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Abstract Parkinson’s disease (PD) is characterized by

selective degeneration and loss of dopaminergic neurons in

the substantia nigra (SN) of the ventral mid brain leading to

dopamine depletion in the striatum. Oxidative stress and

mitochondrial damage have been implicated in the death of

SN neurons during the evolution of PD. In our previous

study on human PD brains, we observed that compared to

SN, striatum was significantly protected against oxidative

damage and mitochondrial dysfunction. To understand

whether brain aging contributes to the vulnerability of

midbrain to neurodegeneration in PD compared to striatum,

we assessed the status of oxidant and antioxidant markers,

glutathione metabolic enzymes, glial fibrillary acidic pro-

tein (GFAP) expression and mitochondrial complex I(CI)

activity in SN (n = 23) and caudate nucleus (n = 24)

during physiological aging in human brains. We observed a

significant increase in protein oxidation (P \ 0.001), loss

of CI activity (P = 0.04) and increased astrocytic prolif-

eration indicated by GFAP expression (P \ 0.001) in SN

compared to CD with increasing age. These changes were

attributed to significant decrease in antioxidant function

represented by superoxide dismutase (SOD) (P = 0.03),

glutathione (GSH) peroxidase (GPx) (P = 0.02) and GSH

reductase (GR) (P = 0.03) and a decreasing trend in total

GSH and catalase with increasing age. However, these

parameters were relatively unaltered in CD. We propose

that SN undergoes extensive oxidative damage, loss of

antioxidant and mitochondrial function and increased

GFAP expression during physiological aging which might

make it more vulnerable to neurotoxic insults thus con-

tributing to selective degeneration during evolution of PD.
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Abbreviations

PD Parkinson’s disease

SN Substantia nigra

CI Mitochondrial complex I

GSH Glutathione reduced

PMI Postmortem interval

CD Caudate nucleus

3-NT 3-Nitrotyrosine

GFAP Glial fibrillary acidic protein

SOD Superoxide dismutase

GST Glutathione-s-transferase

GR Glutathione reductase

GPx Glutathione peroxidase

Introduction

Parkinson’s disease (PD) is an age-associated neurode-

generative disease clinically characterized as a movement

disorder [1]. The chief pathological hallmark in PD is the

gradual loss of dopaminergic neurons in the substantia
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nigra pars compacta (SNpc) leading to the depletion of

dopamine in the striatum which ultimately manifests as

motor impairment. Histopathology based staging in human

PD brains has shown localized pathology in the brainstem

nuclei including the SN that later spreads to the neocortex

in the post-motor stage of the disease [2]. Although many

anatomical areas are potentially affected, SN is selectively

targeted for damage during PD. Research evidences have

suggested that the vulnerability of SN dopaminergic neu-

rons to oxidative stress and mitochondrial dysfunction

could significantly contribute to neurodegeneration in PD

[3–7]. Accordingly, increased oxidative damage [8, 9] and

loss of antioxidants such as glutathione (GSH) [10], have

been detected in the dopaminergic areas of the PD brain.

Further, oxidative and nitrative damage to proteins in SN

dopaminergic neurons have been documented in the dis-

ease samples from human subjects [11–13] and in the

animal models of PD [14–19]. Oxidative and nitrosative

stress in PD is directly associated with mitochondrial

dysfunction in the SN [20, 21]. Apart from oxidative

damage, PD pathology is also associated with neuroin-

flammation and astrogliosis with upregulation of the glial

marker, glial fibrillary acidic protein (GFAP) [22, 23].

In order to investigate whether non-SN brain regions are

also affected similar to SN during PD, we recently tested

the markers of antioxidant function and oxidative stress in

caudate nucleus (CD), putamen (Put) and frontal cortex

(FC) in human postmortem PD brain tissues [24]. We

observed a relatively lower oxidative damage and mito-

chondrial dysfunction in the above regions compared to SN

and demonstrated that increased GSH level in them might

protect against oxidative and mitochondrial damage in PD.

