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Abstract The naturally occurring toxin rottlerin has been

used by other laboratories as a specific inhibitor of protein

kinase C-delta (PKC-d) to obtain evidence that the activity-

dependent distribution of glutamate transporter GLAST is

regulated by PKC-d mediated phosphorylation. Using

immunofluorescence labelling for GLAST and deconvo-

lution microscopy we have observed that D-aspartate-

induced redistribution of GLAST towards the plasma

membranes of cultured astrocytes was abolished by rott-

lerin. In brain tissue in vitro, rottlerin reduced apparent

activity of (Na?, K?)-dependent ATPase (Na?, K?-ATP-

ase) and increased oxygen consumption in accordance with

its known activity as an uncoupler of oxidative phosphor-

ylation (‘‘metabolic poison’’). Rottlerin also inhibited Na?,

K?-ATPase in cultured astrocytes. As the glutamate

transport critically depends on energy metabolism and on

the activity of Na?, K?-ATPase in particular, we suggest

that the metabolic toxicity of rottlerin and/or the decreased

activity of the Na?, K?-ATPase could explain both the

glutamate transport inhibition and altered GLAST distri-

bution caused by rottlerin even without any involvement of

PKC-d-catalysed phosphorylation in the process.
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Introduction

Immunocytochemical studies using rat retina in vitro

have demonstrated that uptake of the non-metabolisable

glutamate transport substrate D-aspartate by GLAST

(glutamate/aspartate transporter, see [1, 2] for reviews and
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nomenclature) was reduced or abolished in the presence of

protein kinase C (PKC) inhibitors, in particular when a

putative PKC-d specific inhibitor rottlerin [3] was applied

[4]. These findings appeared to be consistent with the

suggestion that GLAST is subject to regulation by PKC-d
[5]. However, results of subsequent experiments using

astrocytes cultured from neonatal rat brain have indicated

that rottlerin could inhibit the activity of GLAST by a

PKC-d-independent mechanism [6]. These studies have not

identified the exact nature of the hypothetical GLAST-

regulating rottlerin-sensitive system despite performing a

range of tests [6]. One mechanism, through which rottlerin

could interfere with glutamate transport independently of

its effect on PKC-d has not, however, been directly

examined [6] namely by changing the activity of (Na?,

K?)-dependent ATPase that generates ionic gradients

providing the free energy to drive glutamate transport

[1, 2].

Many studies have shown that glutamate transporters,

including GLAST, can actively translocate L-glutamate,

L-aspartate or D-aspartate into the cells in the presence of

adequate transmembrane Na? and K? concentration gradi-

ents (for reviews and additional references see [1, 2, 7]).

Moreover, GLAST transporter appears to be activity

regulated, i.e. in the presence of ligands for the glutamate

recognition site, especially when these are readily trans-

portable substrates such as D-aspartate, GLAST molecules

tend to change their cellular distribution by moving into

plasma membrane thereby increasing the transport

capacity [8] (for reviews see [5, 9, 10]). The necessary

ionic gradients have to be maintained by the (Na?, K?)-

dependent ATPase and, indeed, the transport of L-gluta-

mate and L-aspartate is known to be strongly inhibited by

the (Na?, K?)-dependent ATPase inhibitor ouabain

[11, 12]. Furthermore, it has been claimed that there is a

close functional relationship between glutamate transport

and the activity of (Na?, K?)-dependent ATPase in

cultured astrocytes [10] that may parallel the apparent co-

localization of glutamate transporters and a subtype of

(Na?, K?)-dependent ATPase in brain tissue [13]. Such a

relationship could be important for the regulation of

energy supply in response to changes in excitatory

(glutamatergic) synaptic activity [14, 15] and for the

activity of metabolic pathways that are linked to gluta-

matergic neurotransmission and/or to functioning gluta-

mate transport [16–18]. Testing the effect of rottlerin on

the activity of the (Na?, K?)-dependent ATPase could,

therefore, not only help to elucidate the postulated PKC-d
independent mechanism of the rottlerin inhibition of

glutamate transport but might also be of broader signif-

icance e.g. when considering rottlerin as a pharmaco-

logical tool in studies of brain metabolism or neuronal

cell death [19, 20].

