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Abstract Our previous studies have shown that pro-

inflammatory cytokines tumor necrosis factor-alpha (TNF-a)

and interleukin-1beta (IL-1b) in red nucleus (RN) are

involved in the development of neuropathic pain and play

facilitated roles on the mechanical allodynia induced by

peripheral nerve injury. The current study was designed to

evaluate the expression and effect of IL-10, an anti-

inflammatory cytokine, in the RN of rats with spared nerve

injury (SNI). Immunohistochemical staining results dem-

onstrated when 3 weeks after SNI, the expression level of

IL-10 in the contralateral RN of SNI rats was apparently

higher than those of sham-operated and normal rats. To

further study the effect of IL-10 in the development of

neuropathic pain, different doses of IL-10 (1.0, 0.5 and

0.1 lg/ll) were microinjected respectively into the RN

contralateral to the nerve injury side of SNI rats. Results

demonstrated that higher doses of IL-10 (1.0 and 0.5 lg/ll)

significantly attenuated the mechanical allodynia of neu-

ropathic rats, while 0.1 lg/ll of IL-10 did not show any

analgesic effect. These results suggest that IL-10 of RN

participates in the development of neuropathic pain and

plays inhibitory roles on the mechanical allodynia induced

by SNI.
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Introduction

Accumulating evidence has shown that peripheral nerve

injury can stimulate the central nervous system (CNS) to

express both pro-inflammatory and anti-inflammatory

cytokines, which play crucial roles in the establishment and

maintenance of neuropathic pain [1–3]. Pro-inflammatory

cytokines, such as interleukin-1 beta (IL-1b), IL-6 and

tumor necrosis factor-alpha (TNF-a), usually induce or

facilitate neuropathic pain [1], while blockade of pro-

inflammatory cytokines and/or administration of anti-

inflammatory cytokines, such as IL-10, reduce neuropathic

pain in animal models [4, 5].

IL-10 is one of the most important regulators in the

immune system and secreted by a variety of immune cells

including activated type 2 T helper cells (TH2), B cells and

monocytes. Recent studies have shown that IL-10 is also

synthesized in the CNS and implicated in the development

of neuropathic pain [3, 6–8]. Peripheral nerve injury results

in the increased expression of IL-10 in both injured and

contralateral noninjured peripheral nerves and their DRG

[3, 6, 7]. Some analgesic drugs, such as betamethasone,

mirtazapine and adenosine 2A receptor agonist ATL313

can relieve the neuropathic pain through increasing the

expression of IL-10, and the analgesic effect can be abol-

ished by administration of neutralizing IL-10 antibodies

[9–11]. Moreover, systemic administration or intrathecal
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(i.t.) injection of IL-10 could dose-dependently reduce the

dynorphin-induced allodynia, quisqualic acid (QUIS)-

induced spontaneous pain-like behaviors, osteoma-induced

pain, Leishmania major-induced hyperalgesia and ultravi-

olet radiation-induced hyperalgesia [12–16]. In rodent

experiments, Mahoney, Watkins and co-workers have

demonstrated that intrathecal injection of PEGylated IL-10,

polymer-based IL-10, viral vectors or non-viral vectors

encoding IL-10 could prevent the development of pain or

reverse established pain induced by nerve constriction or

injection of pain-causing substances into the nerve sheath

[17–23]. All of these studies suggest that IL-10 is involved

in the development of pain and plays an analgesic effect.

The roles of IL-10 in the peripheral and spinal level of

neuropathic pain models seem to be well defined, but in the

supraspinal level they remain obscure. Previous studies

have demonstrated that TNF-a and IL-1b are up-regulated

in the contralateral red nucleus (RN) of spared nerve injury

(SNI) rats, and microinjection of their corresponding anti-

bodies could alleviate the mechanical allodynia induced by

SNI [24–26], suggesting that TNF-a and IL-b in RN par-

ticipate in the development of neuropathic pain and play

facilitated roles on the mechanical allodynia induced by

peripheral nerve injury. In this study, we detected the

expression of anti-inflammatory cytokine IL-10 in the RN

of SNI rats by immunohistochemistry and an increased

IL-10 immunoreactivity was observed in the contralateral

RN of SNI rats as compared with those of sham-operated

and normal rats. To further explore the effects of IL-10 in

RN, different doses of IL-10 were microinjected into the

contralateral RN of SNI rats and the results showed that

higher doses of IL-10 significantly attenuated the mechanical

allodynia of neuropathic rats.

Materials and Methods

Animals

Male Sprague-Dawly rats weighing 200–230 g were used

for the study, all of which were purchased from the

Experimental Animal Center of Shaanxi Province, China.

