
ORIGINAL PAPER

Docosahexaenoic Acid Significantly Stimulates Immediate Early
Response Genes and Neurite Outgrowth

L. Dagai Æ R. Peri-Naor Æ R. Z. Birk

Accepted: 27 August 2008 / Published online: 10 September 2008

� Springer Science+Business Media, LLC 2008

Abstract Docosahexaenoic acid (22:6n - 3, DHA) is

known to enhance neurogenesis. However, the immediate-

early effect of DHA on neurogenesis is not fully elucidated.

We studied the effect of DHA supplementation (10 and

30 lM) on morphological and molecular changes at dif-

ferent time points of nerve growth factor (NGF, 50 ng/ml)-

induced differentiation of PC12 (pheochromocytoma)

cells. Cells were analyzed throughout the differentiation

process (2 h, 1, 2, 3, 4, and 10 days), for neurite outgrowth

(light microscopy and computer image analysis), and for

mRNA levels of the immediate molecular differentiation

markers Egr1, Egr3, PC3 and PC4 (quantitative real-time

PCR). DHA induced significant accelerated neurite

outgrowth beginning as early as 2 h post-DHA supple-

mentation and throughout differentiation. Transcripts of the

neurogenesis immediate early biomarkers Egr3 and PC3

were significantly (P \ 0.05) elevated following DHA

supplementation within 0.5 and 1 h post-supplementation

(respectively). In conclusion, we show that DHA signifi-

cantly stimulates immediate-early neurogenesis events, as

is evident by both morphological and molecular markers.
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Introduction

DHA is a major polyunsaturated fatty acid (PUFA) found in

the central nervous system (CNS), and the most abundant

omega-3 (n - 3) PUFA in the membrane of neurons [1, 2].

DHA is essential for normal brain development in humans and

animals. In the mammalian brain, the major DHA accumu-

lation occurs late in gestation, parallel with maximal neuronal

differentiation process (neurogenesis) which consists of

drastic morphological and molecular changes [3, 4]. The

formation of neurites (axons and dendrites) is a key feature of

neurogenesis, both during development and in the adult.

Several studies have shown that DHA deficiency in critical

prenatal and postnatal developmental stages leads to a variety

of visual, cognitive and behavioral impairments [5–8]. Fur-

thermore, DHA levels are constantly sustained throughout

adulthood, and adult DHA deficiency was found to be asso-

ciated with cognitive impairment and adult neurodegenerative

diseases [3, 9]. Dietary supplementation with DHA has been

shown to improve mental development in humans, alleviate

symptoms in peroxisomal disorders, prevent dendritic

pathology in Alzheimer disease models and reduce neuronal

injury in experimental brain ischemia [3, 9, 10].

The rat pheochromocytoma cell line, PC12, has been

used extensively as a model system to investigate neuronal

(nerve growth factor [NGF)-dependent) differentiation.

PC12 cells recapitulate the program of neuronal differen-

tiation by developing neurites after several days of NGF

treatment [3, 11, 12]. NGF-induced neurogenesis in PC12

cells is characterized by alterations in the transcript levels

of specific transcripts expression (mRNAs), which are

biomarkers of the irreversible commitment of PC12 cells to
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the neuronal differentiation program. Recent studies dem-

onstrated (using different methods, such as; expressed

sequence-tag (EST) and microarray analysis) that NGF

induces rapid (30–40 min) and transient expression of

immediate early genes (IEGs). IEGs include genes both of

the ubiquitously expressed fos and jun families as well as

the neuronal specific EGR and PC families [13–16].

It has been shown that DHA uptake by NGF-differen-

tiated PC12 cells is immediate (occurring within the first

few minutes after incubation), and that DHA is rapidly

incorporated to neural lipids and phospholipids [17]. In a

few in vitro studies DHA has been shown to enhance

neurite growth; however, as PC12 cells recapitulate the

program of neuronal differentiation only after several days

of NGF treatment, neurite outgrowth was studied only after

several days of treatment and was not monitored immedi-

ately after NGF and/or DHA supplementation [3, 18, 19].

Additionally, the morphological changes were not studied

in parallel to transcript changes.

We hypothesized that DHA can alter molecular and

morphological markers in a short time scale. Thus, we

studied whether DHA supplementation of NGF-induced

neurogenesis will have an immediate effect on IEG tran-

script levels and on neurite outgrowth.