Although SN and striatum are part of the nigrostriatal

dopaminergic pathway, the selective targeting of SN during

PD needs to be explained. Since PD is an age-associated

disease, we questioned whether accumulated biochemical

differences in SN and striatum during physiological aging

might contribute to the selective vulnerability of SN. To

address this, we carried out in this study, a comparative

evaluation of the status of oxidative damage, antioxidant

function, GSH metabolic enzymes, astrogliosis and mito-

chondrial function with increasing age in human substantia

nigra (n = 23; age = 12–80 years) and caudate nucleus

(n = 24; age = 4–80 years).

Experimental Procedure

All chemicals used were of analytical grade. Bulk chemi-

cals were obtained from Merck (Whitehouse Station, NJ,

USA) and Sisco Research Laboratories Pvt. Ltd. (Mumbai,

Maharashtra, India). Nitrocellulose membrane from Milli-

pore (Billerica, MA, USA), mouse monoclonal antibody to

glial fibrillary acidic protein (GFAP) (clone GA-5) from

Biogenex (San Ramon, CA, U.S.A.), rat polyclonal anti-

tubulin antibody from Abcam laboratories (Cambridge,

U.K.), horseradish peroxidase conjugated secondary anti-

bodies from Bangalore Genei (Bangalore, Karnataka,

India), anti-dinitrophenyl (DNP) and anti-3-nitrotyrosine

antibodies and protease inhibitor cocktail from Sigma

(Eugene, OR, U.S.A.) were obtained.

Human Tissue Samples and Histology

Human brain samples were sourced from the Human Brain

Tissue Repository (HBTR), Department of Neuropathol-

ogy, National Institute of Mental Health and Neurosciences

(NIMHANS), Bangalore, India. The brain tissues were

collected with informed consent from the close relatives of

the deceased and the Institutional Ethics Committee has

approved the study protocol. The brains were from normal

subjects who succumbed to road traffic accidents (non-

alcoholics, non-diabetics, not on any medication and with

no known neurological or psychiatric disorders). Demo-

graphic and clinical details of all the subjects were recor-

ded. Within 1 h of death, the body was transferred to a

refrigerator maintained at 2–4�C with a recorder and

uninterrupted power supply. Following autopsy, the brains

were recovered and sliced coronally and kept flat on salt-

ice mixture (-15 to -18�C) during dissection and then

transferred in plastic zip lock bags into a box to be stored at

-80�C in the HBTR. The procedure of dissection took

30–45 min and the brain slices were transferred immedi-

ately into the deep freezer. The postmortem interval (PMI)

(the elapsed time between death and the freezing of the

brain samples following autopsy and dissection) was

recorded for each case. The brain areas chosen for the

study were anatomically farthest from the site of injury and

without distinct edema or abnormal morphology. While the

major portion of the tissue was frozen for biochemical

studies, a minor portion corresponding to the mirror image

bits of the stored tissue were fixed in buffered formalin.

These tissues were subjected to routine histological

assessment by neuropathologists (SKS and AM) and the

samples that maintained tissue integrity were utilized for

the study (data not shown). The same procedure of autopsy,

tissue handling and other procedures were uniformly

maintained for all the samples in this study. Similar tissues

from the human brain bank have been earlier utilized

extensively as control samples in PD research [24–27] and

other studies [28–32].

In the current study, two anatomical areas, substantia

nigra (SN) and caudate nucleus (CD) were analyzed

from the postmortem brains. Table 1 shows the list

of all the brain samples (SN: n = 23; male = 17,

female = 6. CD: n = 24; male = 17, female = 7) from
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which tissues were utilized for the study. The age of

the subjects studied ranged from 12 to 80 years for SN

samples and 4 to 80 years for CD samples and the PMI

ranged from 3 to 22 h. Due to the limitation in the

amount of tissue available from each region, all the

samples have not been used for all the assays (sample

numbers have been indicated for each assay in the

legend).