All animals were housed with ad libitum access to food and

water and maintained on a 12/12 light/dark cycle. All

experiments were approved by the Institutional Animal

Care Committee of Xi’an Jiaotong University in accor-

dance with the ethical guidelines of the International

Association for the Study of Pain [27].

Spared Nerve Injury

The neuropathic pain was induced by tightly ligating the

tibial and common peroneal nerve with leaving the sural

nerve intact as reported previously [28]. Briefly, after rats

were anesthetized with sodium pentobarbital (50 mg/kg,

intraperitoneally), the sciatic nerve and its three terminal

branches were exposed by directly incising through the

biceps femoris muscle of the right hind limb. The tibial and

common peroneal branches were tightly ligated by 5–0 silk

sutures and sectioned distal to the ligation, removing

2–4 mm of the distal nerve stump. Great care was taken to

avoid contacting or stretching the intact sural nerve.

Muscle and skin were closed in two layers. In sham-

operated group, rats were treated in the same way but the

nerve was neither ligated nor sectioned. After surgery, rats

were allowed to recover from anaesthesia in an observation

chamber with a warming light. In normal control group,

rats were free of any treatment. Rats of SNI group were

used for further experiments only when the withdrawal

threshold of right hind paw was less than 4.0 g in response

to von Frey filaments stimulation.

Immunohistochemistry

Three weeks after surgery, 24 rats including SNI group

(n = 8), sham-operated group (n = 8) and normal control

group (n = 8) were anesthetized with an intraperitoneal

injection of sodium pentobarbital (50 mg/kg). Each rat

was fixed by perfusion through the aortic arch with 250 ml

ice-cold heparinized normal saline, followed by 420 ml

Bouin’s fluid (300 ml saturate nitroxanthic acid solution,

100 ml 40 % formaldehyde and 20 ml glacial acetic acid).

The brain region containing red nucleus was harvested,

postfixed in Bouin’s fluid for 2 days and then dehydrated

by 30 % sucrose.

All brain tissues were embedded in OCT and sectioned

coronally into 20 lm thick sections using a LEICACM

1850 ultramicrotome. One slice from 100 lm was picked

and three slides were used for analyzing one animal. After

routine treatments of acetone and 3 % hydrogen peroxide,

slides were blocked with 5 % goat serum in PBS for 1 h

and then incubated overnight with rabbit anti-rat IL-10

polyclonal antibody (working dilution 1:100, Boster Bio-

Engineering Limited Co., Wuhan, China) at 4 �C. Horse-

radish peroxidase (HRP) labeled goat anti-rabbit IgG for

30 min and DAB was used for staining. As a control, the

primary antibody or secondary antibody was omitted and

isotypic antibody (normal rabbit IgG, Boster Bio-Engi-

neering Limited Co., Wuhan, China) was used to confirm

the immunospecificity of the IL-10 reaction.

Histological sections were viewed with Olympus DP70

microscope and the images were captured with Olympus

BX-51 camera. The area ratio of IL-10 positive cells (area

of positive signal/area of interesting) and the integrated

optical density (IOD) were analyzed using Image pro-plus

(IPP) and Motic Med (version 6.0) software. Each slide
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was analyzed with the same size of arbitrary areas

(600 lm 9 800 lm) and total 24 blinded slides (3 arbi-

trary slides/rat) for each experimental group were calcu-

lated. All data were analyzed by an assistant who was

unaware of the treatment groups.

Catheterization and Drug Administration

Two weeks after SNI, total 32 rats with SNI were anes-

thetized intraperitoneally with sodium pentobarbital

(50 mg/kg) for surgery. The rat skull was exposed and a

stainless steel guide cannula (0.8 mm in diameter) was

stereotaxically implanted at a position 2.0 mm dorsal to the

left RN, where an increased IL-10 immunoreactivity was

observed after SNI according to the results of immuno-

histochemistry, at the following coordinates: 5.2–6.7 mm

to bregma, 0.6–1.4 mm lateral, 4.4–5.4 mm below cortical

surface [29]. The guide cannula was fixed on the skull with

four microscrews and dental cement. A stainless steel plug

was inserted into the guide cannula and kept in place until

the intracerebral injection. After surgery, each rat was

injected intraperitoneally with penicillin 0.2 million units

per day for consecutive 4 days. During this period, rats

were housed individually in cage with free access to water

and food.

