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Abstract Oxidative stress has been implicated to play a

role in epileptogenesis and pilocarpine-induced seizures.

The present study aims to evaluate the antioxidant effects

of curcumin, Nigella sativa oil (NSO) and valproate on the

levels of malondialdehyde, nitric oxide, reduced glutathi-

one and the activities of catalase, Na?, K?-ATPase and

acetylcholinesterase in the hippocampus of pilocarpine-

treated rats. The animal model of epilepsy was induced by

pilocarpine and left for 22 days to establish the chronic

phase of epilepsy. These animals were then treated with

curcumin, NSO or valproate for 21 days. The data revealed

evidence of oxidative stress in the hippocampus of pilo-

carpinized rats as indicated by the increased nitric oxide

levels and the decreased glutathione levels and catalase

activity. Moreover, a decrease in Na?, K?-ATPase activity

and an increase in acetylcholinesterase activity occurred in

the hippocampus after pilocarpine. Treatment with curcu-

min, NSO or valproate ameliorated most of the changes

induced by pilocarpine and restored Na?, K?-ATPase

activity in the hippocampus to control levels. This study

reflects the promising anticonvulsant and potent antioxi-

dant effects of curcumin and NSO in reducing oxidative

stress, excitability and the induction of seizures in epileptic

animals and improving some of the adverse effects of

antiepileptic drugs.
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Introduction

Epilepsy and seizure disorders affect 50 million people

around the world and contribute to morbidity and mortality

[1]. The use of antiepileptic drugs (AEDs) is limited due to

the vast array of adverse effects, such as cognitive

impairment, affective disorders and recurring seizures [1,

2]. Hence, there is a need for the development of new

AEDs with fewer adverse effects and higher efficacy.

Oxidative stress, defined as the excessive production of

free radicals, can alter dramatically the cell function and an

overproduction of these compounds has been related to

seizure-induced neuronal death [3, 4]. The animal brain is

often said to be especially sensitive to oxidative damage

[5]. This may be attributed to its high oxygen consumption,

the large quantities of oxidizable lipids and metals, and the

comparatively less antioxidant mechanisms [6, 7].

Pilocarpine is a cholinergic agonist used as a model to

induce epilepsy. It reproduces in rodents behavioral and

electroencephalographic alterations similar to those in

human temporal lobe epilepsy [8, 9]. The epilepsy model

induced by pilocarpine in rats is characterized by an acute

phase, characterized by seizures which progress within

1–2 h to status epilepticus (SE), by a seizure-free period

(silent; 4–44 days, mean of 15 days) and by a chronic

phase, characterized by spontaneous recurrent seizures

(SRS) [10, 11].

Curcumin is the major active component extracted from

the rhizome of the plant Curcuma longa Linn. (Zingiber-

aceae) commonly known as turmeric. Curcumin is widely
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used as a food additive and also as a herbal medicine

throughout Asia. Curcumin crosses the blood–brain barrier

[12], and has been shown to possess neuroprotective

activity [13, 14]. Previous studies have reported the effi-

cacy of curcumin in delaying [15] or completely inhibiting

the onset of convulsive seizures in kainic acid-induced

epilepsy [16]. Bharal et al. [17] reported that the chronic

administration of curcumin markedly elevated the seizure

threshold in increasing current electroshock model and

suggested that curcumin may possess anticonvulsant

activity. Moreover, Jyoti et al. [18] demonstrated the

potential of curcumin to inhibit spontaneous seizures in the

iron-induced model of posttraumatic epilepsy.

Nigella sativa, commonly known as black cumin, belongs

to the botanical family of Ranunculaceae. Nigella sativa

seeds have been used in Middle Eastern folk medicine as a

natural remedy for various diseases [19, 20]. Recently,

clinical and animal studies have shown that the extracts of

the black seeds have many therapeutic effects such as anti-

oxidative [21] and neuroprotective [22] effects. Ilhan et al.

[23] demonstrated a potent anticonvulsant property of

Nigella sativa oil (NSO) against the development of kind-

ling consequences in pentylenetetrazol (PTZ)-kindled mice.