Experimental Procedures

Cultured Astrocytes

Cultured astrocytes were prepared from neocortices of

Sprague-Dawley rat pups (0–3 days post natum) as

described in detail in a related study [8]. Briefly, the

tissue was dissociated with trypsin (0.25% in Hanks

balanced salt solution) and the cells were seeded, using

Dulbecco modified Eagle’s medium (DMEM) supple-

mented with 10% foetal bovine serum (FBS), into 25 cm

[2] flasks (usually 2–3 neonatal brains per flask) and

grown until confluent (10–14 days). The cultures were

subsequently passaged into 30 mm tissue culture dishes

and grown for 12–14 days, again using DMEM with 10%

FBS. At this time cells displayed predominantly astro-

cytic morphology [21]. For the purposes of immunocy-

tochemical studies the cells were grown in the same way

with a 13 mm diameter coverslip present in the culture

dishes.

All procedures were carried out in accordance with the

guidelines of the National Health and Medical Research

Council of Australia and were approved by The University

of Sydney Animal Ethics Committee.

Immunocytochemistry and Image Analysis

The procedure has been described in detail elsewhere [8].

The coverslips with astrocytes were washed in serum-free

DMEM (sfDMEM) and incubated in the presence of

D-aspartate and/or rottlerin dissolved in 500 ll of sfD-

MEM. Incubations lasted for 30 min and were carried out

at 37�C in 5% CO2. Drug-free sfDMEM was used as a

control. The rottlerin solution contained 0.05% dimethyl-

sulphoxide (DMSO). Such a concentration of DMSO

should have no effect on either the cell vialbility [22] or the

distribution of glutamate transporters [6].

Following the exposure to D-aspartate and/or rottlerin

the astrocytes were double-labelled with antibodies against

glial fibrillary acidic protein (GFAP, marker for astrocytes,

mouse monoclonal antibodies) and antibodies against the

glutamate transporter GLAST (polyclonal antibody raised

in rabbit [23]). The antibodies were diluted in phosphate

buffered saline (PBS) containing 1% bovine serum albumin

(BSA) and 0.05% saponin. The coverslips were first

washed in 2 ml of PBS for 5 min, then fixed with para-

formaldehyde (2% in PBS) for 10 min and again washed

with 2 ml of PBS for 5 min. Fixed cells were then

‘‘blocked’’ with the BSA-containing PBS (BSA/PBS) for

30 min and subsequently exposed to 200 ll of solutions

containing the antibodies at dilutions of 1:4,000 (GLAST)

and 1:400 (GFAP). The incubations (2 h) were carried out

at room temperature in a humidified environment. The
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coverslips were then washed three times for 5 min with

2 ml of the BSA/PBS solution and exposed to the sec-

ondary antibodies.

All procedures involving the fluorescently labelled

antibodies were performed in a dark environment. Goat-

generated anti-mouse IgG conjugated to Alexa Fluor 488

(AF 488) was used to visualise GFAP while goat-generated

anti-rabbit IgG conjugated to Alexa Fluor 594 (AF 594)

was used to label the anti-GLAST antibody. Both sec-

ondary antibodies were diluted in the BSA/PBS solution;

incubations were for 1 h at room temperature and washed

as described above for the primary antibodies; three times

for 5 min with 2 ml of BSA/PBS.

After washing, the coverslips were carefully blotted to

remove excess moisture, mounted upside down, using 50%

solution of glycerol in PBS, on slides and secured along the

edges with nail polish, to prevent drying out.

Deconvolution Microscopy and Image Analysis

Deconvolution microscope (Axioplan 2, Zeiss) was used

for image acquisition [8]. AF 488 and AF 594 were excited

at 499 nm (emission at 520 nm) and 590 (emission at

618 nm), respectively. The images were optically sec-

tioned at 0.513 lm intervals and subjected to deconvolu-

tion using an inverse filter algorithm to remove out-

of-focus (background) signals. Sections from the midplane

of the stacks were used for the image analyses. Each image

represented a randomly selected single cell.

The images were analysed as described in detail else-

where [8]. Mean fluorescence density (MFD) was deter-

mined in both the cytoplasm and membrane (cMFD and

mMFD) and the membrane/cytoplasm ratio of fluorescent

intensity (RFI = mMFD/cMFD) was used as an index of

the distribution of GLAST between membrane and cyto-

plasm (Fig. 1).

