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Abstract Ischemic preconditioning (IPC), comprising

exposure to sub-lethal short term ischemic events, has been

shown to exert adaptive responses in many organs

including the brain, thus guarding against exacerbations of

ischemia reperfusion (IR). However, the mechanisms

involved in the early phase of such a protection remain

elusive; hence, the present study aimed to investigate the

modulatory effect of preconditioning against IR induced

injury on infarct size, free radicals, inflammatory/anti-

inflammatory markers, caspase-3 and heat shock protein

(HSP)70 in the rat hippocampus. To this end, male Wistar

rats were divided into 3 groups, (1) sham operated (SO)

control; (2) IPC, animals were subject to 3 episodes of

ischemia (5 min) followed by reperfusion (10 min), after-

wards rats underwent ischemia (15 min) followed by

reperfusion (60 min); (3) IR animals were subjected to

15 min global ischemia followed by 60 min reperfusion.

IR produced cerebral infarction accompanied by an

imbalance in the hippocampal redox status, neutrophil

infiltration, elevation in tumor necrosis factor (TNF)-a and

prostaglandin (PG)E2, besides reduction in interleukin

(IL)-10 and nitric oxide (NO) levels. IPC reverted all

changes except for PGE2; however, neither HSP70 nor

caspase-3 expression was altered following IR or IPC. The

current study points thus towards the activation of the

antioxidant system, anti-inflammatory pathway, as well as

NO in the early phase of preconditioning protection.
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Abbreviations

NPSH Nonproteinthiols

HSP Heat shock protein

IL-10 Interleukin10

IPC Ischemia preconditioning

IR Ischemia reperfusion

MDA Malondialdehyde

MnSOD Manganese superoxide dismutase

MPO Myeloperoxidase

NO Nitric oxide

PGE2 Prostaglandin E2

ROS Reactive oxygen species

SO Sham operated

TAC Total antioxidant capacity

TBARS Thiobarbituric acid reactive substances

TNF-a Tumor necrosis factor-alpha

Introduction

Ischemic preconditioning (IPC), brief non-cytotoxic

ischemic episodes, renders cells resistant to subsequent

lethal events by activating endogenous protective mecha-

nisms [1].Titration is essential to the effectiveness of all

preconditioning stimuli. The stimulus must be strong

enough to elicit an adaptive response, but not so intense as
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to cause injury itself or worsen ischemic outcomes [2, 3].

Notably, subtle non injurious preconditioning episodes

reduce adhesion molecules and limit recruitment of

inflammatory cells thus conferring neuronal protection [4].

Certainly, following preconditioning, limited amounts of

free radicals are produced in response to mildly uncoupling

oxidative phosphorylation and the decrease in the inner

membrane potential, thus activating protective antioxidant

systems [5, 6]. Moreover, inflammatory cytokines have

been implicated in ischemic tolerance mechanisms. Tumor

necrosis factor (TNF)-a has been shown to confer cyto-

protection following preconditioning via activation of

manganese superoxide dismutase (MnSOD) [7]. Further

support to the role of TNF-a in maintaining cytoprotection

resides in the abolition of ischemic tolerance by inhibiting

TNF-a release [8]. Furthermore, this cytokine [9] as well as

reactive oxygen species (ROS) [10] transcriptionally acti-

vate cyclo-oxygenase (COX)-2 that is involved in pre-

conditioning protection [11].

Protective adaptive mechanisms derived from precondi-

tioning have been established in a variety of organ systems,

including brain [12, 13]. Noteworthy, preconditioning com-

prises two different windows namely early and late phases.

The former is a transient phase owing to post-translational

changes of preexisting proteins through signaling pathways

[14, 15], while the latter robust and long lasting phase

develops over days and is mediated by protective gene

expression and new protein synthesis [14]. Several studies

aimed at elucidating effects of either pharmacological or

mechanical preconditioning on outcomes of ischemia reper-

fusion (IR) injury [3, 7, 16–18]. However, the complexity of

the system confounds the outcomes. Studies so far, have

focused on the delayed stage following preconditioning epi-

sodes, but data on the early phase remains scarce [3, 16–18].

Accordingly, the current investigation aimed at defining

the protective mechanisms involved in the efficacy of

short repetitive ischemic episodes, IPC, in guarding

against the subsequent deleterious effects of IR injury in the

brain.