One week after catheterization, a 1.0 ll microsyringe

(0.4 mm in diameter) with its tip extending 2.0 mm beyond

the end of the guide cannula was inserted into RN through

the guide cannula after the plug was removed. Drugs dis-

solved in normal saline (0.5 ll) were then slowly infused

into RN within 60 s and the microsyringe was left in place

for an additional 30 s to minimize the drug solution flow-

ing back into the injector track. Drugs used in this study

included different doses of recombinant rat IL-10 (1.0, 0.5

and 0.1 lg/ll; PeproTech Inc., USA). The same volume of

0.9 % normal saline was injected in control rats. At the end

of experiments, pontamine sky blue was injected into RN

and the microinjection sites were histologically verified.

Behavioral Measures

One week after catheterization (i.e., 3 weeks after SNI), the

mechanical withdrawal threshold of SNI rats were mea-

sured blindly by an experimenter before and 10, 20, 30,

40, 50, 60, 70 min after drug administration by using the

up-down method [30]. The rat was placed in transparent

plastic box (280 9 250 9 210 mm) with a metal wire

mesh floor that allowed full access to the paws from

underneath. Ten von Frey filaments (Stoelting Company,

Wood Dale, IL, USA) ranged from 0.4 to 15.0 g were used

to measure the mechanical allodynia. Starting with filament

4.31 (0.2 g) which is one of the middle of the series of

filaments, von Frey filaments were applied from underneath

perpendicularly to the right hind paw with sufficient force

to cause slight bending and held for 6–8 s. The pattern of

positive and negative responses was converted into a 50 %

withdrawal threshold using the formula given by Dixon

[31]: 50 % withdrawal threshold = 10(X?kd)/104, where

X is the value of the final von Frey hair used (in log units),

k is the tabular value for the pattern of positive/negative

responses modified from Dixon [30], and d is the mean

difference between stimuli in log units (0.17). In the cases

where continuous positive or negative responses were

observed all the way out to the end of the stimulus spec-

trum, values of 0.25 or 15.0 g were assigned, respectively.

Data Analysis

Statistical analyses were performed by using SigmaStat

2.03 and all data were presented as mean ± standard

deviation. Linear regression was used to assess the corre-

lation between the effects and doses of IL-10. Differences

in the area ratio of IL-10 positive cells and IOD were tested

statistically by one-way analysis of variance (one-way

ANOVA). Differences in drug effect among groups were

tested statistically by two-way repeated measures of anal-

ysis of variance (two-way RM ANOVA) with a multiple

comparison for analysis of the differences in entire obser-

vation time or at each time point among different groups.

P \ 0.05 was considered to be statistically significant.

Results

General

Three weeks after SNI, the mechanical withdrawal thresh-

old of hind paw ipsilateral to the nerve injury (1.35 ±

0.64 g, n = 8) was significantly decreased (P \ 0.001) as

compared with those from the sham-operated group (12.21 ±

2.47 g, n = 8) and normal control group (11.95 ± 4.1 g,

n = 8), while no difference of withdrawal threshold was

observed in the contralateral hind paw. These results sug-

gest that the neuropathic pain model with monolateral

mechanical allodynia has been created successfully and is

consistent with previous report [32].

Increased Expression of IL-10 Protein in Red Nucleus

Three weeks after SNI, a stronger immunoreactivity of IL-

10 was observed in the contralateral red nucleus of SNI rats

(Fig. 1a, d, g) and a weaker immunoreactivity of IL-10 was

observed in the ipsilateral RN of SNI rats and sham-

operated rats (Fig. 1b, e, h). In normal rats, no obvious

immunoreactivity of IL-10 was found in the both sides of
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RN (Fig. 1c, f, i). The control experiments, in which the

primary antibody or secondary antibody was omitted and

normal rabbit IgG was used, did not find any positive

staining, suggesting that the immunoreactivity of IL-10 in

red nucleus was specific (Fig. 1j, k, l). The area ratio of IL-

10 positive cells and IOD values of sham and SNI groups

above those of control group were analyzed. In SNI group,

the area ratio of IL-10 positive cells and the IOD values in

the contralateral RN were 0.08 ± 0.02 and 10.98 ± 3.46,

respectively. While in the sham-operated group, the area

ratio of IL-10 positive cells and the IOD values in the

contralateral RN were 0.08 ± 0.02 and 2.65 ± 1.23,

respectively (Fig. 2). After statistic analysis, no significant

difference (P [ 0.05) was found in the area ratio of IL-10

positive cells between SNI and sham-operated groups

(Fig. 2a), but a significantly increased IOD level

(P \ 0.01) was observed in the contralateral RN of SNI

group (Fig. 2b). These results indicated that SNI rats and

sham-operated rats had the same amount of IL-10 positive

cells in their contralateral RN, while the protein expression
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Fig. 1 Immunohistochemical staining of IL-10 in the red nucleus

