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Abstract Hydrogen sulfide (H2S) has been reported to

exert pharmacological effects on neural and non-neural

tissues from several mammalian species. In the present

study, we examined the role of the intracellular messenger,

cyclic AMP in retinal response to H2S donors, sodium

hydrosulfide (NaHS) and sodium sulfide (Na2S) in cows

and pigs. Isolated bovine and porcine neural retinae were

incubated in oxygenated Krebs buffer solution prior to

exposure to varying concentrations of NaHS, Na2S or the

diterpene activator of adenylate cyclase, forskolin. After

incubation at different time intervals, tissue homogenates

were prepared for cyclic AMP assay using a well estab-

lished methodology. In isolated bovine and porcine retinae,

the combination of both phosphodiesterase inhibitor,

IBMX (2 mM) and forskolin (10 lM) produced a syner-

gistic increase (P \ 0.001) in cyclic AMP concentrations

over basal levels. NaHS (10 nM–100 lM) produced a

time-dependent increase in cyclic AMP concentrations

over basal levels which reached a maximum at 20 min in

both bovine and porcine retinae. At this time point, both

NaHS and Na2S (10 nM–100 lM) caused a significant

(P \ 0.05) dose-dependent increase in cyclic AMP levels

in bovine and porcine retinae. For instance, NaHS

(100 nM) elicited a four-fold and three-fold increase in

cyclic AMP concentrations in bovine and porcine retinae

respectively whilst higher concentrations of Na2S

(100 lM) produced a much lesser effect in both species. In

bovine and porcine retinae, the effects caused by forskolin

(10 lM) on cyclic AMP production were not potentiated

by addition of low or high concentrations of both NaHS

and Na2S. We conclude that H2S donors can increase

cyclic AMP production in isolated neural retinae from

cows and pigs. Bovine retina appears to be more sensitive

to the stimulatory effect of H2S donors on cyclic nucleotide

production than its porcine counterpart indicating that

species differences exist in the magnitude of this response.

Furthermore, effects produced by forskolin on cyclic AMP

formation were not additive with those elicited by H2S

donors suggesting that these agents may share a common

mechanism in their action on the adenylyl cyclase pathway.
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Introduction

In the past decade, interest in the non-toxic actions of

hydrogen sulfide (H2S) has led to several studies aimed at

elucidating its potential physiological and pathological

effects in mammalian tissues. H2S, a colorless gas char-

acterized by its pungent odor (commonly described as the

smell of rotten eggs) has been known for decades only as

an environmental pollutant with a broad toxicity spectrum

[1, 2]. Recently, there is evidence that this ‘‘toxic’’ gas can

serve as an endogenous neurotransmitter, a smooth muscle

relaxant and a regulator of immune reactions [1–4].

Endogenous H2S is generated in mammalian tissues from

L-cysteine, a reaction catalyzed by two endogenous

pyridoxal-50-phosphate dependent-enzymes, cystathionine-

b-synthase (CBS) and cystathionine-c-lyase (CSE) [5–8],

and is a component of foodstuffs, human feces [9, 10] and

a product of bacterial and helminth metabolism [11, 12].

In the eye, the presence of the enzymes (CBS and CSE)

responsible for H2S biosynthesis has recently been reported

in ocular tissues [13, 14]. Both CBS and CSE were shown

to be highly localized in the retina indicating the presence

of a functional trans-sulfuration pathway and thus sug-

gesting a potential role of H2S as a gaseous neuromodu-

lator in this tissue. In the eye, toxicity associated with

exposure to lethal concentrations of H2S is mostly at the

mucus membrane level leading to keratoconjunctivitis [15].

Furthermore, studies have reported that deficiency of CBS

is often associated with many eye disorders including ret-

inal degeneration, retinal detachment, optical atrophy and

glaucoma [16, 17]. Evidence from our laboratory demon-

strate that H2S (using sodium hydrosulfide, NaHS and

sodium sulfide, Na2S as donors) can induce pharmacolog-

ical effects in mammalian ocular tissues [18–20]. We found

that both NaHS and Na2S relaxed pre-contracted isolated

porcine irides [18] and inhibited sympathetic and gluta-

matergic neurotransmission from isolated porcine and

bovine anterior uvea and retina, an effect that was shown to

be dependent on intramural biosynthesis of this gas

[19, 20].