Materials and Methods

Animals

Adult male Wistar rats (200–250 g) kept under controlled

environmental conditions, at a constant humidity

(60 ± 10%), temperature (23 ± 2�C), and a light/dark

(12 h) cycle. Animals were allowed food and water ad

libtium throughout the experimental procedures. Animal

handling and experimental protocols were approved by the

Research Ethical Committee of the Faculty of Pharmacy,

Cairo University (Cairo, Egypt), and comply with the

Guide for the Care and Use of Laboratory Animals [19].

Groups and Treatments and Induction of Transient

Global Injury

Experimental procedures were subdivided into 4 subsets,

where animals were randomly allocated into 3 groups. The

first two sets (n = 8 rats per group) were used for bio-

chemical estimations, while the third and forth (n = 4 rats

per group) served for infarct size and immunohistochemi-

cal assessments, respectively. All rats were anaesthetized

with thiopental (50 mg/kg, i.p.) and midline ventral inci-

sion was made in neck. Within each subset, animals were

assigned (1) sham operated (SO) control, (2) IPC (three

episodes of 5 min of global ischemia by bilateral carotid

occlusion, followed by 10 min reperfusion before IR

exposure, and (3) IR bilateral carotid artery occlusion using

small artery clips to induce global cerebral ischemia for

15 min followed by 60 min reperfusion period [20].

Brain Infarct Size

The procedure reported previously in our laboratory was

adopted [21]. Briefly, rats were intracardiacally perfused

with isotonic saline then sacrificed by spinal dislocation at

the end of the reperfusion period. Brain were dissected and

two mm coronal brain slices were incubated for 20 min in

1% triphenyltetrazolium chloride (TTC) in 0.2 M Tris

buffer (pH 7.4) at 37�C. Infracted cells were either

unstained or stained dull yellow, while viable cells stained

bright red. In each brain slice, infracted and uninfarcted

brain areas were traced using a 100 squares in 1 cm2

transparent plastic grid on both sides and the average in-

fracted/uninfarcted areas were determined. Infarcted areas

were expressed as a percentage of total brain area [22, 23].

Tissue Collection

Subsequent to IPC, IR or sham operation, all animals were

euthanized and brains were removed immediately on ice

cold plates. Both hippocampi were dissected and homog-

enized immediately in ice-cold saline for all biochemical

measurements except for PGE2 (0.1 M phosphate buffer,

pH 7.4 containing 1 mM EDTA and 0.1 lM indomethacin)

and MPO (100 mM phosphate buffer, pH 6 containing 1%

hexadecyltrimethylammonium bromide).

IL-10, TNF-a and PGE2 Estimations

IL-10, TNF-a and PGE2 concentrations were measured

using rat ELISA kits purchased from Bender Med Systems
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(Vienna, Austria), Invitrogen (California, USA) and Cay-

man Chemical (MI, USA), respectively. All the procedures

of the used kits were performed following manufacturers’

instruction manual.

Nitric Oxide Estimation

The method of Miranda et al. [24] was adopted for nitric

oxide assay. At 4�C, absolute ethanol was used to depro-

teinated homogenates for 48 h then centrifuged at 12,000 g

for 15 min. Nitrate was reduced to nitrite using vanadium

trichloride (0.8% in 1 M HCl). Subsequently, Griess

reagent [0.1% N-(1-Naphthyl) ethylenediaminedihy-

drochloride; 2% sulfanilamide in 5% HCl] was rapidly

added and the mixture was incubated for 30 min at 37�C,

cooled and the absorbance at 540 nm was measured.

Total Antioxidant Capacity (TAC) Estimation

The method by Koracevic et al. [25] for the assessment of

TAC of hippocampi was adopted using commercial kit

supplied by Biodiagnostic Co. (Giza, Egypt). Antioxidants

eliminate H2O2 in the sample and its residual level is

determined by an enzymatic reaction at 505 nm.

Non Protein Thiol (NPSH) Estimation

The method by Beutler et al. [26] for the assessment of

NPSH in the hippocampi was utilized. 5-sulfuosalicylic

acid (10%, 30 min, 4�C) was used to deproteinate

homogenates, which were then centrifuged at 3,000 g for

15 min at 4�C. 5,50-dithiobis-2-nitrobenzoic acid (1 mM)

was added to the supernatant diluted with phosphate buffer

(0.3 M, pH 7.7). The optical density was read at 412 nm.