Preparation of Protein Extracts

Brain tissue (*100 mg) was manually homogenized in

cold 19 phosphate buffered saline (PBS) containing pro-

tease inhibitor cocktail on ice (15 strokes) and sonicated

(20 s on ice) in a Sonics-vibra cell sonicator (Sonics and

Materials Inc, CT, USA) [30]. The extract was centrifuged

(15,0009g, 10 min) to separate the insoluble debris. The

supernatant corresponding to the soluble fraction was

subjected to protein estimation followed by biochemical

assays [24].

SDS PAGE and Western Blot

The brain samples were thawed on ice and homogenized in

19 phosphate buffered saline (PBS) containing protease

inhibitor cocktail, homogenized and sonicated on ice

(5 s 9 5). The extracts were immediately centrifuged at

15,0009g for 10 min to remove insoluble cellular debris

and the total protein in the supernatant was estimated.

Equal quantities of protein (50 lg) per sample were loaded

on 10% SDS PAGE followed by western blot with either

anti-GFAP or b-tubulin antibody [24].

Table 1 List of the human

brain tissues used in the current

study

PMI postmortem interval, CD
caudate nucleus, SN substantia

nigra, N/A not available

Sample

no.

Age

(years)

Gender Cause of death PMI Regions

used

1 4 M All the samples are from brains of normal subjects

who succumbed to road-traffic accidents

(See methods)

5 h 30 min CD

2 8 F 8 h CD

3 12 F 5 h 30 min CD, SN

4 13 M 15 h SN

5 14 M 3 h 30 min CD, SN

6 15 F 10 h 30 min SN

7 16 M 7 h CD

8 19 M 12 h 30 min CD, SN

9 20 M 13 h 30 min CD, SN

10 22 M 10 h 30 min CD, SN

11 23 M 6 h 20 min SN

12 24 M 7 h 45 min SN

13 25 M 7 h 30 min CD, SN

14 25 M 7 h 30 min SN

15 27 F 4 h CD

16 33 M N/A CD, SN

17 35 M 7 h 30 min CD, SN

18 37 M 18 h CD, SN

19 40 M 7 h SN

20 47 F 21 h CD, SN

21 48 M 3 h CD, SN

22 50 M 15 h CD, SN

23 55 M 7 h CD, SN

24 60 M 20 h CD

25 65 M 22 h CD, SN

26 70 F 9 h CD, SN

27 70 M 19 h 30 min CD

28 77 F 20 h 30 min SN

29 80 F 3 h 5 min CD

30 80 M 15 h 45 min CD

31 80 F 6 h CD, SN
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Analysis of Oxidative Markers

Estimation of Protein Carbonyls (Oxyblot) and Protein

Nitration

Oxyblots were carried out as described earlier [30, 33].

Briefly, brain protein extract (4 mg/ml) was derivatized by

dinitrophenyl hydrazine (DNPH) in a 20 ll reaction mix-

ture in the presence of 12% SDS for 20 min at room

temperature. The reaction was stopped by neutralization

with 2 M Tris in 30% glycerol and 5 ll of the sample was

spotted in triplicate on nitrocellulose membrane and probed

with anti-DNP antibody. Non-derivatized samples did not

show anti-DNP immunoreactivity confirming the specific-

ity of the antibody (data not shown).

To detect protein nitration, protein (10 lg/sample) from

different samples were spotted in triplicate onto a nitrocellu-

lose membrane and probed with polyclonal anti-3-nitrotyro-

sine (3-NT) antibody. Western signals were densitometrically

quantified and normalized against the respective anti-tubulin

signal.