In the cardiovascular system, the pharmacological

effects of H2S has been reported to be mediated largely by

ATP-sensitive potassium channels (KATP) [21, 22]. How-

ever, in neuronal tissues H2S has been shown to stimulate

the production of adenosine 30,50 cyclic monophosphate

(cyclic AMP) and thus activate cyclic AMP-dependent

processes [23]. Cyclic AMP is an intracellular second

messenger that plays an essential role in numerous neuro-

nal functions such as cell survival, axon regeneration and

modulation of axonal guidance [24, 25]. Taken together, it

appears that both KATP channels and cyclic AMP may

mediate the pharmacological actions of H2S in mammalian

tissues. In the present study, we examined the effect of H2S

(using NaHS and Na2S as donors) on cyclic AMP pro-

duction in isolated bovine and porcine neural retinae. Parts

of the data reported in this paper have been communicated

in an abstract form [26].

Methods

Chemicals

NaHS, Na2S, Ethylenediamine tetra-acetic acid solution

(EDTA), Isobutylmethylxanthine (IBMX) and Forskolin

were all purchased from Sigma–Aldrich, St. Louis, MO.

Flurbiprofen was procured from Cayman Chemicals, Ann

Arbor, MI. Stock solutions of IBMX, flurbiprofen and

forskolin were dissolved in Dimethylsulfoxide (DMSO)

whilst solutions of NaHS and Na2S were prepared with

distilled water. At pH 7.4 the concentration of H2S solution

is relatively stable [22, 27, 28]. All test agents were freshly

prepared immediately before use on the day of the study.

Preparation of Retinal Tissues

Bovine and Porcine eyes were obtained from a local

slaughterhouse (Fisher Ham & Meat Co., Houston, Texas)

and transported to the laboratory on ice following decapi-

tation of animals. The eyeballs were enucleated, and the

anterior chambers were carefully removed. The resulting

eye cups were inverted and placed in fresh oxygenated

Krebs solution containing the following composition

(mM): potassium chloride, 4.8; sodium chloride, 118;

calcium chloride, 2.3, potassium dihydrogen phosphate,

1.2; sodium bicarbonate, 25; magnesium sulfate, 2.0; and

dextrose, 10. The neural retinae were detached by gently

movement and incubated immediately in freshly prepared

oxygenated Krebs solution (pH 7.4) containing the cyclo-

oxygenase (COX) inhibitor, flurbiprofen (3 lM), with or

without the presence of the cyclic nucleotide phosphodi-

esterase (PDE) inhibitor, IBMX (2 mM) for 30 min. Time

elapsed between animal sacrifice and retina preparation

was less than 24 h.

Cyclic AMP Assay

The methodology employed for cyclic AMP assay was

essentially the same as reported by [29] with some

modifications. Immediately following the 30 min incu-

bation, the isolated bovine or porcine neural retinae were

transferred to 2 ml of freshly prepared Krebs solution

(pH 7.4) containing flurbiprofen (3 lM) with or without

IBMX (2 mM). In studies, were we examined the role of

PDE on metabolism of cyclic AMP, isolated neural ret-

inae without prior incubation with IBMX, were exposed
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to either IBMX (2 mM), forskolin (10 lM) or a com-

bination of both at the desired time of 20 min (this time

scale was chosen based on results from our preliminary

experiments that showed that maximal effect of agonists

on cyclic AMP was achieved at this time). All sub-

sequent experiments on the effect of H2S donors and

forskolin were performed in the presence of IBMX

(2 mM). Tissues were treated with varying concentra-

tions of, H2S donors (NaHS, Na2S) or the intracellular

cyclic AMP-elevating agent forskolin (10 lM) and

exposed for 20 min. Control tissues were exposed to an

appropriate volume of vehicle (0.9% saline) for the same

time period. In experiments were we examined the

combined effect of forskolin and H2S donors on cyclic

AMP production, isolated neural retinae were exposed to

forskolin (10 lM) for 20 min before the addition of the

H2S donors. After an additional 10 min the reaction was

terminated by addition of 4 mM ice-cold EDTA. The

tissue homogenates were boiled for 20 min and then

centrifuged at 3,000 rpm for 10 min. Pellets obtained

were dissolved in 1 N NaOH at 60�C for protein deter-

mination by method of Bradford and aliquots of the

supernatant were employed for measurement of cyclic

AMP content using a cyclic AMP enzyme immunoassay

kit purchased from Cayman Chemicals, Ann Arbor,

Michigan.

Data Analysis

Results are expressed as pmol/lg of protein. Values given

are arithmetic means ± SEM. The means were determined

from two separate experiments performed in triplicates.