Lipid Peroxides Determination

Lipid peroxides level in the hippocampus was determined

by the thiobarbituric acid reaction of Miharaand Uchiyama

[27]. Orthophosphoric acid (1%) and thiobarbituric acid

(0.6%) were added to hippocampal homogenates, mixtures

were boiled for 45 min, and then cooled. The colored

product after cooling was extracted by n-butanol and read

at 535 and 520 nm and the difference in absorbance was

calculated as lipid peroxides level expressed as thiobarbi-

turic acid reactive substances (TBARS).

Myeloperoxidase Activity

Myeloperoxidase (MPO; EC 1.15.1.1) activity (U/g tissue)

was estimated as previously described [28]. Briefly,

o-dianisidine hydrochloride (0.167%) and H2O2 (0.0005%)

in potassium phosphate buffer (50 mM, pH 6) were added

to supernatants after 3 freeze/thaw cycles, 10 sec sonica-

tion and 15 min centrifugation at 10,000 g for at 4�C. The

absorbance kinetics were monitored at 1 min intervals at

460 nm for 4 min.

Immunohistochemistry of Hippocampal Caspase-3

and Heat Shock Protein (HSP)70

Animals of each of the three different manipulations (SO,

IPC or IR) were anesthetized with sodium pentobarbital

(50 mg/kg, i.p.) and the procedure reported by Abdallah

[29] for immunohistochemistry was followed with modi-

fication. Briefly, rats were perfused transcardically with 4%

paraformaldehyde (PFA) in tris-buffered saline (TBS).

Following this, brains were removed post-fixed for 2 h in

4% PFA/TBS, and immersed in 30% sucrose. Paraffin

embedded sagittal sections (4 lm) were cut through the

entire hippocampus. Subsequently, sections were depa-

raffinized, rehydrated, and incubated in 0.3% H2O2 for

15 min to block endogenous peroxidase. Non-specific

protein binding was blocked for 10 min with normal serum

using Universal Quick Kit (Novocastra, Newcastle, UK).

For immunohistochemical detection of caspase-3 or

HSP70, slides were incubated with primary rat monoclonal

antibody (anti-caspase-3 1:100; or anti-HSP70 1:200;

Novocastra) for 1 h at room temperature in a humidified

chamber. After rinsing twice with TBS, sections were

treated with a labeled streptavidin–biotin kit (Novocastra).

The sections were then incubated in 3,30–diaminobenzidine

(Novocastra) for 5 min. The sections through the CA3 area

were examined under a microscope (9100) for the

appearance of a positive brown staining [30].

Statistical Analysis

Data are expressed as mean of 4–8 experiments ± SEM,

and statistical comparisons were carried out using one-way

analysis of variance (ANOVA) followed by Student–

Newman–Keuls multiple comparisons test. All analysis

utilized SPSS 16.0 statistical package for Windows (SPSS

Inc., Chicago, IL, USA). The minimal level of significance

was identified at P \ 0.05.

Results

Effect of IPC on Infarct Size Induced by IR Injury

IR induced approximately 60% infarct size compared to

control SO rats (Fig. 1). IPC, on the other hand reduced

infarct size by 40% compared to IR.
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Effect of IPC on PGE2 Concentration Induced by IR

Injury

The prostanoid PGE2 was increased by transient global

ischemia (30%) and was not changed by IPC from SO

(control) values (Fig. 2).

Role of oxidative Stress Mediators in Affording

Protection Induced by IPC Against IR Injury

IPC induced an increase in TBARS (36% from SO,

Fig. 3a) that was accompanied by a 13% decline in NPSH

concentration versus the SO values (Fig. 3b). Meanwhile,

IR further intensified lipid peroxidation (68 and 23% from

SO and IPC values, respectively). On the other hand, IR

evoked a further decline in NPSH (28 and 17%, respec-

tively) from SO and IPC values.

Effect of IPC on TAC and NO Concentrations Against

IR Injury

As seen in Fig. 4a, there was a decline in TAC in the IR

group versus the SO compared to IR. Moreover, adaptive

preconditioning partially restored NO level to near control

value. Moreover, IR reduced it to 53% from vehicle control

(Fig. 4b).

Role of IPC in Modulating Neutrophil Infiltration

IPC prevented neutrophil infiltration as evidenced by the

insignificant change in MPO activity compared to the SO

Fig. 1 Effect of ischemia preconditioning (IPC) alone or with

ischemia reperfusion (IR) on infarct size. Upper panel provides gross

inspection from each group, while lower panel depicts infarct area in

all test groups. Data represent the means of 4 experiments ± SEM;
*; #P \ 0.05 compared to sham operated (SO) and ischemic reper-

fused (IR) groups, respectively, using one-way ANOVA followed by

Student–Newman–Keuls Multiple Comparisons Test

Fig. 2 Effect of ischemia preconditioning (IPC) alone or with

ischemia reperfusion (IR)on prostaglandin (PG)E2 concentration.