Valproate is currently one of the major antiepileptic

drugs [24, 25]. It has been proved to be active in multiple

anticonvulsant tests and also has the broadest clinical

utility [26].

Therefore, the aim of the present study was to evaluate

some oxidative stress parameters in the hippocampus of

pilocarpine-treated rats as a model of epilepsy during the

spontaneous recurrent seizures phase and to investigate the

antioxidant effects of curcumin and NSO, two natural herbs

with reported anticonvulsant activities, on these parameters

in comparison with the effects of valproate, a well estab-

lished antiepileptic drug. In addition, the effects of these

treatments on the activities of Na?, K?-ATPase and ace-

tylcholinesterase in the hippocampus of pilocarpinized rats

were also investigated.

Experimental Procedure

Experimental Animals

The experimental animals used in the present study were

adult male Wistar albino rats weighing 200–250 g. The

animals were purchased from the animal house of the

National Research Center and were given food and water

ad libitum. They were maintained under fixed appropriate

conditions of housing and handling. All experiments were

carried out in accordance with research protocols estab-

lished by the animal care committee of the National

Research Center, Egypt.

Drugs and Chemicals

Pilocarpine was obtained from Macfarlan Smith Ltd.

(Edinburgh). It was dissolved in saline. Atropine sulphate

was obtained from Boehringer Ingelheim (Germany).

Curcumin was purchased from Sigma Chemical Company.

It was suspended in 1% carboxymethyl cellulose. Nigella

sativa oil was obtained from the seeds of Nigella sativa by

hydraulic press on cold as carried out by the Department of

Oils, National Research Center, Egypt. Sodium valproate

was obtained from Global Napi Pharmaceuticals, Egypt.

Experimental Design

Sixty animals were subjected to chronic epilepsy induction by

the intraperitoneal injection (i.p.) of a single dose of pilocar-

pine (380 mg/kg) according to Turski et al. [8]. Atropine

sulphate was injected subcutaneously at a dose of 5 mg/kg,

30 min before the induction of epilepsy, to prevent peripheral

muscarinic stimulation [27]. After about 30 min., the animals

became hypoactive and then displayed oro-facial movements,

salivation eye-blinking, twitching of vibrissae and yawning;

generalized convulsions and limbic SE developed about

40–80 min. after the injection [4]. Mortality was recorded

after 1 h. Twenty one animals (about 35%) died during SE.

The animals that survived SE were left for 22 days to establish

the chronic phase of the induced SRS according to Cavalheiro

et al. [10]. No mortality was recorded afterwards.

These animals were then divided into four treated groups:

1. Untreated pilocarpinized animals (n = 10) were injected

orally with saline till the end of the experiment. 2. The

animals of the second group received a daily oral adminis-

tration of curcumin (80 mg/kg) [28]. 3. The animals of the

third group received a daily oral administration of NSO

(4 ml/kg) [29]. 4. In the fourth group, the animals received a

daily oral administration of valproate (100 mg/kg) [23].

All animals were sacrificed by sudden decapitation after

21 days of daily administration. Control animals (n = 10)

received a single i.p. injection of saline and after 22 days they

received a daily oral administration of saline for 21 days.

They were sacrificed simultaneously with the treated groups.

After decapitation, the brain was transferred rapidly to

an ice-cold Petri dish where it was dissected to remove the

hippocampus. The brain samples were weighed and kept at

-43� until analyzed. Each brain sample was then homog-

enized in 5% w/v 20 mM phosphate buffer, pH 7.6.

Determination of Nitric Oxide Level and Lipid

Peroxidation

The assay of nitric oxide (NO) was carried out using

Biodiagnostic kit No. NO 25 33 (Biodiagnostic Co.,

Egypt). This method is based on the spectrophotometric
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method of Montgomery and Dymock [30] which is based

on the measurement of endogenous nitrite concentration as

an indicator of nitric oxide production. It depends on the

addition of Griess Reagents which convert nitrite into a

deep purple azo compound whose absorbance is read at

540 nm in a Helios Alpha Thermospectronic (UVA

111615, England).

