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Abstract The SAMP8 strain spontaneously develops

learning and memory deficits with characteristics of aging,

and is a good model for studying the mechanism of cog-

nitive dysfunction with age. Oxidative stress occurs

systemically in SAMP8 from early on in life and increases

with aging. Neuropathological changes such as the depo-

sition of Ab, hyperphosphorylation of tau, impaired

development of dendritic spines, and sponge formation,

and neurochemical changes were found in the SAMP8

brain. These changes may be partially mediated by oxi-

dative stress. Oxidative damage is a major factor in

neurodegenerative disorders and aging. A decline in the

respiratory control ratio suggesting mitochondrial dys-

function was found in the brain of SAMP8. The rise in

oxidative stress following mitochondrial dysfunction may

trigger neuropathological and neurochemical changes,

disrupting the development of neural networks in the brain

in SAMP8.

Keywords Aging � Alzheimer’s disease � Dementia �
Genetics � SAM � Spine formation � Mitochondrial
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Introduction

The senescence-accelerated mouse (SAM) was originally

derived from AKR/J strain, litters of which showing

characteristic of aging such as hair loss, lack of glossiness,

skin coarseness, and a short life span were selected as the

progenitors of the senescence-prone series (P series). Lit-

ters in which the aging process was normal were also

selected as the progenitors of a senescence-resistant series

(R series). Offspring of these progenitors, P series and R

series, were mated by selective breeding to establish inbred

strains as SAMP and SAMR strains, respectively. There-

after, SAMP strains that spontaneously develop accelerated

senescence and specific pathologic phenotypes and SAMR

strains that show normal aging were established [1].

SAMP8, one of the prone strains of senescence-accel-

erated mice, is known as a model of senile dementia. These

animals exhibit age-related deficits of learning and memory

from an early age. Previous studies by ourselves and others

revealed reduction in the amounts of neurotransmitters

released from brain slices [2, 3], decreases in levels of

muscarinic acetylcholine, and serotonine-1A and NMDA

receptors [4, 5], and decreases in protein kinase C [5, 6]

and synaptic spine density [7]. Genes related to Alzhei-

mer’s disease (AD) were found in the SAMP8 brain [8],

and b-amyloid (Ab) deposits were found in the brains of

aged SAMP8 mice [9, 10]. Abnormal granular structures,

which stained positively with periodic acid-Schiff (PAS-

positive granular structures; PGS), have also been observed

in the SAMP8 brain [11]. In addition, spongiform degen-

eration due to the demyelinisation of neurons was found in

the brainstem and arcuate nucleus of the hypothalamus

[12]. These changes may be contributed to the decline of

cognitive function in SAMP8 mice. However, the mecha-

nism underlying the development of learning and memory
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deficits is not clear. Recently, genetic analysis to detect the

genes responsible for the cognitive dysfunction in SAMP8

revealed that a small number of genes are related to the

impaired development of learning and memory [13, 14]

and that mitochondrial genes are abnormally expressed in

the brain [15]. In this review, the current findings from

neurochemical, neuropathological, and genetic studies are

summarized.

Neuropathological Changes in Brain of SAMP8

SAMP8 mice spontaneously develop deficits of learning

and memory at a young age, and the impairment worsens

with age. Learning and memory in the SAMP8 strain has

been assessed using several paradigms, including water-

maze, T-maze, passive avoidance, and one-way active

avoidance tests, with declines in cognitive function evident

at 2 months of age, and significantly at 4 months as com-

pared with normal aging SAMR1 mice [16]. In an

immunoblot analysis, we found that amyloid precursor

protein (APP)-like protein was increased with age in the

brain of SAMP8, associated with an increase in gliosis and

glial fibrillary acidic protein (GFAP) [9]. Recently,

Takemura et al. [17] found that b/A4 protein-like immu-

noreactive granular structures (b-LIGS) increased with age

using a polyclonal antibody to b/A4 protein fragments 10–42

in SAMP8 and SAMR1. b-LIGS occur throughout the

brain, including in the medial septum, cerebral cortex,

hippocampus, cerebellum, and cranial nerve nuclei, and

significantly increase in number and density with age in

SAMP8. Morley et al. [10] reported age-related increases

in protein and mRNA levels of APP in the hippocampus of

SAMP8 mice. However, in a study using immunocyto-

chemistry, Ab plaque was detected in the hippocampus of

SAMP8 mice by 16 months of age, but no neuronal loss or

apoptosis was detected in the hippocampus. No neuronal

loss was seen in APP transgenic mice either [18, 19]. This

suggests that there may be an apoptosis-resistant factor in

the mouse or an additional pathological factor other than

Ab contributes to the massive neuronal loss in AD [19].