(RN) at 3 weeks following spared nerve injury (SNI). Three weeks

after SNI, a stronger immunoreactivity of IL-10 was observed in the

contralateral red nucleus of SNI rats (a, d and g) and a weaker

immunoreactivity of IL-10 was observed in the ipsilateral RN of SNI

rats and sham-operated rats (b, e and h). In normal rats, no obvious

immunoreactivity of IL-10 was found in the both sides of RN

(c, f and i). The control experiments, in which the primary antibody or

secondary antibody was omitted and normal rabbit IgG was used, did

not find any positive staining, suggesting that the immunoreactivity of

IL-10 in red nucleus was specific (j, k and l). L left, R right. Scale
bars a, b and c: 200 lm; d, e and f: 100 lm; g, h and i: 10 lm; j,
k and l: 50 lm
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of IL-10 in positive cells was up-regulated significantly in

the SNI rats as compared with that of sham-operated rats.

Effect of IL-10 on the Allodynia Induced by SNI

Three weeks after SNI, total 32 rats with mechanical

allodynia (the withdrawal thresholds before and after SNI

were 11.73 ± 2.59 g and 0.89 ± 0.10 g, respectively) was

divided into four groups randomly. After microinjection of

different doses of IL-10 (1.0, 0.5, 0.1 lg/ll) and normal

saline into the RN contralateral to the nerve injury paw, the

mechanical allodynia induced by SNI was depressed in a

dose-dependent manner (r = 0.999, P \ 0.001). The mean

withdrawal thresholds during the 60 min (10–70 min)

observation period were 2.31 ± 1.26 g (n = 8) for 1.0 lg/

ll of IL-10, 1.61 ± 0.58 g (n = 8) for 0.5 lg/ll of IL-10,

1.19 ± 0.30 g (n = 8) for 0.1 lg/ll of IL-10 and

1.06 ± 0.09 g (n = 8) for normal saline, respectively. As

shown in Fig. 3, the time course curves (i.e., normal saline

treated group and three different doses of IL-10 treated

groups) were significantly different among treatments

(F(3,126) = 5.046, P = 0.009), across times (F(6,126) =

47.864, P \ 0.001) and for their interaction (F(18,126) =

8.807, P \ 0.001). Further analyses indicated that 1.0 lg/ll

of IL-10 microinjected into RN significantly increased the

withdrawal threshold of SNI rats (t = 3.54, P = 0.012),

the peak analgesic effect occurred at 50 min and thereafter

gradually reduced to the baseline at 70 min. IL-10 at dose

of 0.5 lg/ll also increased the withdrawal threshold of SNI

rats and displayed obvious analgesic effect at 50 min

(t = 3.678, P = 0.004). However, 0.1 lg/ll of IL-10 did

not show any effect on the mechanical allodynia (P [
0.05) as compared with the normal saline treated group.

The detailed comparisons at each time point among groups

and the microinjection sites of IL-10 and normal saline in

RN region are shown in Fig. 3.

Discussion

Red nucleus is an important nucleus of extracorticospinal

tract, and comprises an important subcortical relay station

of a massive descending motor tract (rubrospinal tract).

Previous studies have suggested that RN is involved in

regulating muscle tension, motor learning, triggering con-

ditioned motor responses, postural corrections, modifica-

tion of jaw movements and the recovery of movement after

spinal injury [33–38]. Most neurons in the RN in the intact

and decerebrate cat exhibit phasic discharge preferentially

in the swing phase of locomotion, during which they

influence the activity of flexor muscles [34]. Unilateral

lesions of the RN in rats give rise to a characteristic

asymmetry in which abnormal braking and propulsive

forces are produced during locomotion [35]. Apart from its

well established roles in motor system, recent studies

suggest that RN is involved in pain processing and aversive

events. The studies have shown that stimulation of periph-

eral nerve or limbs could cause the changes of electrical

activities of neuron in RN and chemical or electrical stim-

ulation of RN increases the pain threshold and produces

analgesic effect assessed during nociceptive pain experi-

ments [39–41]. Furthermore, RN receives the fibers from the

sensorimotor cortex and it has been suggested that cortex

employs the rubrospinal tract to suppress the nociceptive

transmission from the spine.
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Fig. 2 Quantitative analysis of IL-10 immunoreactive intensity in the