Lipid peroxidation (LP) was determined by measuring

the level of thiobarbituric reactive species (TBARs) using

the method of Ruiz-Larrea et al. [31] in which the thio-

barbituric acid reactive substances react with thiobarbituric

acid to produce a red colored complex having peak

absorbance at 532 nm.

Determination of Reduced Glutathione Level

The assay of reduced glutathione (GSH) levels was per-

formed using Biodiagnostic kit No. GR 25 11 (Biodiagnostic

Co., Egypt) which is based on the spectrophotometric

method of Beutler et al. [32]. It depends on the reduction of

5,50-dithiobis 2-nitrobenzoic acid with glutathione to pro-

duce a yellow color whose absorbance is measured at

405 nm.

Determination of Enzyme Activities

Catalase activity was measured using Biodiagnostic Kit

No. CA 25 17 (Biodiagnostic Co., Egypt) which is based

on the spectrophotometric method described by Aebi [33].

Catalase reacts with a known quantity of hydrogen per-

oxide and the reaction is stopped after 1 min with catalase

inhibitor. In the presence of peroxidase, the remaining

hydrogen peroxide reacts with 3,5-dichloro-2-hydro-

xybenzene sulfonic acid and 4-aminophenazone to form a

chromophore with a color intensity inversely proportional

to the amount of catalase in the sample.

The procedure used for the determination of acetyl-

cholinesterase (AchE) activity in the hippocampus and

cortex was a modification of the method of Ellman et al.

[34] as described by Gorun et al. [35]. The principle of the

method is the measurement of the thiocholine produced as

acetylthiocholine is hydrolyzed. The colour was read

immediately at 412 nm.

Na?, K?- ATPase activity was measured spectropho-

tometrically according to Bowler and Tirri [36] as descri-

bed by Tsakiris et al. [37].

Statistical Analysis

The data were expressed as means ± S.E.M. Data were

analyzed by analysis of variance (ANOVA) followed by

the Duncan multiple range test when the F-test was sig-

nificant (P \ 0.05). All analyses were performed using the

Statistical Package for Social Sciences (SPSS) software in

a PC-compatible computer.

Results

The behavior of the animals was monitored visually during

the diurnal period since it has been reported that seizure

frequency was higher during this period [38]. All pilocar-

pine-treated animals developed SRS (3–4 seizures/rat/

week) which ranged from facial automatisms to forelimb

clonus and rearing and falling as described previously [39].

No seizure manifestations were observed after treatment of

epileptic animals with curcumin, NSO or valproate. Mod-

erate excitation and aggression were observed in pilo-

carpinized animals treated with NSO during handling.

Lipid Peroxidation

A single injection of pilocarpine resulted in a non signifi-

cant decrease in the lipid peroxidation marker malondial-

dehyde (MDA) in the hippocampus after 6 weeks i.e.

during SRS. However, treatment of pilocarpinized animals

with curcumin decreased MDA levels by 14.82%

(P \ 0.05) when compared to control values. Both NSO

and valproate induced non significant changes in MDA

levels in pilocarpine-treated animals in comparison with

control levels (Table 1; Fig. 1).

Nitric Oxide Levels

ANOVA revealed significant differences in NO levels

between groups. Pilocarpine injection increased NO levels

in the hippocampus by 16.67%. Curcumin administration

to pilocarpine-treated animals restored the levels of NO to

control values. NSO treatment slightly attenuated the

increased NO levels resulting from pilocarpine, recording a

percentage difference of 11.11% above the control level (in

comparison with 16.67% in pilocarpinized rats). Mean-

while, treatment of pilocarpinized rats with valproate

reduced NO levels to 5.56% in comparison with control

values (Table 1; Fig. 1).