The deposition of Ab is a major pathological hallmark of

AD. Level of APP and its mRNA are increased in AD. The

accumulation of Ab (1–42) is considered to be a cause of AD.

Therefore, a reduction in the amount of Ab (1–42) accu-

mulated might lead to a cure. When anti-sense oligonucleo-

tide for Ab was administrated intracerebroventricularly into

the brain of SAMP8 mice, a reduction in the level of APP

protein in the amygdale, septum, and hippocampus, a

decrease in protein oxidation and lipid peroxidation, and an

improvement of deficits in learning and memory were

observed [20, 21]. Furthermore, immunotherapy with anti-

Ab antibody performed in APP transgenic and SAMP8 mice

resulted in a reduction in the amount of Ab deposited and a

reversal of learning and memory deficits [22, 23].

Another hallmark of AD is the formation of neurofi-

brillary tangles (NFTs). NFTs develop as a result of the

accumulation of hyperphosphorylated tau. Recently,

Canudas et al. [24] reported that tau is hyperphosphoryl-

ated in the cortex, striatum, and hippocampus of 5-month-

old SAMP8 compared with age-matched SAMR1.

Glycogen synthase kinase-3b (GSK-3b) is one of the most

implicated tau kinase involved in Alzheimer-like tau

hyperphosphorylation [25–27]. However, the activity of

GSK3b in the SAMP8 brain did not differ from that in the

SAMR1, but the level of Cdk5 was higher in SAMP8 than

SAMR1. Tau hyperphosphorylation was accompanied by

an increase in Cdk5/p25 activity and an increase in Cdk5

expression, indicating a direct relationship between phos-

phorylation enzyme activities in the aging process in this

senescence model [24]. A higher level of a-synuclein was

also found in the brain of SAMP8 mice [28]. a-Synuclein is

a potent inducer of tau hyperphosphorylation in neurode-

generative disorders [28, 29]. Oxidative stress is known to

be directly associated with increases in the concentration of

a-Ssynuclein [30]. Since the weak activity of antioxidant

enzymes and the oxidative state are potentiated in SAMP8,

abnormal phosphorylation of tau and increases in the

a-synuclein level may be mediated in part by the produc-

tion of reactive oxygen species (ROS) [28].

Neurochemical and Morphological Changes

in the SAMP8 Brain

Neurochemical changes in the brains of SAMP8 mice have

been reported by previously. We investigated the N-methyl-

D-aspartic acid (NMDA)-evoked [3H] acetylcholine (ACh)

and noradrenaline (NA) release from brain slices and age-

related changes of the release in SAMP8 and SAMR1 mice.

The NMDA (1 mM)-evoked [3H] ACh release did not

change in SAMR1 between 2 and 14 months of age.

However, it decreased markedly in SAMP8 at 6 and

14 months old [3]. Also, the NMDA (100 lM)-evoked [3H]

NA release in SAMR1 was constant at 1–12 months of age,

whereas, in SAMP8, it showed a sharp decline at 6–

12 months old [2]. These neurochemical changes reflect

age-related impairments of learning and memory in SAMP8

mice. Moreover, binding assays of muscarinic ACh (M1)

receptors and NMDA receptors in the cerebral cortex,

hippocampus, and cerebellum of SAMP8 mice demon-

strated that numbers of M1 and NMDA receptors were

decreased in the hippocampus at 2 and 12 months of age,

and in the cerebral cortex at 12 months of age [7]. Amounts

of protein kinase C (PKC) in the cytosol and membrane

were also significantly reduced in the hippocampus of
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SAMP8 at age 12 months [7]. Armbrecht et al. [6] also

reported that levels of PKC-gamma and calbindin in the

hippocampus of SAMP8 decreased markedly with age, and

the level of PKC-gamma was well correlated with a decline

in learning ability assessed using the T-maze. These results

suggest that the loss of calbindin decreases intracellular

Ca2? levels and changes in Ca2? homeostasis, resulting in

an alternation of Ca2?-dependent protein kinase activity.