Data represent the means of 8 experiments ± SEM; *; #P \ 0.05

compared to sham operated (SO) and ischemic reperfused (IR)

groups, respectively, using one-way ANOVA followed by Student–

Newman–Keuls Multiple Comparisons Test

Fig. 3 Effect of ischemia preconditioning (IPC) alone or with

ischemia reperfusion (IR) on a thiobarbituric acid reactive substances

(TBARS) and b non protein thiols (NPSH). Data represent the means

of 8 experiments ± SEM; *; #P \ 0.05 compared to sham operated

(SO) and ischemic reperfused (IR) groups, respectively, using one-

way ANOVA followed by Student–Newman–Keuls Multiple Com-

parisons Test
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animals. Conversely, IR induced almost fivefold increase

in MPO activity compared to both SO and IPC (Fig. 5).

Effect of IPC on Proinflammatory TNF-a
and Anti-Inflammatory IL-10 Cytokines

In Fig. 6a and b, IR increased TNF-a (58 and 18% from SO

and IPC, respectively) and reduced IL-10 concentrations

(53 and 48% from SO and IPC values, respectively).

Effect of IPC on Caspase-3 and HSP70 Expression

in the Hippocampus

Immunhistochemical imaging of the hippocampal CA3

region of caspase-3 (Fig. 7a, b) and HSP70 (Fig. 7c, d) in

ischemic reperfused as well as those animals exposed to 3

episodes of ischemic preconditioning showed no stain

correspondent to the immunoreactivity of either proteins.

Discussion

Ischemic tolerance mechanisms are complex and contro-

versial; however, it appears to involve early [31] and late

cellular [32] responses. The present study emphasizes the

importance of the early phase protection via transient non-

lethal IR episodes against prolonged IR injury evidenced

by (1) guarding against sequel of IR injury as evidenced

morphologically by decrease of infarction in IPC compared

to IR group, (2) enhancement of antioxidant defense sys-

tems and reduction in free radical load, (3) amelioration of

neutrophil infiltration, as well as (4) decline in TNF-a and

an increase in IL-10 concentrations in the hippocampi of

preconditioned versus IR animals.

In the brain, the amount and phase of free radical pro-

duction may provide beneficial or detrimental effects [33,

Fig. 4 Effect of ischemia preconditioning (IPC) alone or with

ischemia reperfusion (IR) on total antioxidant capacity (TAC) and

nitric oxide (NO) concentration. Data represent the means of 8

experiments ± SEM; *; #P \ 0.05 compared to sham operated (SO)

and ischemic reperfused (IR) groups,respectively, using one-way

ANOVA followed by Student–Newman–Keuls Multiple Comparisons

Test

Fig. 5 Effect of ischemia preconditioning (IPC) alone or with

ischemia reperfusion (IR) on myeloperoxidase (MPO) activity. Data

represent the means of 8 experiments ± SEM; *; #P \ 0.05 compared

to sham operated (SO) and ischemic reperfused (IR) groups,

respectively, using one-way ANOVA followed by Student–

Newman–Keuls Multiple Comparisons Test

Fig. 6 Effect of ischemia preconditioning (IPC) alone or with

ischemia reperfusion (IR) on a tumor necrosis (TNF)-a and b inter-

leukin (IL)-10 concentrations. Data represent the means of 8

experiments ± SEM; *; #P \ 0.05 compared to sham operated (SO)

and ischemic reperfused (IR) groups, respectively, using one-way

ANOVA followed by Student–Newman–Keuls Multiple Comparisons

Test
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34]. During the early induction phase of preconditioning,