Reduced Glutathione Levels

Significant differences in GSH levels were obtained

between groups after ANOVA analysis. After a single

injection of pilocarpine, GSH levels were decreased by

25.69% below the control levels (P \ 0.05). Treatment of

pilocarpinized animals with curcumin restored GSH levels

(2.75%) to nearly control values. On the contrary, NSO

administration to pilocarpine-treated animals decreased

GSH levels by 22.02% as compared to control values. A
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non significant decrease in GSH levels was obtained after

treatment of pilocarpinized animals with valproate,

recording—11.01% below the control levels (Table 1; Fig. 1).

Catalase Activity

Pilocarpine injection resulted in a significant decrease in

catalase activity by 22.42% when compared to control

group. This decrease was exaggerated after curcumin

treatment, recording -49.71% below the control level. The

decrease in catalase activity obtained in the pilocarpine-

treated animals also continued non significantly (-14.31%)

and significantly (-21.39%) after NSO and valproate

treatments, respectively (Table 1; Fig. 1).

Na?, K?- ATPase Activity

ANOVA revealed significant differences in Na?, K?-

ATPase activity in the hippocampus between groups. A

significant decrease in the enzyme activity by 25.49% was

recorded in the hippocampus of animals treated with

pilocarpine. This was reversed to a significant increase

after treatment with curcumin (25.49% above the control

levels). Both NSO and valproate slightly attenuated the

decrease in hippocampal Na?, K?- ATPase activity

induced by pilocarpine, the values were -13.73 and

-4.90% below the control, respectively, and were non

significant with respect to those of pilocarpine-treated

animals (Table 1; Fig. 2).

Acetylcholinesterase Activity

Similarly, significant differences in AchE activity were

obtained in the hippocampus between groups. A significant

increase in AchE activity by 26.12% was recorded in

pilocarpine-treated animals. Both curcumin and NSO failed

to restore the enzyme activity to control values, an increase

of the enzyme by 23.88 and 27.24% was recorded after the

two treatments, respectively. Valproate reversed the

increase in AchE activity to a significant decrease,

recording—25.75% in comparison with control animals

(Table 1; Fig. 2).

Discussion

The present study revealed a significant increase in nitric

oxide levels accompanied by a significant decrease in GSH

levels and catalase activity in the hippocampus of pilo-

carpine-treated rats providing evidence of oxidative stress

in this area during SRS. This was associated with a

decrease in Na?, K?—ATPase activity and an increase in

AchE activity.T
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The pilocarpine model of epilepsy mimics several phe-

nomenological features of temporal lobe epilepsy including

a particular resistance to anticonvulsant medication [8].

Oxidative stress has already been demonstrated to play a

role in epileptogenesis and has been related to the neuro-

chemical changes observed during SE and SRS induced by

pilocarpine [40, 41]. For these reasons and owing to the

vast array of adverse effects accompanying the use of

antiepileptic drugs, it seemed plausible to investigate the

effects of two antioxidant medicinal herbs with reported

anticonvulsant activities on the pilocarpine-induced chan-

ges in several oxidative stress parameters and related

enzymes during SRS. It was also of interest to compare

these effects with those of valproate, an established and

widely used anticonvulsant with conflicting reports about

its oxidant [42, 43] and antioxidant activities [44, 45].

SRSs have been reclassified by Veliskova [39] accord-

ing to the following criteria: staring and mouth clonus;

automatisms; monolateral forelimb clonus; bilateral fore-

limb clonus; bilateral forelimb clonus with rearing and

falling and tonic-clonic seizure. The present incidence of

seizures was consistent with other studies which reported

that adult male Wistar rats given 300–320 mg/kg of pilo-

carpine showed a mean latent period of 14 days and a

frequency of 2.8 seizures per week by continuous video

monitoring [10, 38]. Seizure frequency was also reported to

be higher during the diurnal period [38].