Activity of Na?, K?-Dependent ATPase

We have used a technique that employs uptake of Rb? as a

measure of the activity of (Na?, K?)-dependent ATPase in

rat brain tissue. The methodology has been modified from

that which has been previously used to study uptake of

radiolabelled amino acids [11, 24]. Prisms of adult

(3–6 months) rat cerebral cortex (0.1 9 0.1 9 thickness of

cortex) were prepared using the McIlwain tissue chopper,

suspended at 25 mg/10 ml of incubation medium (phosphate

buffered Krebs-Ringer [16]) and allowed 15 min for recov-

ery in a shaking water bath at 37�C. Uptake of Rb? was

started by adding either 250 or 500 ll of the medium in

which 5 mM KCl was replaced by 5 mM RbCl. Doubling

the concentration of Rb? (legends of Figs. 2, 3) doubled the

value of controls (Figs. 2, 3) but would not change the

activity of (Na?, K?)-dependent ATPase since, in this type

of studies Rb? acts only as a ‘‘marker’’ of K? in medium

[24]. Incubation was terminated 10 min later by rapid fil-

tration (assisted by negative-pressure at *20 psi) through

Whatman No. 1 filters (2.5 cm in diameter) and washing the

filters twice with 2 ml of RbCl-free medium. The filters were

then extracted overnight with 1.5 ml of deionized water and

the concentration of Rb? in the extracts estimated using

acetylene-flame atomic absorption spectroscopy (AAS).

The methodology used to study Rb? uptake by cultured

astrocytes was also derived from previously published

techniques used in amino acid uptake studies [25]. Imme-

diately prior to the experiment, the medium was removed

and the tissue culture dishes were washed twice with 1 ml

of the buffer of the same composition as that used in the

experiments with prisms of brain cortex. The monolayers

were then covered with 1.8 ml of the buffer (with or

without rottlerin), transferred to a water bath at 37�C and

rotated (48 rpm) to allow for gentle stirring. After a 10-min

preincubation period 0.2 ml of buffer was added in which

5 mM KCl was replaced with 5 mM RbCl. Incubation was

terminated by rapid removal, using vacuum suction, of the

Rb?-containing medium, washing with 1 ml of Rb?-free

buffer (twice, at room temperature) and extraction, for at

least 1 h, with 1.5 ml of deionized (RO) water. Taking care

that all cells were detached from the tissue culture dish, the

suspension was triturated with an automatic pipette and

centrifuged at app. 10,000g for 15 min using a refrigerated

bench centrifuge. Samples of 1 ml were taken for deter-

mination of Rb? by AAS while the rest, including the

pellet, were mixed with 200 mM NaOH, left at room

temperature for 24 h and used to estimate the protein by

Lowry technique. AAS was carried out as described pre-

viously [24] using SpectrAA-20plus (Varian Aust P/L,

Melbourne, Victoria, Australia) and Photron Rb? lamp

(k = 780.2 mm, slit width 0.2 mm).

Oxygen Consumption by Brain Tissue in Vitro

Respiration rate in cortical prisms was measured using an

oxygen electrode (Rank Brothers, Cambridge, UK). The

tissue prisms were preincubated (100 mg/10 ml of freshly

oxygenated buffer) in a shaking water bath at 37�C for

15–30 min. Drugs were then added, and incubation contin-

ued for a further 5 min. An aliquot (5 ml) of the suspension

was transferred into the electrode chamber (at 37�C) and the

oxygen levels were recorded every 15 s for 10 min.

Preparation of Solutions

Rottlerin (1-[6-[(3-acetyl-2,4,6-trihydroxy-5-methylphenyl)

methyl]-5,7-dihydroxy-2,2-dimethyl-2H-1-benzopyran-8-yl]-

3-phenyl-2-propen-1-one) is listed as poorly soluble in
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aqueous media. In the present studies rottlerin was first

dissolved at 50 mM in a small amount (usually 100 ll) of

DMSO. This solution was then diluted with nine volumes

of the incubation medium to 5 mM. In Rb? uptake studies

and in the oxygen consumption (respiration) assays, vol-

umes of either 10 or 100 ll were added at the beginning of

the preincubation (or 5 min prior to the transfer into the

electrode chamber) to each flask containing the suspension

of brain prisms thus achieving final drug concentrations of

5 and 50 lM (and DMSO concentrations 0.01 and 0.1%,

respectively). In the experiments with cultured astrocytes,

20 ll of the 5 mM solution were added at the beginning of

the preincubation.