All these findings indicate a decrease in synaptic activity in

the hippocampus of SAMP8.

In the hippocampal neurons, cyclic AMP-response ele-

ment binding protein (CREB) is phosphorylated by protein

kinase A (PKA), PKC, Ca2?/calmoduline-dependent kinase

(CaMK) II, and CaMKIV following Ca2? influx through the

NMDA receptors [31–34]. CREB plays an important role

for synaptic plasticity and long-term memory (LTM) for-

mation. Phosphorylated CREB (p-CREB) is essential for

lasting late-phase long-term potentiation (L-LTP), which is

considered to be important for the promotion of gene

expression and synaptic spine formation [31, 35–37]. We

investigated CREB phosphorylation in the hippocampal

CA1 neurons of SAMP8. Figure 1 shows the time-course

changes of p-CREB in the hippocampal CA1 region of

SAMP8 and SAMR1 at 2-month-old after electric shocks by

a step-through passive avoidance apparatus. SAMR1

showed a biphasic peak of CREB phosphorylation at 3 and

12 h [38]. These two peaks were also observed in step-down

avoidance and forced swimming tasks using normal rats

[39, 40]. In contrast, one slight peak at 9 h was observed in

the hippocampus of SAMP8 (Fig. 1). CREB phosphoryla-

tion produces a biphasic peak during hippocampal LTP

[41]. Mutant mice, with defective NMDA receptor,

CaMKII, and PKC genes, do not exhibit early-phase LTP

(E-LTP) in the hippocampus [42–44]. In contrast, CREB

knockout mice were deficient in the hippocampal L-LTP

and LTM [45]. In the hippocampus of SAMP8, E-LTP was

not occurred and L-LTP was decremented in short. This

may be associated with a decrease in the NMDA receptors

and PKC in the hippocampus of SAMP8.

The remodeling of synaptic structures and the formation

of new synaptic contacts are necessary for learning and

memory. L-LTP induces dendritic spine formation [37].

Sugiyama et al. [7] reported a decrease in the number of

dendritic spines in the hippocampal CA1 pyramidal cells of

SAMP8. This may be due to a transient L-LTP by an

impairment of CREB phosphorylation in the hippocampus

of SAMP8. In addition, hippocampal synaptic spine density

is affected by hormones [46]. Apical dendritic spine density

of female rats was greater in proestrus than estrus in the

hippocampal CA1 pyramidal cells. Synaptic spine density

of ovariectomized (OVX) animals decreased with the

depletion of estrogen [47]. OVX animals treated with

estrogen showed an increase in synaptic spine density in the

hippocampal CA1 neurons [46, 47]. In addition, estrogen

induces new spines to form, but not dendritic lengthing or

branching [47, 48]. Shors et al. [49] reported that there are

sex differences in hippocampal spine density correlated

with sex hormones, estrogen and testosterone. In the hip-

pocampal CA1 pyramidal cells of SAMP8, the number of

dendritic spines was smaller in females than males [7]. This

might reflect the sex difference in the learning and memory

ability of SAMP8: deficits in learning and memory are more

severe in females than males (Fig. 2). It has been reported

that the mRNAs of both estrogen receptor (ER) isoforms

(ERa and ERb) are expressed in the hippocampal neurons

[50], and that levels of ERb mRNA are higher than ERa
mRNA in the cerebral cortex and hippocampus [51]. ERb
was also localized in the membrane of synapses in the

hippocampal neurons [52]. Recently, the function of ERa
and ERb in the brain has been investigated using knockout

mice. It has been demonstrated that ERb is required for

emotional behavior and spatial learning [53, 54], and that

the phosphorylation of CREB in the hippocampal CA1

neurons is blocked completely in ERb knockout mice [55].