The present study showed a non significant decrease in

LP in pilocarpine-treated animals during SRS which may
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be due to long-term compensatory mechanisms that may

attenuate LP. Supporting our finding, Dal-Pizzol et al. [4]

found a decrease in TBARs levels in the hippocampus in

the pilocarpine model during SRS and explained it by the

neuronal loss [10, 46] and hypometabolism observed in this

structure [47]. Curcumin treatment resulted in a significant

decrease in LP below control and pilocarpine-treated lev-

els. This may be attributed to its redox metal-binding

activity [12], free radical scavenging properties [48], and

antioxidative potential [49].

Several reports have suggested the involvement of NO in

various models of epilepsy [50, 51]. However, the role

exerted by NO during seizures has never been clearly

understood. While some authors believe that NO may be an

endogenous anticonvulsant [52], others suggest a procon-

vulsant role for NO [53]. However, several lines of evidence

suggest that NO produced by the activation of neuronal

nitric oxide synthase (nNOS) triggers seizures [54].

The present data revealed a significant increase in NO in

the hippocampus of pilocarpine-treated rats. Kovács et al.

[55] suggested that enhancement of NO formation might

provide a general mechanism for seizure initiation. Con-

sequently, the increased NO levels in the hippocampus of

the present pilocarpine model may underlie the neurotox-

icity and initiation of seizures during SRS induced by

pilocarpine. The oral administration of curcumin restored

the increased NO levels resulting from pilocarpine treat-

ment to control values which could be explained by the

potential of curcumin to inhibit the expression of inducible

NOS [56] and its potent NO scavenging effects [57, 58].

Although the aqueous extract of Nigella sativa seeds

exhibited an inhibitory effect on NO production by murine

macrophages [59], NSO slightly attenuated the elevated

levels of NO induced by the present pilocarpine model

(from 16.67 to 11.11%). Valproate administration to epi-

leptic rats reduced NO levels, a finding that was confirmed

in other epileptic models [60]. Similar to the well estab-

lished antiepileptic drug valproate, it may be suggested that

the anticonvulsant effect of curcumin may be mediated by

its ability to restore NO level in the hippocampus to the

control level and this may suppress the occurrence of sei-

zures observed after both treatments.

The present significant decrease in catalase activity and

GSH levels in the hippocampus of pilocarpine-treated rats

may be due to the overproduction of free radicals and the

consumption of both antioxidants in scavenging the rapidly

generating free radicals. The present study showed that

only NSO attenuated the decrease in catalase activity

induced by pilocarpine. However, treatment with curcumin

exaggerated the decrease in the enzyme activity whereas

valproate had no effect on this enzyme activity. Brannan

et al. [61] measured regional catalase activity in 11 areas of

adult rat brain and found that the frontal cortex and

hippocampus had the lowest activity. In addition, it has

been reported that catalase activity in rat brain is too

subtle to elicit significant changes in response to oxidative

stress [62].

Glutathione plays a key role as an essential cellular

antioxidant in the defense of brain cells against oxidative

damage induced by ROS [63]. GSH reacts directly with

free radicals in nonenzymatic reactions and is the electron

donor in the reduction of peroxides catalyzed by glutathi-

one peroxidase. The product of oxidation is glutathione

disulfide (GSSG) which is reduced back to GSH by glu-

tathione reductase [64]. GSH is also consumed in the

detoxification of electrophilic compounds via glutathione-

S-transferases, thereby providing cells with multiple

defenses against both ROS and their by-products [65].

Several studies reported low GSH levels in chronic

epilepsy models [66, 67]. In line with the present findings,

Freitas [68] reported that seizure episodes induced by

pilocarpine were accompanied by a decrease in brain GSH

levels and a lack of effects in glutathione peroxidase and

glutathione reductase activities. Accordingly, the decrease

in GSH induced by pilocarpine, in the present study, may

reflect a state of oxidative stress resulting from accelerated

degradation or decreased de novo synthesis. It is known

that intracellular concentrations of GSH are an important

factor in dictating cellular susceptibility to nitric oxide and

its derivatives [69]. Furthermore, in vivo studies support

that GSH depletion in the brain can cause mitochondrial

dysfunction, and contribute to neuronal damage [70].