Estimation of Lipid Peroxidation

Lipid peroxidation was measured by estimation of mal-

ondialdehyde (MDA) by thiobarbituric acid reaction

method [34]. Tissues were homogenized, sonicated and

centrifuged at 16,000g (10 min) at 4�C. 100 ll of the

supernatant was added to a mixture containing 0.75 ml of

acetic acid (pH 3.5, 20% v/v), 0.1 ml SDS (8%, w/v) and

0.75 ml of thiobarbituric acid (0.8%, w/v) and heated in a

boiling water bath for 45 min. The adducts formed were

extracted into 1.5 ml of 1-butanol and centrifuged at

2,500 rpm (10 min) and their absorbance was measured at

532 nm. The amount of MDA formed was calculated using

the molar extinction coefficient (241 mol/cm).

Assays for Antioxidant Function and GSH Metabolism

Catalase Assay

Catalase activity was assayed by the method described pre-

viously [35]. The enzyme activity was expressed as lmol

H2O2 consumed/min/mg protein (e = 43.6 mM-1 cm-1).

Reaction mixture containing 15 lg protein (sample) was

mixed with 900 ll phosphate buffer (0.1 M, pH 7.0) and

50 ll of H2O2 (8.8 mM) and the decrease in absorbance at

240 nm was followed for 5 min.

Superoxide Dismutase Assay

SOD activity was assayed using its inhibitory action on

quercetin oxidation based on the method described earlier with

minor modifications [36]. The final reaction mixture contained

30 mM Tris HCl (pH 9.1), 0.5 mM EDTA, 50 mM TEMED,

0.05 mM quercetin and 10 ll of brain extract supernatant

containing 10 lg of protein. The reaction was monitored at

406 nm for 10 min. One unit of SOD activity was defined as

the amount of enzyme (per mg protein) that inhibits quercetin

oxidation reaction by 50% of maximal value.

Estimation of Total Glutathione (GSH ? GSSG)

Total glutathione estimations were carried out by the 5,50

dithio-bis-2-nitro benzoic acid recycling method as

described earlier [37]. All estimations were conducted in

triplicate and total glutathione concentrations were nor-

malized per mg protein.

Glutathione Peroxidase Assay

GPx activity was determined by t-butyl hydroperoxide

(tbHP) method [38]. The reaction mixture containing

150 lg protein (sample), 0.1 M phosphate buffer, 0.5 mM

EDTA, 100 ll Glutathione reductase (0.24 U), 100 ll

GSH (1 mM), 100 ll NADPH (0.15 mM) was incubated at

37�C for 3 min and the reaction was initiated by the

addition of 100 ll tbHP (0.12 mM). Change in absorbance

at 340 nm was monitored for 5 min spectrophotometrically

and the activity was expressed as nmoles of NADPH oxi-

dized/min/mg protein (MEC: 6.22 mM-1 cm-1).

Glutathione Reductase Assay

Solubilized brain protein extract (100 lg) was assayed at

25�C in 0.1 M Tris–HCl (pH 8.1) and 0.2 mM NADPH

and the reaction was initiated by the addition of 1 mM

GSSG. The enzyme activity was measured by monitoring

the oxidation of NADPH, spectrophotometrically at

340 nm, as described earlier [39].

Glutathione-S-Transferase Assay

GST was assayed by the 1-chloro-2,4-dinitro benzene

(CDNB) method [40]. To 1 ml reaction mixture containing

phosphate buffer (0.1 M, pH 6.5; 0.5 mM EDTA), CDNB

(1.5 mM) and 50 ll GSH (1 mM), 30 lg protein (sample)

was added and the increase in absorbance at 340 nm was

monitored for 5 min. The enzyme activity was expressed as

nmoles of S-2,4, dinitrophenyl glutathione formed/min/mg

protein (MEC: 9.6 mM-1 cm-1).