Experimental Procedure

Cell Culture and Fatty Acid Supplementation

PC12 (5,000 cells/cm2) were seeded on 60 mm dishes

(Sigma Aldrich) and maintained in culture medium con-

sisting of DMEM (Dulbecco’s modified Eagle’s medium),

10% (v/v) horse serum, 5% (v/v) fetal bovine serum,

100 U/ml penicillin, 100 lg/ml streptomycin, and 1% (v/v)

L-glutamine (Sigma–Aldrich), in a 5% CO2 humidified

incubator at 37�C. Differentiation was induced by addition

of 50 ng/ml NGF (Biotest, Israel), with or without DHA

supplementation. DHA was conjugated with fatty acid-free

bovine serum albumin (BSA, Sigma) and added to the cul-

ture medium. The final DHA concentrations (30 and 10 lM)

were chosen based on previous work [20]. Morphological

analyses of cells were done at 2 h and 1, 2, 3, 4 and 10 days

following NGF and NGF ? DHA supplementation. Mor-

phological characterization of the cells was done using light

microscopy and image analysis program (ImageJ, NIH).

Molecular analyses was done at 0.5, 1, 2, 6 and 24 h fol-

lowing NGF and NGF ? DHA supplementation.

Neurite Measurements

Visual fields of 1 cm2 were randomly selected in each dish

of NGF-induced differentiated PC12 cells (3 dishes per

each treatment: control, 10 and 30 lM DHA). Photo-

graphed images were generated for all fields at each time

point (2 h and 1, 2, 3, 4 and 10 days) using Nikon photo-

microscope (Nikon Eclipse TS100 phase microscope and

Nikon collpix 4500) and transferred to a computer plat-

form. Neurites were analyzed from photos using NIH

image software ImageJ 1.35 s (http://rsb.info.nih.gov/ij).

Parameters analyzed were: neuritis numbers and lengths

and the number of branches per cell. The neuritis popula-

tion at each time point and treatment was sub-divided into

5 groups based on neurite length (10–20, 20–40, 40–80,

80–150 and 150–400 lm).

RNA Extraction and Reverse Transcription (RT)

As significant differences in neurite outgrowth between

control and DHA supplemented cells were detected 2 h

following DHA supplementation, early molecular markers

were analyzed using quantitative RT-PCR. For these

experiments PC12 cells were grown as described above and

RNA was isolated from control and DHA supplemented

cells (30 lM) after 0.5, 1, 2, 6 and 24 h. Total RNA was

isolated from cultures of PC12 cells using RNA isolation

kit (ZYMO research, USA). RNA integrity was tested by

agarose gel electrophoresis (1%) with Ethidium Bromide

(Mercury, USA) staining. RNA was quantified using a

NanoDrop ND-1000 spectrophotometer (NanoDrop Tech-

nologies, Rockland, DE, USA). One microgram of total

RNA was reverse transcribed (RT) using 200U reverse

transcriptase (Bioline, London, UK) with and 0.2 lg of

random hexamers (Bioline, London, UK) in a final volume

of 20 ll containing 2 mM of dNTP mix (Epicentre Tech-

nologies, Madison, WI, USA), 59 first-Strand buffer

(Bioline, London, UK). The RT reaction was performed at

37�C for 1 h.

Quantification of mRNA by Real-Time PCR

(qRT-PCR)

Transcript levels of PC3, PC4, Egr1 and Egr3 were deter-

mined by qRT-PCR using ABI PRISM 7000 sequence

detection system (Applied Biosystems, Foster City, CA,

USA) according to the instructions of the manufacturer.

Gene specific primers were designed using the Primer

Express Software (Applied Biosystems, Foster City, CA,

USA). Primers sequences used: PC3, Forward: GACGCA-

CTGACCGATCATTACA Reverse: GGCTGAGTCCGAT

CTGGCT; PC4, Forward: AGAATTGCTGCTGGCGAA

TC Reverse: CCAGAGCCCGGAGCATCT; Egr1, For-

ward: TGACCACAGAGTCC TTTTCTGACA Reverse:

GAGAAGCGGCCAGTATAGGTGAT; Egr3, Forward:

AGCAGTTTGCTAAATCAATTGCCT Reverse: CAT-

TCTCTGTAGCCATCTGAG TGTAAT; 18S, Forward:
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AAGCAGACATTGACCTCACCAA Reverse: TGGCTAT

ACTTC CCATCCTTCAC. The qRT-PCR primer pairs

were designed across exon(s) to avoid false positive sig-

nals from potentially contaminating genomic DNA. Primer

and cDNA concentrations were optimized following the

guidelines of the manufacturer. For each primer pair used,

melting curve analysis (ramping slowly the temperature

from 60 to 95�C with continuous measurement of fluores-

cence) showed a single melting peak after amplification,

indicating specific products. ROX was added as an internal

reference in order to normalize fluctuations in fluorescence

signal background. Each 20 ll reaction contained 2 ll

(1–2 lg) first strand cDNA, 10 ll PCR master mix (Applied

Biosystems, Foster City, CA, USA), 100–300 nM of each

forward and reverse primer (according to the optimization

of the primers). All reactions were performed under the

following conditions: pre-incubation at 50�C for 2 min

followed by denaturation at 95�C for 10 min and 40 cycles

of 95�C for 15 s, annealing and elongation at 60�C for

1 min. Reactions were characterized by comparing the

threshold cycle (Ct) values. For each sample, results were

normalized by the transcript level of internal control gene.