Significance of differences between control and treatment

groups were evaluated using one-way analysis of variance

(ANOVA) followed by Newman–Keuls comparison test.

Drug treatment, time and interaction between drug treat-

ment and time were assessed by two-way ANOVA fol-

lowed by post-hoc Bonferroni test (Graph Pad Prism

Software, San Diego, CA). A P value of \0.05 was con-

sidered as statistically significant.

Results

Effects of Activation of Adenylyl Cyclase

and Inhibition of Phosphodiesterase on Cyclic

AMP Levels in Neural Retina

Isobutylmethylxanthine is a phosphodiesterase (PDE)

inhibitor that prevents the breakdown of accumulated

intracellular cyclic AMP. In this study, we considered the

possibility that PDE inhibition may contribute to the

responses observed with forskolin (diterpene activator of

adenylyl cyclase) in both bovine and porcine isolated

neural retinae. Furthermore, PDE inhibition could also

allow optimization of the yield of cyclic AMP in response

to the H2S donors. The PDE inhibitor, IBMX (2 mM)

caused a two–three fold increase in basal cyclic AMP

concentrations in bovine (Fig. 1a) and porcine (Fig. 1b)

retinae respectively. Tissues stimulated with forskolin

(10 lM) alone did not have any significant effect on cyclic

AMP concentrations when compared to basal levels in both

species (Fig. 1a, b). In the presence of IBMX, responses

elicited by forskolin were enhanced significantly

(P \ 0.001) in both bovine (Fig. 1a) and porcine (Fig. 1b)

retinae.
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Fig. 1 Effects of PDE inhibition on cyclic AMP levels in isolated

bovine (a) and porcine (b) retina: control, in the presence of IBMX

(2 mM) and Forskolin (10 lM). Vertical bars represent mean-

s ± SEM; n = 6. **P \ 0.001, *P \ 0.01 significantly different

from controls; @P \ 0.01 significantly different from IBMX-For-

skolin treated groups
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Effects of NaHS on Cyclic AMP Levels in Neural

Retina

Since there is evidence that exogenous H2S increases the

production of cyclic AMP in neurons [30], we investigated

the effects of the H2S donor, NaHS on cyclic AMP for-

mation in bovine and porcine neural retinae. Based on data

obtained in studies described in Fig. 1, all subsequent

experiments on the effect of H2S donors were performed in

the presence of IBMX (2 mM). As illustrated in Fig. 2,

concentrations of 10 nM, 1 lM or 100 lM of NaHS pro-

duced a time-dependent significant (P \ 0.05) increase in

cyclic AMP levels over basal concentrations in both bovine

(Fig. 2a) and porcine (Fig. 2b) retinae which reached a

maximum at 20 min. In bovine retina, NaHS (100 lM)

caused a five-fold and six-fold increase in cyclic AMP

concentrations over basal levels at 5- and 20-min time

intervals, respectively (Fig. 2a). In contrast, in porcine

retina, NaHS (100 lM) elicited a two-fold and three-fold

increase in cyclic AMP concentrations over basal levels at

5- and 20 min time intervals, respectively (Fig. 2b).

In subsequent experiments, we examined the effect of

different concentrations of NaHS on cyclic AMP produc-

tion using a 20 min incubation time for both bovine and

porcine neural retinae. NaHS (10 nM–100 lM) produced a

concentration-dependent significant (P \ 0.05) increase in

cyclic AMP levels reaching a maximal effect at 100 nM

(Fig. 3a). At this concentration, NaHS (100 nM) caused a

four-fold increase in cyclic AMP concentrations above

basal levels in bovine retina. NaHS (10 nM–100 lM) also

caused concentration-dependent significant (P \ 0.05)

increases in cyclic AMP levels in porcine retina with a

maximal effect observed at 1 lM (Fig. 3b). In porcine

retina, NaHS (1 lM) produced a three-fold increase in

cyclic AMP concentrations above basal levels. The diter-

pene activator of adenylate cyclase, forskolin (10 lM) also

produced a significant (P \ 0.001) increase in cyclic AMP

concentrations above basal levels (Fig. 3a, b).

Effects of Na2S on Cyclic AMP Levels in Neural

Retina

We next examined the effect of another H2S donor, Na2S on

cyclic nucleotide production in bovine and porcine neural

retinae. At 20 min of incubation, Na2S (10 nM–100 lM)

elicited a concentration-dependent increase in cyclic AMP

levels for both bovine and porcine neural retinae (Fig. 4a, b).