Recently, Zhou et al. [56] reported age-related changes of

ERa and ERb gene expression in the hippocampus of

SAMP8. The ERa gene in the hippocampus is constantly

expressed at 3–15 months of age in both male and female

SAMR1 and SAMP8, and no differences in the expression

in both strains were observed. However, ERb gene

expression in the hippocampus decreased with age in both

sexes in SAMR1 and SAMP8, and the level of ERb mRNA

in SAMP8 at 9–15 months was significantly lower than that

in age-matched SAMR1. In our study, a significant reduc-

tion of ERb gene expression was also observed in the

hippocampal CA1 neurons of SAMP8 at 2 months of age as

C 1h 3h 6h 9h 12h C 1h 3h 6h 9h 12h 

8PMAS1RMAS

R
el

at
iv

e 
de

ns
ity

 in
 p

-C
R

E
B

0

1

2

3

4

* * **

Fig. 1 Time-course of changes in the level of p-CREB in the

hippocampal CA1 region after electric shock. Values represent

means ± SEM *P \ 0.05, **P \ 0.01 versus control (C: non-

shocked mice)
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compared with age-matched SAMR1, but not in the cere-

bral cortex (data not shown). Also, the level of ERb mRNA

in the hippocampus was well correlated with learning and

memory ability in SAMP8 (data not shown). These results

suggest that an impairment of CREB phosphorylation

occurred with the alteration by neurochemicals of the

NMDA receptor, CaMKII, and PKC. These changes may be

associated with ERb, resulting in a deficiency in the for-

mation of dendritic spines in hippocampal pyramidal cells.

Oxidative Stress and Dietary Interventions in SAMP8

Oxidative stress is considered to be a causal factor of aging

and the development of various diseases. A higher oxida-

tive state has been detected in various organs of SAMP

strains compared with normal aging SAMR1. It has been

reported that the levels of lipid hydroperoxide and protein

carbonyl increased with age and were higher at an early age

in the brain, liver, and heart of SAMP8 compared with

SAMR1 [57–61]. In contrast, the activities of antioxidant

enzymes, superoxide dismutase (SOD), catalase, and glu-

tathione peroxidase (GPx), are decreased in the cerebral

cortex, hippocampus, and liver of SAMP8 [57, 62, 63].

These results suggest that the level of oxygen free radicals

is systemically increased in SAMP8. In aged SAMP8, a

decrease in the respiratory control ratio was found in the

liver mitochondria, suggesting insufficient synthesis of

ATP [64]. A higher redox state and greater activity for

mitochondrial respiration with a lower respiration control

ratio were found in the brain of SAMP8 at 2-month-old

compared to age-matched SAMR1 [65]. Xu et al. [66]

reported a significant decrease in platelet mitochondrial

membrane potential (Dwm) in 2–9-month-old SAMP8 and

hippocampal ATP in 6–9-month-old mice. In addition,

mitochondrial DNA deletion was increased in the brain of

SAMP8 at 4–8 weeks of age [67]. These results suggested

that mitochondrial dysfunction occurred from a relatively

early stage of life in SAMP8.

Free radical scavengers can be used to prevent oxidative

damages to various organs. The administration of N-tert-

butyl-a-phenylnitrone as a spin-trapping antioxidant

reduced lipid peroxide and protein carbonyl levels in the

cerebral cortex [68] and prolonged life span [69] of

SAMP8. It has been reported that a reduction in spatial

cognition in the water maze task was correlated with an
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Fig. 2 Age-related changes in

learning and memory abilities in

SAMP8. Learning and memory

abilities in SAMP8 mice were

assessed using step-through

passive avoidance apparatus. a
Age-related changes in the

mean retention time of SAMP8

mice. The values are

mean ± SEM *significantly

different from the mean value of

females at 5 months of age

(P \ 0.05; t-test). b Severity of

learning and memory deficits at

different ages in male and

female SAMP8 mice. Retention

times were classified into the

following three grades: severe

impairment, 0–99 s; moderate

impairment, 100–199 s; mild

impairment, 200–299 s
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increased amount of protein carbonyl in the cerebral cortex

of aged mice [70], and that the administration of antioxi-

dants improved memory impairment in the behavioral tests

such as passive avoidance and radial-arm maze tests in old

mice and gerbils [71–73]. The administration of a-lipoic

acid and N-acetylcysteine reversed cognitive dysfunction

in T-maze footshock avoidance and reduced oxidative

stress in the brain of 12-month-old SAMP8 [60]. In addi-

tion, administration of di-n-propyl trisulfide, an

organosulfur constituent of onion, reduced lipid hydroper-

oxide levels in the hippocampus and ameliorated

impairments of learning and memory in aged SAMP8 [74].