Staurosporin, BIS-I, olomoucin, wortmannin, FCCP and

CCCP were handled in the similar fashion to achieve the

desired final concentrations. After the initial dilution from

50 mM solution in pure DMSO to 5 mM in 10% DMSO,

some drugs, including rottlerin, produced apparently

homogenous but opaque solutions. When added (1 in 1,000

or 1 in 100) to the incubation mixture (at 37�C) no op-

alescence or any other traces of solid matter were noticed

and the drugs were considered fully dissolved. Controls

(drug-free preparation) as well as blanks (preincubated as

the other flasks but filtered immediately after the addition

of Rb?) were prepared so as to match 0.1% DMSO intro-

duced with the drugs. It was established in a separate set of

experiments that 0.1 and 1% DMSO had no effect on the

activity of (Na?, K?)-dependent ATPase (cf. also [26–28]).

Statistical Analyses

Statistical analysis and line fitting was performed by

GraphPad Prism (San Diego, Ca USA). The same software

was used to prepare the Figs. 2, 3, 4, 5.

Fig. 1 Inhibition of D-aspartate-induced redistribution of GLAST by

rottlerin. The cultured astrocytes were labelled for GFAP (antibody

dilution 1:400, incubated for 2 h, followed by a 1 h incubation with

an AF 488 conjugated secondary anti-mouse antibody, green) and

GLAST (dilution 1:4,000, incubated for 2 h, followed by a 1 h

incubation with an AF 594 conjugated secondary anti-rabbit antibody,

red). The distribution of GLAST between the membrane and

cytoplasm was estimated in a group of control cells (exposed for

30 min to a solution containing neither D-aspartate nor rottlerin,

example: a; mean ± SD, n = 20, in d), in cells incubated in the

presence of 500 lM D-aspartate (example: b; mean ± SD, n = 11

in d), in the presence of both 500 lM D-aspartate and 50 lM rottlerin

(example: c; mean ± SD, n = 9 in d) or in the presence of 50 lM

rottlerin alone (mean ± SD, n = 10 in d, cf. also [39]). GLAST

distribution in the presence of D-aspartate is different from control

(*** P \ 0.001). In the presence of rottlerin, whether with or without

D-aspartate, GLAST distribution is not different from controls but it

differs (P \ 0.001) from that obtained with D-aspartate alone;

ANOVA, Newman-Keuls test, GrahPad Prism). All cells were

selected at random and the experiment was repeated three times with

different batches of cells, producing the same result. Some of the

results shown here have been presented as abstracts [41, 42]. Scale
bar is 20 lm. For interpretation of the references to color in this

figure legend, the reader is referred to the online version of this article
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Sources of Materials

Antibodies against GFAP was obtained from SIGMA

Chemical Company (St. Louis, Mo, USA), the AFC sec-

ondary antibodies were purchased from Bioscientific Pty

Ltd. (Sydney, Australia).

FCCP [370-86-5] (carbonyl-cyanide 4-(trifluorometh-

oxy)phenylhydrazone), wortmannine [19545-26-7] ((15,6bR,

9aS, 11R, 11bR) 11-(acetyloxy)-1,67,8,9a, 10,11,11b-octa-

hydro-1-(methoxymethyl)-9a, 11b-dimethyl-3H-furo[4,3,

2-de]indeno[4,5-h]-2-h]-benzopyrane-3,6,9-trione), olomou-

cin [101622-51-9] ((6-benzylamino)-2-(2-hydroxylethyla-

mino)-9-methylpurine) and staurosporine [62996-74-1]

(9S-(9a,10b,11b,13a)-2,3,10,11,12,13-hexahydro-10-meth-

oxy-9-methyl-11-(methylamino)-epoxy-1H,9H-diindolo[1,2,

3-gh:30,20,10-1 m]pyrrolo[3,4-j][1,7]benzodiazonin-1-one

were purchased from Tocris, (Bristol, UK); Rottlerin and

bisindolylmaleimide I (BIS I) came from Calbiochem

(La Jolla, CA, USA), ouabain, RbCl and all tissue culture

supplies were from Sigma Chemical Co (St. Louis, MO.,

USA). All other chemicals were of analytical grade and were

purchased from commercial suppliers.