Preparation of Mitochondria and Complex I (CI) Assay

Mitochondria from the tissue samples were freshly pre-

pared and subjected to CI assay as previously described
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[41, 42]. The assay was initiated by addition of aliquots of

brain mitochondria to 50 mM potassium phosphate/Tris–

HCl, pH 7.4, 500 lM Ethylenediaminetetraacetic acid

(EDTA), 1% bovine serum albumin, 200 lM NADH, and

200 lM decylubiquinone with and without 2 lM rotenone

in the presence of potassium cyanide (KCN) with 0.002%

dichloroindophenol as a secondary electron acceptor. The

decrease in the absorbance at 600 nm was recorded as a

measure of enzyme reaction rate at 37�C for 10 min, and

specific activity was calculated. The results were plotted as

relative rotenone sensitive specific activity.

Statistical Analysis

Quantitative data from at least three independent experi-

ments were expressed as mean ± SD followed by analysis

of variance (ANOVA) and Pearson’s correlation of linear

regression (r value). For all the quantitative data, P \ 0.05

was considered to be statistically significant.

Results

Biochemical analysis in PD has demonstrated significant

oxidative stress and mitochondrial dysfunction in SN [43–

45]. In order to analyze whether increased oxidative stress

during physiological aging makes SN selectively vulnera-

ble to PD, we quantitated the level of oxidative damage of

proteins in SN (n = 18) compared to CD (n = 21).

Accordingly, we observed that protein oxidation (protein

carbonylation in tissue extracts determined by oxyblot) was

significantly increased in the SN with increasing age while

it was unaltered in CD (SN: r = 0.80, P \ 0.001; CD:

r = 0.19, P = 0.23) (Fig. 1a). On the other hand, protein

nitration (determined by total protein 3-NT) showed an

increasing trend in SN, although it was not statistically

significant with increasing age (r = 0.33, P = 0.11)

(Fig. 1b). However, protein 3-NT was relatively unaltered

in CD (r = 0.03, P = 0.45) (Fig. 1b).

Since oxidative stress in SN dopaminergic neurons

contribute to mitochondrial dysfunction in PD via selective

inhibition of CI activity [46], we evaluated the CI activity

in SN and CD during normal physiological aging. The CI

activity was significantly decreased with increasing age in

the SN in contrast to CD (SN: r = -0.45, P = 0.04; CD:

r = 0.16, P = 0.26) (Fig. 2a) consistent with our earlier

study on PD samples wherein striatal tissue displayed rel-

atively unchanged CI activity compared to controls [24].

Similar to mitochondrial damage, neuroinflammation with

microglial activation and reactive gliosis are evident during

neuronal injury and PD with enhanced GFAP, an astroglial

marker in the human mescencephalon [47]. We observed

age-dependent increase in GFAP expression in SN but not

in CD (SN: r = 0.88, P \ 0.001; CD: r = 0.21, P = 0.20)

(Fig. 2b). These data indicate a distinct biochemical and

physiological distinction between SN and CD that might

have direct implications in regional vulnerability during

aging and neurodegeneration. We tested whether these

regional differences could be due to altered antioxidant

function in the nigrostriatal zones.

In the brain samples, the SOD activity in SN was

decreased by *twofold compared to CD in all the samples.

In the SN, there was a significant decrease in SOD activity

with increasing age while in CD, the activity was relatively

unaltered (SN: r = -0.54, P = 0.03; CD: r = -0.33,

P = 0.10) (Fig. 3a). Catalase activity showed decreasing

trend in the SN compared to CD although it was not sta-

tistically significant (SN: r = -0.39, P = 0.07; CD: r =

-0.26, P = 0.15) (Fig. 3b). GSH is the most abundant

antioxidant in the brain and its depletion is an early marker

of oxidative stress in the SN in cases of PD [10, 48]. The

total GSH was significantly lower in SN compared to CD

which further decreased with increasing age although not

to a statistically significant extent. In CD, GSH levels were

unaltered with increasing age (SN: r = -0.36, P = 0.12;

CD: r = 0.19, P = 0.21) (Fig. 3c). On the other hand, the

activity of the antioxidant enzyme thioredoxin reductase

was unaltered with increasing age in both SN and CD

(Fig. 3d). But, the enzyme activity showed a trend different

from the GSH with significantly higher activity in SN

compared to CD (Fig. 3d) and this might be a compensa-

tory mechanism for the GSH-mediated antioxidant activity.