Thus, these results suggest that antioxidant interventions

are applicable for prevention of aging and cognitive dys-

function in SAMP8.

Caloric restriction (CR) prolongs life span in C. elegans

and rodents [75–78] and reduces the risk factor of diseases

in rodents and humans [79–82]. Recently, evidence sup-

porting a potential neuroprotective role for CR was

obtained using an aminal model of AD (Tg2576 mice). The

development of AD-type amyloid plaques in the neocortex

and hippocampus of Tg2576 mice was completely pre-

vented by a low carbohydrate diet. The low carbohydrate

diet increased in 30% ADAM10 (a disintegrin and

metalloproteinase) concentration with the elevation of

neocortical a-secretase activity [83]. CR is known to

reduce oxidative stress [84]. It has been reported that CR

decreased levels of ROS generated in mitochondria and

oxidative damage to DNA, protein, and lipid [85–91].

Hyun et al. [92] reported that CR increased activities of

plasma membrane redox system enzymes (NADH-ascor-

bate free radical reductase, NADH-quinone oxidoreductase

1, NADH-ferrocyanide reductase, NADH-coenzyme Q10

reductase, and NADH-cytochrome c reductase) and anti-

oxidant levels (a-tocopherol and coenzyme Q10) in the

brain of rats during aging. In SAMP8 mice, levels of ROS

were significantly lower in the CR group than normal diet

group. In contrast, levels of SOD activity were higher in

the CR group. CR also markedly reduced the grading score

of senescence and prolonged the life span of SAMP8 by

about 30% [93]. Moreover, learning and memory impair-

ments in SAMP8 were ameliorated by the administration of

a CR diet in a passive avoidance apparatus. Interestingly,

CR affects the metabolism of neurotransmitters in the brain

of SAMP8 [94]. The levels of dopamine and serotonin

were significantly increased in the cortex and hippocampus

of the CR group. The acetylcholine level was also

increased in the hippocampus of the CR group. This change

was consistent with the increased ChAT activity in the CR

group. The generation of ROS was reduced in the brain of

SAMP8 given the CR diet. Thus, dietary restriction may be

another intervention for the possible prevention of aging

and neurodegenerative disorders.

Heredity and Gene Expression Profiling in SAMP8

Molecular genetic characterization of the SAM strains was

performed using 27 biochemical and immunogenetic

markers, and 74 endogenous murine leukemia virus

(MuLV) proviral markers. A comparison of the panels of

provirus loci revealed that all the SAM strains genetically

resemble, but are distinguishable from one another, and

that all strains are clearly different from the parental AKR/J

strain. These findings indicate SAM strains to be a group of

recombinant inbred or related inbred strains developed by

some accidental out-breeding between AKR/J and one or

more unknown strains [95, 96]. Furthermore, Xia et al. [97]

performed genotyping of the SAM strains with 581

microsatellite markers. Genomic DNA was extracted from

males of the SAM strains and AKR/J at 3 months of age,

and amplified by PCR with microsatellite markers. Com-

parison of the distribution of the alleles of loci among the

SAMP and SAMR series revealed a notable difference in

D4Mit54, D14Mit92, D16Mit30, and D17Mit176. Estima-

tion of genetic similarity between two inbred strains based

on the percentage of loci with identical alleles revealed

high similarity among the SAMR1, SAMR3A, and

SAMR4 strains and between SAMP7 and SAMP9. There-

fore, it is possible that some of these four chromosomal

regions contain the genes responsible for accelerated

senescence in the SAMP strains.