contralateral red nucleus (RN) of spared nerve injury (SNI) and sham-

operated rats. The area ratio of IL-10 positive cells (a) in the RN did

not show any significant difference between SNI and sham-operated

groups (P [ 0.05), while the integrated optical density (IOD) level

(b) in the RN of SNI rats was significantly higher than that of sham-

operated rats (P \ 0.01), suggesting that SNI rats and sham-operated

rats have the same amount of IL-10 positive cells in their contralateral

RN, while the protein expression of IL-10 in positive cells was up-

regulated significantly in the SNI rats as compared with that of sham-

operated rats. ** P \ 0.01, compared with sham-operated group

(one-way ANOVA)
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Fig. 3 Time course curve graph showing the anti-allodynia effect of

different doses (1.0, 0.5 and 0.1 lg/ll) of IL-10 microinjected into the

contralateral red nucleus (RN) of spared nerve injury (SNI) rats.

During 60 min (10–70 min) observation period, 1.0 lg/ll of IL-10

microinjected into RN significantly increased the withdrawal thresh-

old (P = 0.012) of SNI rats. 0.5 lg/ll of IL-10 also increased the

withdrawal threshold of SNI rats and displayed obvious analgesic

effect at 50 min (P = 0.004). However, 0.1 lg/ll of IL-10 did not

show any effect on the mechanical allodynia (P [ 0.05) as compared

with normal saline treated group. * P \ 0.05, ** P \ 0.01 and

*** P \ 0.001, compared with normal saline group at those time

points (two-way RM ANOVA). a The locations of 1.0 lg/ll of IL-10

microinjection sites in RN region. b The locations of 0.5 lg/ll of

IL-10 microinjection sites in RN region. c The locations of 0.1 lg/ll

of IL-10 microinjection sites in RN region. d The locations of normal

saline microinjection sites in RN region. RN red nucleus, PAG
periaqueductal gray, Aq aqueduct, PaR pararubral nucleus, DpMe
deep mesencephalic nucleus
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Our previous studies have demonstrated that the

expression of TNF-a, IL-1b and nerve growth factor (NGF)

are up-regulated in the contralateral RN of SNI rats, and

microinjection of their corresponding antibodies could

alleviate the mechanical allodynia induced by SNI [24, 25,

42]. These results suggest that TNF-a, IL-b and NGF in RN

are involved in the development of neuropathic pain and

play facilitated roles on the mechanical allodynia induced

by SNI. In the current study, we observed an increased

expression of IL-10 in the contralateral RN of rats at

3 weeks following SNI, suggesting that not only the pro-

inflammatory cytokines but also anti-inflammatory cyto-

kine IL-10 may be involved in the pain modulation medi-

ated by RN. This is consistent with previous studies that

IL-10 is up-regulated in CNS during inflammatory or

neuropathic pain [3, 6, 7].

To further study the roles of IL-10 in the development of

neuropathic pain, different doses of IL-10 were microin-

jected into the RN contralateral to the nerve injury side of

SNI rats and the changes of mechanical withdrawal

threshold were measured dynamically. Results indicate that

IL-10 could dose-dependently decrease the mechanical

allodynia induced by SNI, suggesting that IL-10 of RN is

involved in the development of neuropathic allodynia and

plays inhibitory roles in SNI rats. This is consistent with

studies that systemic or intrathecal administration of IL-10

protein or IL-10 gene therapy can attenuate the pain-related

behaviors [12–23]. Combining with our previous studies

[24, 25, 42], we conclude that RN is involved in the

modulation of neuropathic pain and plays both facilitated

roles through pro-inflammatory cytokines and inhibitory

roles through anti-inflammatory cytokine IL-10.

Previous studies have identified that IL-10 receptors

express on the membrane surface of only astrocytes and

microglia, but not spinal cord neurons [8, 43]. That is, IL-

10 can not play the analgesic effect by directly acting on

neurons, but by acting on activated astrocytes and

microglia and then indirectly affects the activation of

neurons. Further studies indicate that IL-10 plays the

analgesic effect mainly by suppressing the production of

some chemokines and cell adhesion molecules, and further

inhibiting the recruitment and activation of immune cells

[4]; reducing the production of pro-inflammatory cytokines

(e.g., IL-1, IL-6 and TNF-a) at multiple levels, including

transcription, translation and release [4, 15, 44–46]; inter-

rupting the pro-inflammatory cytokines signaling by down-

regulating the expression of pro-inflammatory cytokine

receptors [44, 45]. In addition, IL-10 can inhibit the pro-

duction of reactive oxygen and nitrogen intermediates [46].

Although various ways are involved in IL-10 mediated

analgesic effect, which ways are involved in the analgesic

effect of red nucleus IL-10 on earth still need further

studies to verify.
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