ROS production is required [35] that might be mediated, in

part, through PGE2 synthesis via the peroxidative power of

COX-2 [36]. A further support to the notion, in the

immediate spreading depression (CSD)-induced precondi-

tioning, increased COX-2 protein has been reported as an

indicator of early cellular responses [37]. Noteworthy,

COX-2 inhibitors [38] have been shown to abolish the

protection afforded by IPC, confirming the role of PGs and

subsequent controlled release of ROS as crucial defense

mechanisms for the development of ensuing ischemic tol-

erance. Indeed, the use of antioxidants [39] has been shown

to reduce IPC induced protection. On one hand, in the

current study, IR induced injurious free radical formation

manifest as increase TBARS accompanied by a decrease in

NPSH and TAC that were partially restored by prior IPC

treatment. Such an increase in the former defense systems

following preconditioning and within 1 h of reperfusion,

imply an enhancement of the antioxidant defense mecha-

nisms. The increase of NPSH may be due to early

recruitment or recycling of low molecular weight antioxi-

dant molecules (uric acid and ascorbate) from the periphery

[40] or increased glutathione reductase [41]. Moreover, the

reduction in neutrophil infiltration, being another source of

free radical production, shown in the current investigation

after IPC, may afford an additional explanation to the

reinstated NPSH/TAC levels and reduced lipid peroxida-

tion. Accordingly, when non-cytotoxic stress, below the

threshold of damage, is applied, protective mechanisms

prevail, which render cells resilient to further damage.

However, when stress overwhelms the unprimed system,

damage to the system surmounts, as seen in IR animals in

this study, which is in line with our previous finding [42].

On the other hand, in the current study, IR reduced NO

that may be attributed to its exhaustion in formation of

peroxynitritein the vicinity of superoxide anion formation

[42] while IPC, in part reinstated its level. Indeed, NOS

[39] inhibitors present another impendence for the protec-

tion by IPC. Evidence exists that IPC prevents Na?/K?-

ATPase inhibition, thus dissipating membrane potential

ensuing inhibition of glutamate release, hence decreasing

nNOS activation [14]. This may explain the partial resto-

ration of NO concomitant with the decrease in free radical

shown in this study.

Although TNF-a is reported to exert deleterious effects

[43], however, an in vitro study by Burkovetskaya et al.

[44], an increase in TNF-a as early as early as 10 min in

hippocampal slice neurons after a 3 min hypoxic episode,

was revealed. Such an increase in this proinflammatory

cytokine during preconditioning may stimulate brain

parenchymal cells to elicit adaptive responses, hence,

ischemic tolerance [7]. Interestingly, the current study

reports an increase in TNF-a in IR compared to their

control counterpart. IPC partially restored TNF-a to near

control values, suggestive of a protective role for this

proinflammatory cytokine against exacerbation of IR

injury. One plausible explanation for the decreased level of

this inflammatory mediator might be the present inhibition

of neutrophil infiltration, evidenced by reduction in

MPO, that releases TNF-a upon activation during IR

episodes [34].

Meanwhile, though IL-10 showed reduction in IPC

group compared to SO, this anti-inflammatory cytokine

was further decreased in IR animals. Accordingly, the

difference in the IL-10 concentration in the IR group

compared to IPC in this present study represents an adap-

tive response to the decrease in TNF-a. The latter effect is

in line with the work of Kalpana et al. [45] thus attenuating

the production of this proinflkammatory cytokine [46, 47].

Though we report an increase TBRAS, TNF-a as well as

PGE2 in ischemic reperfused rats, there was no change in

the expression pattern of caspase-3. Reported studies link

these mediators to extrinsic and intrinsic death pathways

that converge on caspase-3 induction [48, 49]. A plausible

explanation for the observed phenomenon could be

explained by the finding of other investigators [50, 51]

showing increased caspase-3 expression as early as 6

up to 72 h of reperfusion. Noteworthy, the current study

displayed no expression of the molecular chaperon, HSP70,

following ischemic preconditioning suggesting no involve-

ment in the early preconditioning protection. Indeed,

Fig. 7 Photomicrographs depicting the immunohistochemical

expression of caspase-3 in ischemic preconditioned (IPC) a and

ischemic reperfused (IR) animals b as well as heat shock protein

(HSP)70 in IPC c and IR d animals in CA3 region of the hippocampus

(9100)
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Ge et al. [52] showed that HSP70 is upregulated 24 h

following ischemic injury.

Taken all together, ROS and NO production during the

early phase of preconditioning afford protection against

further damage in cerebral transient global ischemia.

Neuroprotection during this phase of preconditioning could

be ascribed in part to enhancement of antioxidant defense

systems restoring thus pro-oxidant/antioxidant milieu of

the hippocampus, as well as a subtotal restoration of

inflammatory/anti-inflammatory cytokine concentration.

Furthermore, the results of the current investigation suggest

that HSP70/caspase-3 are not involved in preconditioning

induced neuroprotection nor IR-induced toxicity.
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