SAMP strains spontaneously develop accelerated

senescence and specific pathological characteristics. To

obtain information on heredity for SAMP strains, we

investigated the inheritance of cognitive dysfunction in

SAMP8 [14]. SAMP8 was crossed with Japanese fancy

mouse 1 (JF1) normal mice to obtain F1, F2, and backcross

generations. Memory retention times of the F1, F2, and

backcross generations at 5 months of age were intermedi-

ate between those of the parent strains (Table 1). The

incidence of learning and memory deficits (LMD) in the F2

generation was 70% in males and 76% in females

Table 1 Mean retention time for 5-month-old males and females in

each generation

Generation Retention time (s)

Male Female

P8 138 ± 28 61 ± 15*

JF1 461 ± 46 451 ± 37

F1 240 ± 19 246 ± 18

F2 213 ± 17 209 ± 16

BC1 (F1 9 P8) 194 ± 36 108 ± 16*

BC2 (F1 9 JF1) 346 ± 35 363 ± 32

The values are presented as the mean ± SEM

* Significantly different from the males (P \ 0.05; t-test)
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(Table 2). This result is in good agreement with a 3:1

segregation. In the backcross generation, the incidence of

LMD was 44% in males and 43% in females, and the

segregation ratio of LMD to normal was 1:1. These results

suggest the presence of a single major gene for LMD that

may be an incomplete dominance. If LMD in SAMP8 is

regulated by only one gene, the distribution of memory

retention time in the F2 generation would show a bimodal

distribution. However, the distribution was broad. This

suggests that more than one gene is involved in the

development of LMD. Also, the estimation of gene num-

bers controlling LMD was 1.64–3.58. Therefore, these

results suggest that at least 2–4 genes are involved in the

inheritance of LMD in SAMP8. In another study, the

number of genes involved in LMD in SAMP8 was esti-

mated by using successive backcross mating between

SAMP8 and CD-1. The result showed that a few genes may

play a major role in the pathogenesis of the cognitive

deterioration of SAMP8 [13]. This number matched to our

data. Thus, it is possible that relatively few genes are

involved in the age-related cognitive dysfunction in

SAMP8.

Moreover, to clarify the genes involved in age-related

memory dysfunction in SAMP8, a quantitative trait loci

(QTL) analysis was performed with SAMP8 and JF1 nor-

mal mice. The analysis demonstrated significant LOD

scores for D1Mit178 on chromosome 1, D12Mit150 on

chromosome 12, D13Mit 228 on chromosome 13, and

D15Mit136 and D15Mit120 on chromosome 15 in SAMP8

[98]. These four chromosomes are different from the

chromosomes found by Xia et al. [97]. Wei et al. [8]

reported that AD-related genes such as those for bAPP,

PS2, APOE, tau, IL-1b, IL-6, and TNF-a are abnormally

expressed in the brain of SAMP8. However, these genes

did not match our QTLs. Interestingly, the QTL on chro-

mosome 1 had different effects on cognitive function

depending on genotype and sex. Cognitive dysfunction

derived from SAMP8 alleles in the QTL on chromosome 1

is more severe in female homozygous (P8/P8) than male

homozygous (P8/P8) mice. This sex difference was seen

only in homozygous (P8/P8) mice, not in the heterozygous

(JF1/P8) and homozygous (JF1/JF1) mice [98]. Thus, the

sex difference of LMD in SAMP8 may be due to hormonal

effects on chromosome 1.

Recently, gene-expression profiling was performed on

young and old SAMP8, SAMP10, SAMR1 and C57BL/6J

[99]. Retina, hippocampus, and spleen were removed from

the four strains, and total RNA was extracted. Analysis of

the genes whose expression changed with aging in each

strain revealed that one gene, encoding complement com-

ponent 4 (C4), changed with age in the hippocampus of all

four strains, and that seven genes increased in C57BL/J and

at least one SAM. Also, the expression of two genes was

downregulated with aging in all three SAM strains. The

majority of the genes altered during aging (65%) were

specific to one of four strains. In addition to the C4 gene,

another gene changed during aging in all strains. The

expression of phosphatidylserine decarboxylase (PSDC)