Treatment with curcumin or valproate ameliorated the

decrease in GSH induced by pilocarpine whereas NSO

failed to improve GSH levels. The free radical scavenging

ability of curcumin may be attributed to the H-donating

phenolic groups [71, 72]. In addition, curcumin contains

two electrophilic a, b-unsaturated carbonyl groups, which

can react with nucleophilic compounds such as GSH and

form glutathionated products of curcumin [73]. Moreover,

curcumin induces GSH synthesis in cells by activation of

glutamyl cysteine ligase (GCL) activity in vivo [74].

Similarly, it has been reported that valproate increased the

synthesis of GSH and restored total antioxidant capacity in

the brain [60, 75]. Thus, the restoration of GSH levels in

the hippocampus of curcumin- and valproate-treated epi-

leptic animals may reflect the potent antioxidant activity of

these treatments.

The black seed of Nigella sativa contains 36–38% fixed

oils, proteins, alkaloids, saponin and 0.4–2.5% essential oil.

The fixed oil is composed mainly of unsaturated fatty acids

[76]. The biological activity of Nigella sativa seeds is

attributed to its essential oil components [77]. The

main compounds contained are thymoquinone (30–48%),

p-cymene (7–15%), carvacrol (6–12%), 4-terpineol

(2–7%), t-anethole (1–4%) and longifolene (1–8%) [78].
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Some reports showed that high doses of thymoquinone, the

main active ingredient in NSO, cause depletion of cellular

glutathione in vital organs [79–81]. This may explain the

failure of NSO to restore GSH levels in pilocarpine-treated

rats in this study.

Na?, K?-ATPase enzyme plays a pivotal role in main-

taining cellular ionic gradients across plasma membranes

and it is particularly sensitive to ROS [82]. Failure of Na?,

K?-ATPase activity may increase cellular excitability and

facilitate the appearance or propagation of convulsions

[68]. In the present study, a significant decrease in Na?,

K?-ATPase was evident in the hippocampus after pilo-

carpine treatment. Contrary to the present findings, Fer-

nandes et al. [83] found an increase in Na?, K?-ATPase

activity during the chronic period. The longer period after

induction of epilepsy (120 days) in their study may account

for this discrepancy. The current significant decrease in

Na?, K?-ATPase observed during SRS may be due to

neuronal damage [46], inhibition of protein synthesis [84]

and deficiency in ATP concentration [85]. Moreover,

recent studies have demonstrated that reactive nitrogen

species inhibit the activity of Na?, K?-ATPase by oxida-

tion of SH groups [86, 87]. Curcumin treatment to pilo-

carpinized animals reversed the decrease in Na?, K?-ATPase

activity in the hippocampus of pilocarpinized rats. Con-

sistent with the present study, Kaul and Krishankanth [88]

showed a 148% increase in Na?, K?-ATPase activity in

brain microsomes from curcumin-fed rats. Moreover, cur-

cumin treatment significantly activated Na?, K?-ATPase

activity in iron-induced posttraumatic epileptic rats. Na?,

K?-ATPase activity is also known to be sensitive to lipid

peroxidation [89] which is negatively correlated with this

enzyme activity [90]. Therefore, the observed reduction in

lipid peroxidation in curcumin-treated epileptic rats may

also underlie the ability of curcumin to reverse the dis-

ruption of Na?, K?-ATPase activity in the present pilo-

carpine-treated rats. Thus, curcumin may help in the

suppression of excitability in the hippocampus in the

present pilocarpine model of epilepsy and this may

underlie its reported anticonvulsant activity. On the other

hand, a slight improvement in hippocampal Na?, K?-

ATPase activity was evident, in the present study, after

treatment of pilocarpinized rats with valproate and NSO,

being more prominent in the case of valproate (from

-25.49 to -4.9%).