At a concentration of 100 lM, Na2S caused a two-one half-

fold increase in cyclic AMP concentration over basal levels

in both bovine (Fig. 4a) and porcine (Fig. 4b) retinae. Upon

stimulation with the positive control, forskolin (10 lM),

both bovine and porcine retinae responded with a significant

(P \ 0.001) increase in cyclic AMP concentrations over

basal levels (Fig. 4a, b).

Effects of H2S Donors on Activation of Adenylyl

Cyclase by Forskolin

We examined the combined effect of forskolin and H2S

donors on cyclic AMP production in both bovine and

porcine retinae. In bovine retina, submaximal (10 nM) and

maximal (100 nM) concentrations of NaHS were examined

on forskolin (10 lM) stimulated cyclic AMP production

(Fig. 5a). The response observed to forskolin was not

enhanced by the presence of both low and high concen-

trations of NaHS (Fig. 5a). Likewise, in porcine retina, the

effects caused by forskolin (10 lM) on cyclic AMP for-

mation were not enhanced by addition of submaximal

(10 nM) and maximal (1 lM) concentrations of NaHS

(Fig. 5b).

We next investigated the combined effect of forskolin

and Na2S on cyclic AMP formation in both bovine and
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Fig. 2 Time-dependent effect of NaHS on cyclic AMP in isolated

bovine (a) and porcine (b) retina: control and in the presence of NaHS

(10 nM–100 lM). Vertical bars represent means ± SEM; n = 6.

**P \ 0.001, *P \ 0.01 significantly different from controls;
�P \ 0.01 significantly different among drug-treated groups

(10 nM). Two-way ANOVA: In bovine retina (a) time, P \ 0.004;

drug treatment, P \ 0.002. For both groups, treatment and interaction

(treatment 9 time of study) = NS; P \ 0.280. In porcine retina (b)

time, P \ 0.001; drug treatment, P \ 0.001. For both groups,

treatment and interaction (treatment 9 time of study) = significant;

P \ 0.01
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porcine retinae. In bovine retina, the effects elicited by

forskolin (10 lM) on cyclic AMP production were not

potentiated by addition of submaximal (10 nM) and max-

imal (1 lM) concentrations of Na2S (Fig. 6a). Similarly, in

porcine retina, the effects produced by forskolin (10 lM)

on cyclic AMP formation were not enhanced by submax-

imal (1 lM) and maximal (100 lM) concentrations of

Na2S (Fig. 6b).

Discussion

In the last two decades, there has been a surge of interest in

the biological effects of H2S, a gas that is now deemed to

serve as a gaseous transmitter along with nitric oxide and

carbon monoxide [1]. Indeed the existence of the H2S

biosynthetic enzymes, CBS and CSE, in the retina suggests

a potential physiological role for H2S in this tissue [13, 14].

In a previous study, we found that the H2S donors, NaHS

and Na2S, can inhibit excitatory amino acid transmission

from isolated bovine and porcine retinae. Furthermore, this

effect was determined to be dependent, at least in part, on

intramural biosynthesis of this gas [20]. Based on the

known actions of this gas on the vasculature and brain,

numerous investigators have reported that possible mech-

anistic effects may involve potassium-sensitive ATP

(KATP) channels, reactive oxygen species (ROS), intracel-

lular calcium and mitogen-activated protein (MAP) kinases

[1, 2, 31]. However, the mechanism by which H2S elicits

its physiological effects in the retina has not been clearly

elucidated.

Bas
al M-8

10
M-7

10
M-6

10
M-4

10

Fo
rs

ko
lin

 
0

5

10

15

20

25

30
cA

M
P

 (
p

m
o

l/µ
g

)

** **

**

*
@

@

Bas
al M-8

10
M-7

10
M-6

10
M-4

10

For
sk

ol
in

0

5

10

15

20

cA
M

P
 (

p
m

o
l/µ

g
)

*

**
**

*
**

A

B

††

Fig. 3 Concentration-dependent effect of NaHS on cyclic AMP in

isolated bovine (a) and porcine (b) retina: control, in the presence of

NaHS (10 nM–100 lM) and Forskolin (10 lM). Vertical bars
represent means ± SEM; n = 6. **P \ 0.001, *P \ 0.01 signifi-

cantly different from controls; @P \ 0.01 significantly different from

Forskolin treated groups; �P \ 0.01 significantly different among

drug-treated groups (10 nM)