Fig. 2 Effect of rottlerin on Rb? uptake by prisms of rat cortex.

Conditions: 25 mg tissue/10 ml, 15 min preincubation/10 min incu-

bation; 0.25 mM Rb?, 37�C, rottlerin concentrations 5 and 50 lM.

The data are expressed as ng of Rb? in the aqueous extract obtained

from the tissue prisms trapped on the filters at the end of the

experiment; mean ± SD of eight (control) or four (rottlerin and

blank) incubations, respectively. Controls and blanks contained 0.1%

of DMSO. *** different from control at P \ 0.001 by ANOVA using

Newman-Keuls test

Fig. 3 Effect of metabolic inhibitors on Rb? uptake by prisms of rat

cortex. The concentration of Rb? was 0.125 mM, For further details

and full chemical names of the inhibitors FCCP and CCCP see legend

of Fig. 1 and the sections on ‘‘Experimental Procedures’’ in the text

Fig. 4 Oxygen consumption by prisms of rat cerebral cortex in the

presence of drugs. Top panel: Data are single readings taken every

15 s and expressed as % of original value at t = 0 (immediately after

the transfer of tissue into the chamber). Tissue concentration was

50 mg, suspended in the volume of 5 ml. Temperature was 37�C.

Bottom panel: The values are slopes of the above lines calculated by

linear regression as the rate of change from the original O2

concentration per minute (D[O2]/min) and expressed as mean ± SD

(n = 41 for control and rottlerin, 34 for FCCP). ***significantly

higher than control by ANOVA using Newman-Keuls test
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Results

Exposure of cultured astrocytes to D-aspartate caused a

major redistribution of GLAST, significantly increasing the

presence of GLAST-like immunoreactivity in the cell

membrane (Fig. 1a, b). Quantitative analysis of the images

obtained by deconvolution microscopy indicated that the

value of RFI approximately doubled in the presence of

D-aspartate (Fig. 1d). Rottlerin at 50 lM strongly inhibited

this effect but, when applied alone, had no influence on the

GLAST distribution (Fig. 1c, d).

Uptake of Rb? by cortical prisms remained linear for at

least 12.5 min and was completely inhibited by 100 lM

ouabain [24]. A 10-min incubation time was, therefore,

used in all following studies of Rb? uptake by cortical

prisms. Rottlerin at 50 lM but not at 5 lM, caused about

50% inhibition of Rb? uptake by prisms of cerebral cortex

(Fig. 2). Staurosporin (1 lM), a broad spectrum inhibitor

of PKC, produced no significant inhibition (\12% differ-

ence from control, P [ 0.02 by Newman-Keuls test, data

not shown). Other drugs that had no effect on Rb? uptake

included an alternative broad spectrum PKC inhibitor BIS-

I (25 lM), cyclin-dependent kinase inhibitor olomoucin

[29] (50 lM) and the inhibitor of IP3 signalling cascade

Wortmannin (10 lM). However, FCCP and CCCP (both at

50 lM), two metabolic inhibitors known to act through

uncoupling of mitochondrial oxidative phosphorylation,

significantly inhibited Rb? uptake (Fig. 3). Furthermore,

rottlerin at 50 lM produced a significant increase in the

oxygen consumption by brain slices that amounted to

almost half of that caused by 50 lM FCCP (Fig. 4).

In the experiments with cultured astrocytes, the con-

centration of Rb? in the incubation medium was increased

to 500 lM. Under these conditions, uptake of Rb?

remained linear for at least 5-min (Fig. 5a). This time-point

was, therefore, used when testing drugs. Rottlerin (50 lM)

produced significant inhibition of Rb? uptake under these

condition (Fig. 5b).

Discussion

Immunocytochemical experiments in the present study

confirmed that GLAST expressed by brain astrocytes can

be rapidly redistributed from cytoplasmic pools towards

the plasma membrane in the presence of D-aspartate [8].