Other enzymes related to antioxidant function and GSH

metabolism such as glutathione peroxidase (GPx) (SN:

r = -0.66, P = 0.02; CD: r = 0.04, P = 0.44) and GSH

reductase (GR) (SN: r = -0.62, P = 0.03; CD: r = 0.13,

P = 0.30) showed significant decrease in activity in SN

with increasing age and this might exacerbate the oxidative

damage (Fig. 4a, b). However GPx and GR activities were

relatively unaltered in CD with increasing age (Fig. 4a, b).

On the other hand, GSH-S-transfease (GST) activity was

found unaltered with increasing age both in SN and CD

(Fig. 4c).

Discussion

Although many biochemical studies have analyzed the SN

and corpus striatum in the human samples and animal

models of PD, studies in these regions during normal

physiological aging are limited. The current study has

attempted to provide mechanistic explanation that distin-

guishes SN and CD with increasing age with implications

for the vulnerability to neurodegeneration. Our data

showed that in the SN, there was significant protein
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oxidation and nitration with increasing age while it was

relatively unchanged in CD (Fig. 1). This was consistent

with the previous report [12] which observed twofold

higher carbonyls in SN than in striatum and cortex of

human brains. In a related study, comparison of lipid per-

oxidation in different regions of rat brain showed age-

dependent increase only in midbrain while it decreased in

the striatum [49]. On the other hand, Mizuno and Ohta [50]

reported that lipid peroxidation was lower in caudate-

putamen nuclei, and SN compared with other areas in adult

rats but increased significantly with aging [50].

Ultrastructural and morphological analyses in human

brains have demonstrated that during aging, SN dopami-

nergic neurons undergo apoptosis but this might be

mechanistically different from the neuronal death during

PD [51]. The selectivity of SN dopaminergic neurons for

oxidative damage and degeneration during aging and PD

might be due to specific mechanisms. One factor might be

the opening of L-type calcium channels that causes con-

tinuous calcium influx into the SN neurons, resulting in

mitochondrial oxidative stress and susceptibility to toxins.

Epidemiological data also links the role of L-type calcium
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Fig. 1 Analysis of protein oxidation and nitration in postmortem

human brains with increasing age. Total protein extract after DNP-

derivatization (*10 lg) in SN (n = 18) and CD (n = 21) were

spotted on nitrocellulose membrane in triplicate followed by anti-

DNP western blot (Oxyblot). Following densitometric analysis, the

average for each sample was plotted as mean ± SD followed by

regression analysis. The r and P values for each region are shown.

a Representative anti-DNP blot of SN and CD tissue extracts with

increasing age (arrows indicate the age in years (y) of each sample;

flower brackets correspond to the triplicate for each sample) and the

quantitative plots of anti-DNP signal (normalized with b-tubulin

signal as indicated in Fig. 2b) in SN and CD are shown. Total protein

extracts (*100 lg) from SN (n = 18) and CD (n = 21) were spotted

on nitrocellulose membrane followed by anti-3NT western blot.

Following densitometric analysis, the average for each sample was

plotted as mean ± SD followed by regression analysis. The r and

P values for each region are shown. b Representative anti-3-NT blot

of SN and CD tissue extracts with increasing age (arrows indicate the

age in years (y) of each sample; flower brackets correspond to the

triplicate for each sample) and the quantitative plots of anti-3-NT

signal (normalized with b-tubulin signal as indicated in Fig. 2b) in SN

and CD are shown
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channels to the risk of developing PD [52]. Another con-

tributing factor might be the selective expression of pro-

teins such as D(2) dopamine autoreceptors, GIRK-2

potassium channels etc. and lack of expression of neuro-

protective factors [53]. Previously, Waters and colleagues

[54] linked alterations in peptide-containing pathways
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Fig. 2 Quantitative analysis of mitochondrial complex I activity and