Bas
al M-8

10
M-6

10
M-5

10
M-4

10

Fors
ko

lin
0

5

10

15

20

cA
M

P
(p

m
o

l/µ
g

)

**
*

@
@

††

A

B

Bas
al -8

10
-6

10
-5

10
-4

10

Fors
ko

lin
0

5

10

15

20

25

30

cA
M

P
 (

p
m

o
l/µ

g
)

**

*@@

@

@

Fig. 4 Concentration-dependent effect of Na2S on cyclic AMP in
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The cyclic nucleotide, adenosine 30,50 cyclic mono-

phosphate (cyclic AMP) is a ubiquitous cellular second

messenger that is important in many biological processes.

It is used for intracellular signal transduction and has been

reported to be involved in numerous neuronal functions

including cell survival, axon regeneration, and modulation

of axonal guidance [24, 25]. In the present study, we

examined the role of PDE in the metabolism of cyclic AMP

in isolated bovine and porcine neural retinae. Inhibition of

PDE with IBMX enhanced the responses elicited by the

diterpene activator of adenylyl cyclase, forskolin suggest-

ing that catabolism of cyclic AMP does occur in these

tissues. Indeed, there is evidence that PDE is present in

several retinal cells such as the ganglion, bipolar,

horizontal, amacrine and rod photoreceptors [32]. We

included IBMX in all subsequent studies on the effects of

H2S donors on cyclic AMP production in the retina. Fur-

thermore, we employed forskolin as a positive control in all

assays performed in the present study.

Studies have reported that intracellularly, H2S enhances

N-methyl-D-aspartate (NMDA) receptor-mediated response

via cyclic AMP production and that exogenous H2S

increases production of cyclic AMP in primary cultures of

rat cerebral and cerebellar neurons, or in some neuronal

and glial cell lines [30]. In the present study, we investi-

gated the effect of H2S donors on cyclic AMP production

in isolated mammalian retinae. We report that the H2S

donor, NaHS produced a time-dependent increase in cyclic
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AMP concentrations over basal levels in both isolated

bovine and porcine retinae. Data from these experiments

enabled us to determine an optimum time (20 min) for

interaction between H2S donors and the adenylate cyclase

pathway. Both NaHS and Na2S significantly increased

cyclic AMP levels in bovine and porcine retinae in a

concentration-related manner indicating that this nucleo-

tide serves as a mediator of effects caused by H2S in these

tissues. Data from these studies also show that NaHS was

more potent than Na2S in stimulating cyclic AMP pro-

duction in both bovine and porcine retinae. A similar

change in sensitivity of tissues to NaHS and Na2S has been

reported by our laboratory in studies of sympathetic neu-

rotransmission in porcine iris-ciliary body [19], amino acid

transmission in bovine retina [20] and in the relaxation of

isolated porcine irides to both H2S donors [18]. In the

present study, we also observed that the ability of H2S

donors to increase cyclic AMP concentrations was greater

in bovine than porcine retina, suggesting that species dif-

ferences exist in the response of this tissue to H2S donors.

Opere et al. [20] also reported that species differences exist

in the effects caused by H2S donors on glutamatergic

transmission.

So far, data obtained from the present study shows that

both H2S donors and forskolin can increase the production

of cyclic AMP in bovine and porcine retinae. To establish

whether H2S donors and forskolin utilize the same path-

ways for increasing cyclic AMP formation, we designed

experiments that exposed retina to both agents simulta-

neously. We observed that in both bovine and porcine

retinae, responses elicited by forskolin on cyclic formation

was not additive with those produced by NaHS and Na2S

indicating that a common pathway may mediate the

observed responses. It is, however, unclear whether the

effects of H2S donors on the adenylyl cyclase pathway are

due to a direct and/or indirect action on this enzyme.

In conclusion, H2S donors can cause a time- and dose-

dependent increase in cyclic AMP production in isolated

neural retina from cows and pigs. Bovine retina appears to

be more sensitive to the stimulatory effect of H2S donors

on cyclic nucleotide production than its porcine counterpart

indicating that species differences exist in the magnitude of

this response. Effects produced by forskolin on cyclic AMP

formation were not additive with those elicited by H2S

donors suggesting that these agents may share a common

mechanism in their action on the adenylyl cyclase pathway.

Taken together, our findings suggest that H2S may play a

regulatory role in signal transduction processes in mam-

malian retina.
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