1 in its active form, maitained medulloblastoma

stem cell viability and expansion [85]. Moreover, Mukherjee

et al. [86] demonstrated that HIF-1a, being independent of

HIF-b, interacted with NICD to promote development and

survival of drosophila blood. These data indicate that HIFs

may have a crucial influence on the development and survival

of NSCs, and canonical notch pathway is largely involved in

the process.

Survival and fate of transplanted NSCs are crucial in

their applications for various therapeutic purposes, espe-

cially when NSCs are utilized as gene vectors migrating or

grafted to the hypoxic microenvironment. Takeuchi et al.

[87] showed the grafted NSCs, around the injured spinal

cord, differentiated into neuronal and glial subpopulations

at 21 days after transplantation. In another contusion injury

model by Fujiwara et al. [88], transplanted NSCs were

Fig. 1 Chemokines from GSC and activities of MMPs induced by

HIFs enhance NSC tropism. Various chemotactic cytokines are

overexpressed in hypoxia GSCs. The SDF-1/CXCR4, VEGF/VEGFR,

and EGF/EGFR signaling pathways enhance NSC tropism. Whilst,

MMPs upregulated by hypoxia promote NSC mobilization
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shown to differentiate into neurons, astrocytes and oligo-

dendrocytes, and survive at least for 56 days. However, the

definite fate of transplanted NSCs in tumor microenviron-

ment is still far from being clarified when applied in tar-

geting the glioma cells for therapeutic purposes.

Regulation of GSC Phenotypes by HIFs

The hypothesis of GSCs implies that GSCs, which possess

similar ‘‘stemness’’ as normal NSC but exhibit aberrant

behavior, potentially derive from mutational NSCs or dedif-

ferentiated mature cells [89–92]. Similar molecular mecha-

nism and signaling pathways, being involved in hypoxic

microenvironment, could be operative in both NSCs and

GSCs. Notably, recent reports have identified that hypoxia is a

critical aspect of the microenvironment in GSCs and generally

signifies unfavorable clinical outcome [8, 10, 12, 13]. Hypoxia

has been found to play a key role in the regulation of the GSC

phenotypes through HIFs and subsequent induction of specific

GSC signature genes. There are functional differences

between HIF-1a and HIF-2a in the response of glioma cells or/

and GSCs to hypoxia. HIF-1a is widely expressed in various

tumors. However, the effect of HIF-1a deficiency on tumor

growth has not been fully identified. Mendez et al. [27]

reported that knock down of HIF-1a in human and murine

glioma cells reduced their migration in vitro and their invasion

in vivo. In addition, knock down of HIF-1a reduces the

capability of glioma cells to form tumor spheres, which sug-

gested that HIF-1a might play a role in the survival and self-

renewal potential of GSCs. However, their data did not show

any significant differences in overall survival or grafted tumor

volume between animals transplanted with cells knocked

down for HIF-1a expression and control cells. In another

study, reduction of HIF-1a by siRNA in glioma cells grown in

mouse flanks led to decreased glioma growth, which involved

the reduction of VEGF and GLUT-1, two known downstream

targets of HIF-1a [93]. Additionally, hypoxia was reported to

promote the self-renewal capacity of CD133-positive human

GSCs, which involved the activation of HIF-1a and inhibition

of GSC differentiation [12]. There were also evidences

showing that hypoxia led to an enrichment of stem cell

markers, e.g., CD133 in glioma cells [11, 13, 14, 17].

Similarly, it was found that the forced expression of

HIF-2a induced GSC marker expression and augmented

the tumorigenic potential of the non-stem population,

which implied a specific role of HIF-2a in promoting gli-

oma tumorigenesis [9]. Knockdown of HIF-2a in neuro-

blastoma and GSCs led to reduced levels of VEGF and

poorly vascularized, highly necrotic tumors [94]. HIF-2a

Fig. 2 The pivotal roles of

HIFs in the proliferation,

migration and differentiation of

NSCs. a Changes of oxygen

tension from normal

atmospheric levels to severe

hypoxia may regulate the

proliferation, migration and

differentiation of NSCs. b HIFs

and interactions with Notch,

ERK1/2, and PI3K/KT

signaling pathways. NICD
Notch intracellular domain, CSL
DNA binding protein, also

referred to as CBF-1, RTK
receptor tyrosine kinase, ERK1/
2 extracellular signal-regulated

kinase, HRE hypoxia-response

element, PI3K
phosphatidylinositol-3-kinase,

mTOR mammalian target of

rapamycin
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and multiple HIF-regulated genes were preferentially

expressed in GSCs in comparison to non-stem tumor cells

and normal neural progenitors [10]. Moreover, the stem

cell regulator Oct4 as a specific HIF-2a target gene directly

linked HIF2a to stem cell biology [95]. Similar result was

reported by Heddleston et al. [9] that HIF-2a increased the

percentage of CD133-positive cells in a sorted population

of CD133-negative cells maintained even in serum con-

taining medium and this HIF-2a expression also resulted in

concomitant increases in the mRNA levels of the stem-cell

associated genes c-Myc, Nanog and Oct.

Notably and interestingly, there are different opinions

about the roles of HIF-1a and HIF-2a [96, 97]. Gordan

et al. [98] demonstrated that HIF-2a enhanced the tran-

scriptional activity of another stem cell related gene,

c-Myc, whereas HIF-1a destabilized c-Myc complexes.

Seidel et al. [14] showed that HIF-2a, but not HIF-1a
knockdown, abrogated the hypoxia-dependent induction of

the GSC phenotypes. Furthermore, HIF-2a induced a dra-

matic upregulation of a panel of genes for side population

signature, while HIF-1a expression had no effect on the

levels of tumor stem cell related genes.

In addition, hypoxia enhanced the expression of ATP-

binding cassette transporters such as multidrug resistance-1

or ATP-binding cassette G2 (ABCG2) that conferred

multidrug resistance on a variety of cancer cells including

gliomas [8, 21, 99]. Together, these data linked HIFs to

glioma invasion, angiogenesis and GSC biology, which

underscore the promising approach of targeting HIFs in

GSCs for glioma therapies.

Future Directions

Hypoxia-inducible factors (HIFs) may play an important

role in the migration of NSCs to GSCs. Meanwhile, HIFs

are highly involved in the growth, migration, self-renewal

and differentiation process of both NSCs and GSCs. Since

hypoxia represents a typical component of glioma micro-

environment, it would be interesting to know how the

induced HIFs in gliomas affect the migration of adjacent

NSCs, and how the HIFs subunits differentially regulate

the ‘‘stemness’’ phenotypes of both the migrated NSCs and

the targeted GSCs, especially given the sophisticated signal

pathways existent in GSC niche. Taking into account that

GSCs might be derived from NSCs, it is illusive to predict

the final fate of the NSCs that have migrated to the hypoxic

tumor niche. Could the NSCs exert a repressive effect on

the glioma cells and/or GSCs, or exactly the opposite,

undergo aberrant changes and recruited into glioma prop-

agating cells? And what roles do the HIFs have in the two-

way regulation on the normal NSCs and aberrant GSCs in

the in vivo hypoxic niche? Further work is needed to

answer these questions.
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