GFAP in postmortem human SN (n = 18) and CD (n = 21) with

increasing age. Mitochondria were prepared from different samples

followed by CI assay. The average rotenone-sensitive CI activity for

each sample was plotted as mean ± SD followed by regression

analysis. The r and P values for each region are shown in a. Total

extracts (50 lg) from different samples were spotted on nitrocellulose

membrane with increasing age followed by anti-GFAP western blot.

b shows a representative SDS PAGE profile of GFAP and b-tubulin in

SN and CD (the age in years (y) of each sample is indicated) and dot

blot of GFAP (with increasing age) in SN and CD (arrows in the slot

blot indicate the age in years (y) of each sample; flower brackets
correspond to the triplicate for each sample). Following densitometric

analysis, the average for each sample was plotted as mean ± SD

followed by regression analysis. The r and P values for each region

are shown. Age-dependent alterations in GFAP signal (normalized

with the respective b-tubulin signal) in SN and CD are also shown
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with neurodegeneration emphasizing the sensitivity of the

alpha sub-layer of SN neurons in PD while Kish et al. [55]

demonstrated that aging produces a specific pattern of

striatal dopamine loss with implications for the etiology of

idiopathic PD.

Irrespective of the mechanism, the oxidative damage in

the SN that contributes to mitochondrial damage and

neurodegeneration involves depletion of cellular GSH [56,

57]. While SN neurons during PD show GSH depletion

[10], our previous study [24] showed that non-SN regions

including CD and putamen in PD brains displayed three-

fold to fivefold increase in GSH which might protect

mitochondria in these anatomical regions against oxidative

damage. This could happen either by increased synthesis or

leakage of intracellular GSH or by inhibition of extra-

cellular breakdown of GSH. It is plausible that the

degeneration of SN neurons might promote compensatory

neuroprotective mechanisms by inducing increased GSH

synthesis in the non-SN regions [58]. In this regard,

regional differences during aging is important as the cur-

rent study showed significantly lower GSH content in SN

compared to CD, which decreased further with increasing

age (Fig. 3c). Similarly, mitochondrial CI deficiency spe-

cific to SN in post mortem PD brain has been reported

[46, 59]. This could be promoted by aging since CI activity

was decreased in an age-dependent manner in the SN while

it was unaltered in CD (Fig. 2).

Apart from GSH, other antioxidant activities are altered

selectively in the SN. The antioxidant enzymes such as

SOD, catalase, GPx and GR were found decreased in SN

compared to CD (Figs. 3, 4). These deficiencies might

exacerbate the oxidative damage induced by GSH deple-

tion and might synergistically make SN vulnerable to

neurodegeneration. All brain regions do not follow the

same pattern of antioxidant function with increasing age

[60]. Accordingly, the SOD and GPx activities did not

change in CD while it increased in the mesencephalon;

catalase activity decreased in CD. There are divergent

reports in literature on the age-dependent alterations in

antioxidant function in the brain. Carrillo et al. [61] dem-

onstrated that the activities of Mn-SOD were significantly

higher in the old male rats than in young males in SN,

striatum and hippocampus but lower in the cerebellum.

Further, activities of Cu Zn-SOD, catalase and GPx were

relatively unaffected by age. In female rat brains, activities

of Mn-SOD and other antioxidant enzymes were unaltered

by aging. Benzi et al. [62] suggested the opposite trend and

reported that in both SN and CD regions of rat brain,
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Fig. 3 Age-associated changes

in the antioxidant activities in
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by regression analysis. The r

and P values for each region are

shown. a shows the scatter plot
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enzyme activity declines steadily with age. In both CD and

parietotemporal cortex, the GPx activity increases from 5

to 20 months of age and remains relatively constant

thereafter, while in SN, the enzyme activity is practically

unmodified during the life span. The activity of GR in

caudate-putamen deteriorates after an increase from 5 to

20 months of age. Mizuno and Ohta [50] reported signifi-

cant reduction in SOD activity in CD and SN in rat brains

with aging while the GPx and GR activities were highest in

CD-putamen and in SN.