was upregulated in the retina of all aged strains and in the

hippocampus of aged SAMP8, SAMR1, and C57BL/J. This

gene encodes an enzyme located in the inner mitochondrial

membrane that is involved in the biosynthesis of phos-

pholipids. Thus, it is possible that the upregulation of

PSDC expression provides a mechanism to compensate for

oxidative damage to membranes in the central nervous

system [100]. A genome-wide evaluation of the genes

differentially expressed between SAMP8 and the other

strains revealed 61, 69, and 82% of the genes to be

upregulated in the hippocampus of SAMR1, SAMP10, and

C57BL/J, respectively, whereas, 46% of genes were

upregulated with age in the hippocampus of SAMP8. These

same trends were seen in the retina. The SAMP10,

SAMR1, and C57BL/J strains showed upregulation of at

least 80% of genes. However, only 24% of genes were

upegulated in the retina of SAMP8. These results suggest

SAMP8 to have an abnormal transcriptional response to the

aging process. Thus, it is possible that SAMP10 mice

exhibit an acceleration of certain normal molecular

responses to aging, while SAMP8 mice exhibit a mal-

function of normal transcriptional responses.

In another study, the differential gene expression related

to cognitive deterioration with aging between SAMP8 and

SAMR1 was profiled [15]. Of 91 differentially expressed

genes, 50 were upregulated and 41 were downregulated in

the hippocampus of SAMP8 at 12 months of age compared

with age-matched SAMR1. Mitochondrial genes such as

those for cytochrome c oxidase subunit I (MTCO1),

MTCO3, and ubiquinol-cytochrome c reductase subunit

(UQCRFS1), the genes involved in the cell skeleton such

as those encoding dynein cytoplasmic heavy chain 1,

kinectin, and neurofilament protein L, and also tyrosine

familiy protein kinases such as Eph receptor B6 and neu-

rotrophic tyrosine kinase receptor type 2 were significantly

upregulated in the hippocampus of SAMP8 compared with

Table 2 Incidence of LMD in 5-month-old males and females in

each generation

Generation Incidence of memory impairment (%)

Male Female

P8 89 100

F1 65 72

F2 70 76

BC1 (F1 9 P8) 81 88

BC2 (F1 9 JF1) 44 43
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SAMR1, whereas, CaMKIIA and Map41k6-pending genes

involved in memory formation such as LTP and the growth

of dendritic spines are downregulated in the hippocampus

of SAMP8 compared with SAMR1 [15]. These results

indicate the functions of mitochondria and cytoskeleton to

be impaired in the brain of SAMP8. This data is consistent

with the neurochemical data showing a high redox state

and abnormal spine formation in the brain of SAMP8 [8,

38, 57–59]. Taken together, these results suggest that the

genes abnormally expressed in SAMP8 are closely asso-

ciated with the cognitive dysfunction of SAMP8 [15].

Conclusion

SAMP8 is a useful animal model of senile dementia.

Neurochemical and morphological data show that the

SAMP8 brain partially mimics the pathogenesis of AD.

But, the mechanism underlying the development of LMD

in SAMP8 is not fully understood. In this review, we dis-

cussed the morphological changes of neurons by

neurochemical alterations, possible therapeutic interven-

tions, and the heredity of SAMP8. Recent genetic analyses

revealed that genes related to mitochondria and the cyto-

skeleton is abnormally expressed in the brain in SAMP8.

This suggests that ROS may be generated early on in life,

resulting in insufficient formation of the neural network

due to oxidative damage in the brain. However, antioxi-

dants helped to remedy the aging and neuronal damage

from oxidative stress in SAMP8. Also, CR may be a good

intervention for protecting neurons from oxidative damage.

A possible mechanism underlying the development of

cognitive dysfunction in SAMP8 is shown in Fig. 3.

Abnormal gene expression may trigger the deposition of

Ab, mitochondrial dysfunction, and neurochemical chan-

ges. Then, an increase in oxidative stress with age due to

Ab and mitochondrial dysfunction also induces neuro-

chemical changes. These changes may lead to shortcoming

in the formation of dendritic spines and neural networks,

resulting in cognitive dysfunction in SAMP8.
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