Acetylcholinesterase has a crucial role in cholinergic

neurotransmission as it causes the rapid hydrolysis of

acetylcholine released into the synapse [91]. In the nervous

system, epilepsy has been related to overproduction or

release of acetylcholine by cholinergic neurons, due to a

neuronal hyperactivity and/or an excitotoxicity, that might

induce a neuronal damage during pilocarpine-induced sei-

zure and SE [92, 93]. It has been described that the

impairments in learning, memory and behavior observed in

patients with epilepsy are caused, at least in part, by

changes in cholinergic system function [94] since there is

consistent evidence that high levels of acetylcholine in the

brain are associated with cognitive dysfunction [95].

Neurochemical as well as functional studies suggest that

pilocarpine alters acetylcholine metabolism in rat brain.

Acetylcholine synthesis is increased in the cortex, hippo-

campus and striatum of epileptic adult rats [96]. Santos

et al. [97] concluded that the constant inhibition of choline

acetyltransferase and AchE by seizures during SE induced

by pilocarpine might increase acetylcholine levels which

could be associated with the memory deficit observed in

seized rats. The present study revealed a significant

increase in AchE activity in the hippocampus of pilocar-

pine-treated rats during SRS. This may reflect a compen-

satory mechanism by which the brain attempts to terminate

the increase in acetylcholine. Supporting this notion is the

inhibition of Na?, K?-ATPase activity which has been

related to the enhancement of acetylcholine release [98]. It

has been demonstrated that AchE has a fundamental role in

learning and memory [99, 100].

The present data revealed that treatment with curcumin

or NSO had no effect on the increased AchE activity

induced by pilocarpine in the hippocampus during SRS.

Reports on the effect of curcumin on AchE activity have

yielded conflicting results. Sharma et al. [101] reported that

curcumin lowered AchE level in the cerebral cortex and

hippocampus of rat brain. Ahmed and Gilani [102] reported

that curcumin was relatively weak in its AchE inhibitory

effect in scopolamine-induced amnesia but showed mem-

ory enhancing effect in the Morris water maze test. The

authors suggested that curcumin enhanced memory in this

model possibly through mechanism(s) independent of

AchE inhibition. Jyoti et al. [18] reported that curcumin

was effective in preventing the cognitive deficits associated

with epileptogenesis. However, no literature has been

reported on the effect of NSO on AchE or cholinergic

activity. The increased AchE activity that continued after

treatment of pilocarpinized rats with curcumin or NSO may

also help in terminating the increased acetylcholine content

resulting from pilocarpine.

However, a significant decrease in the AchE activity

occurred after treatment of pilocarpinized animals with

valproate. It has been reported that divaloproex which is

related to valproate slightly but significantly increased

acetylcholine efflux in the hippocampus [103]. This finding

together with the increased acetylcholine levels after

pilocarpine may result in an increase in cholinergic activ-

ity. Thus, the inhibition of AchE activity after valproate

may also lead to an augmentation of the increased cho-

linergic activity. Valproate and other anticonvulsant mood

stabilizers have generally been found to have some adverse
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effects on cognition in patients with epilepsy [104, 105].

They have also been reported to induce cognitive impair-

ment in healthy individuals [106]. Sgobio et al. [107]

concluded that the demonstration that valproate induces

morphologic alterations and impairment in specific hippo-

campal-dependent memory task might explain the detri-

mental effects of antiepileptic treatment on cognition in

human subjects. It may thus be suggested that the inhibi-

tion of AchE after valproate treatment in the present model

together with the enhanced cholinergic activity may par-

ticipate in the cognitive side effects of valproate.

The present study revealed that curcumin has potent

antioxidant and anticonvulsant effects in reducing oxida-

tive stress, excitability and the induction of seizures in

epileptic animals. The slight improvement observed after

treatment of epileptic rats with NSO suggests that further

studies are needed to adjust the dose used.

In conclusion, the ability of antioxidants to reduce the

seizure manifestations and the accompanying biochemical

changes in several markers of oxidative stress further

supports a role of free radicals in seizures. It also highlights

a possible role of antioxidants as adjuncts to antiepileptic

drugs for better seizure control and fewer side effects.

These medicinal herbs may also give new insights into the

development of new therapies for the treatment of chronic

epilepsy.
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