These observations suggest that the redistribution depends

on the activity of GLAST as a transporter since D-aspartate

is known to be efficiently transported by GLAST (see [1, 2,

30, 31] for reviews). Similar conclusions have been made

on the basis of observations from studies using alternative

experimental approaches but the explanation of the

mechanism at a molecular level has remained elusive

[32, 33]. The possibility of involvement of PKC-dependent

phosphorylation has been raised but the role of PKC-d in

the process has been put in doubt following a report that the

PKC-d specific inhibitor rottlerin might influence glu-

tamate transport by an unknown PKC-d independent

process [6].

Rottlerin is the most powerful toxic compound isolated

from Kamala (Mallotus philippinensis, found chiefly in the

Philippines, also in South East Asia, India and Australia

[34–36]). The present findings, particularly the combina-

tion of decreased Rb? uptake and increased oxygen con-

sumption are consistent with rottlerin acting as an

uncoupler of oxidative phosphorylation (‘‘metabolic poi-

son’’) in brain tissue in vitro. Furthermore, it has been well

Fig. 5 Uptake of Rb? by astrocytes cultured from neonatal rat

cortex. Conditions: 10 min preincubation followed (in experiments

shown in panel B) by 5 min incubation in the presence of Rb?;

temperature 37�C, drug concentrations: ouabain 100 lM, rottlerin

50 lM. The points (uptake expressed as nmol Rb? related to the

amount of protein recovered from the sample) are means of two to

four values (panel A), or means ± SEM (n = 6 for controls, n = 4

for drugs). * different from controls at P \ 0.05 by ANOVA using

Newman-Keuls test
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established that uptake of Rb? correlates with and, can be

used as a measure of, (Na?, K?)-dependent ATPase

activity in preparations containing intact metabolizing cells

[12, 24]. Therefore, present data also suggest that rottlerin

exerts some of its effects by inhibiting (Na?, K?)-depen-

dent ATPase. This could explain the PKC-d-independent

effects of rottlerin on glutamate transport activity and its

sequelae such as the changes in the activity-dependent

redistribution of GLAST transporter [6]. Alternatively the

apparent inhibition of (Na?, K?)-dependent ATPase

activity (decreased Rb? uptake) could be secondary to

decreased availability of ATP caused by the metabolic

toxicity of rottlerin [37]. Additional data (not shown) have,

however, indicated that rottlerin can significantly inhibit

(Na?, K?)-dependent ATPase activity even in cell-free

homogenates prepared from rat brain astrocytes cultured by

the presently described methods. In these experiments, an

established technique based on liberation of inorganic

phosphate (Pi) from ATP [38]; was used. About 80% of

ATPase activity in this preparation was inhibited by rott-

lerin and the half-maximum inhibition was reached at

25.3 ± 7.1 lM inhibitor concentration (mean ± SEM, six

inhibitor concentration in the range 5–200 lM, four points

per each concentration). The liberation of Pi was also

inhibited by (Na?, K?)-dependent ATPase inhibitor

digoxin but much less so by ouabain, suggesting that (Na?,

K?)-dependent ATPase in the presently used astrocyte

membranes has a subunit composition different from that

in astrocytes employed in similar studies elsewhere [12]

(see also [8]).

Thus, we conclude that the apparent inhibition of glu-

tamate transport by rottlerin [4, 6] can be adequately

explained by perturbed energy metabolism (regardless of

potential involvement of any additional rottlerin-related

mechanisms [39, 40]). Uncoupling of oxidative phosphor-

ylation would result in decreased levels of ATP and the

ensuing reduction of the activity of (Na?, K?)-dependent

ATPase (possibly further compounded by a direct inhibi-

tory effect on the enzyme). As the membrane-bound (Na?,

K?)-dependent ATPase represents the ‘‘Na?, K?-pump’’

that normally maintains the ionic gradients providing the

driving force for glutamate transport, the present findings

can explain why the effects of rottlerin on glutamate

transport appear to be unrelated to the inhibition of PKC-d
[6]. Loss of the driving force would not only cause an

apparent inhibition of glutamate transport but, since the

cellular distribution of transporters, GLAST in particular,

depends on the activity of glutamate transport [5, 32, 33], it

would also result in the reduction of the activity dependent

movement of GLAST from cytoplasm to the surface of the

cells [32]. In addition, the present observations should be

taken into account whenever rottlerin is employed as a tool

to selectively inhibit PKC-d in preparations derived from

the central nervous system, particularly if there is a pos-

sibility that the outcome of the study could be influenced

by changes in energy metabolism.
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