Neuroinflammation, microglial activation and astrocytic

proliferation, with GFAP expression have been demon-

strated during neuronal injury and PD [63, 64]. Whether

microglial activation reflects progressive SN pathology and

whether it is dependent on disease duration has to be

determined. On the other hand, some reports have ques-

tioned whether astrocytic proliferation protects or exacer-

bates the SN neuron loss [47, 65]. In this regard, age-

dependent alterations in GFAP expression might contribute

to pathology during PD. Uchida et al. [66] reported that

although the number of TH positive neurons in the SN is

unaltered with increasing age, the ratio of TH-positive

neurons to GFAP-positive glial cells slightly decreased

with increasing age. O’Callaghan and Miller [67] reported

an elevation in GFAP expression with age throughout the

brain with the largest increase observed in corpus striatum.

Consistent with some of these reports, we observed selec-

tive increase in GFAP expression with increasing age only

in the SN but not in CD (Fig. 2b).

Some studies have linked astrocytic proliferation with

exposure to toxins and injury in an age and gender depen-

dent manner [68, 69]. Miller et al. [70] reported that the

striatal dopamine depletion and GFAP elevation induced by

amphetamines in mice was relatively higher in older ani-

mals. Based on the data from 6-OHDA administered rats,

Gordon et al. [71] observed higher GFAP expression in

older animals compared to younger animals indicating that

aged astrocytes are more sensitive to gliotrophic factors

released by degeneration. Further, there is sustained astro-

cytic proliferation in aged animals either due to a delay in

the clearance of these factors or the inability to terminate

GFAP inductions after activation. These data suggest that

age-related glial hypersensitivity may independently

increase the risk for some degenerative diseases [71].

Gender difference and the role of hormones are linked

with the nigrostriatal pathway. This is very pertinent to the

nigrostriatal pathology since PD has greater incidence in

males compared to females [72]. It has been proposed that
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gender-specific hormones such as estrogen could signifi-

cantly affect the function of the nigrostriatal dopaminergic

pathway [73]. Estrogen has been linked with neuroprotec-

tive function in the brain. Administration of the PD toxin

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to

male mice resulted in oxidative damage, mitochondrial

dysfunction and dopaminergic neurodegeneration in SN,

whereas female mice were unaffected [74]. Pre-treatment

of female mice with estrogen receptor (ER) antagonist

sensitized them to MPTP-mediated toxicity. It was

also demonstrated that downregulation of ER decreased

the glutaredoxin activity in the midbrain and striatum of

female mouse brain, indicating that glutaredoxin expres-

sion is regulated through ER signaling and higher glut-

aredoxin could provide neuroprotection [74]. On the other

hand, there are reports in animal models describing either

anti-dopaminergic effects or showing no significant effect

on the nigrostriatal dopaminergic neurons [75]. Similarly,

the role of estrogen in PD patients is controversial with

studies showing both pro and anti-dopaminergic effects of

estrogen [75]. It was reported that post-menopausal estro-

gen treatment was associated with a lower risk of PD

compared with controls [76]. On the other hand, there are

reports of improved dyskinesias or worsened parkinsonism

symptoms in women administered with hormone replace-

ment, indicating that estrogen may have an anti-dopami-

nergic effect [77, 78]. Considering these data, gender-based

differences should be considered while investigating the

age-dependent effects and toxin induced pathways in the

nigrostriatal dopaminergic neurons.

In conclusion, our current study clearly demonstrates age-

related alterations in the status of oxidant and antioxidant

markers in the SN with implications for mitochondrial dys-

function and astrogial proliferation thus differentiating this

region from the CD and explaining the vulnerability of SN to

neurodegeneration in PD.
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