Statistical Analysis

The data were expressed as mean ± SE. Neurite data and

mRNA expression level data were analyzed using one-way

ANOVA. Results were considered significantly different if

P-values were smaller than 0.05 (P \ 0.05).

Results

Morphological Analysis

Effects of DHA on PC12 Differentiation: Neurite

Outgrowth

In order to demonstrate the effect of DHA in NGF-induced

differentiation, PC12 cells were treated with NGF (control)

only or with NGF in combination with DHA supplemen-

tation (10 or 30 lM).

Neurite Outgrowth There was significant (P \ 0.05)

neurite length growth in each of the groups studied (con-

trol, 10 and 30 lM DHA-supplemented) from 2 h

throughout the 10 days. The DHA supplemented cells

showed significantly (P \ 0.05) accelerated neurite out-

growth compared to the control cells at 2 h, 3, 4 and

10 days (Fig. 1). The differential neurite growth rate was

evident especially during early and late stages of neuro-

genesis. Neurite outgrowth in cells supplemented with the

higher DHA concentration (30 lM) was further accelerated

as compared to that in cells supplemented with the lower

DHA concentration (10 lM); however, this difference was

not statistically significant.

Neurites Population Distribution The control and the

DHA treated groups demonstrated visible neurite out-

growth after only 2 h, with the majority of the cell

population exhibiting at that time point neurite lengths of

3–20 lm (evident in 100, 60, and 70% of the cell popu-

lation for control, 10 and 30 lM DHA-supplemented cells,

respectively). As early as 2 h following DHA supplemen-

tation, DHA-supplemented cells demonstrated significantly

accelerated neurite outgrowths compared to control cells,

with 20–30% of the cell population reaching longer neurite

lengths of 20–40 lm (Fig. 2a). Following 24 h of DHA

supplementation, the majority ([80%) of the DHA-sup-

plemented (10 and 30 lM) groups showed neurite lengths

ranging between 20 and 80 lm while the majority ([80%)

of the control group showed neurite lengths ranging

between 10 and 40 lm (Fig. 2b). Similar to the 1st day, on

the 2nd day all groups reached a wider range and longer

neurite lengths, with a maximum of 150 lm (Fig. 2c). On

the 3rd day, only the DHA supplemented groups reached

maximal neurite lengths of 400 lm, and [10% of both

DHA supplemented cell populations reached neurite

lengths of 80–400 lm. The cell populations retained the

neurite length distribution of the 1st and 2nd days

(Fig. 2d). On the 4th day, the distribution of neurite lengths

was similar to that on the 3rd day. However, cells sup-

plemented with a higher DHA dose (30 lM) showed a

wider range of the neurite length distribution, where the

majority of the population ([80%) was in the range of

20–150 lm, unlike the lower (10 lM) DHA supplemented

cells, which retained the range of 20–80 lm (Fig. 2e). On

the 10th day, also the control cells reached the maximal

neurite length of 150–400 lm (Fig. 2f). These data

Fig. 1 Effect of DHA supplementation (10 and 30 lM) on the

neurite length. Neurite outgrowth was monitored for 10 days, starting

2 h post-supplementation. (The data present neurite length as

average ± SE (n = 3 plates of 30–60 independent cells per each

time-point and each treatment.) Treatment not sharing a symbol are

significantly different (P \ 0.05)
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suggested that DHA supplementation substantially

enhanced NGF-induced neurite outgrowth in terms of

maximal length and rate of growth. The distribution

between neurite populations in the DHA-supplemented

groups was not significantly different. The number of

neurites per cell population and the number of branches per

Fig. 2 Effect of DHA

supplementation on the neurite

length per neuron—sequential

time monitoring. Neurite

outgrowth was monitored for

10 days, starting 2 h post-

supplementation. (a) 2 h, (b)

1 day, (c) 2 days, (d) 3 days, (e)

4 days and (f) 10 days. PC12

cells were treated with NGF in

the absence or presence of DHA

in different concentrations (10

and 30 lM). Frequency

distribution of the total neurite

population was monitored and

analyzed (n = 30–60

independent cells per each time-

point and each treatment). The

data present neurite length as %

of total neurites population
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Fig. 2 continued
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cell were not significantly different between the treatment

groups (data not shown).

Molecular Analysis

Effect of DHA Supplementation on PC12 Transcript Levels

of Immediate Early Genes

Significant differences were found in the length and rate of

neurite growth in the cells supplemented with DHA com-

pared to control cells. Surprisingly, these differences were

detectable as early as 2 h post-DHA supplementation,

indicating that immediate early transcripts, involved in

neurogenesis, might be induced by DHA. As the morpho-

logical analysis of cells supplemented with low and high

DHA concentrations showed a similar pattern of change,

particularly during the first immediate hours post-supple-

mentation, we studies the IEG genes transcript levels of

cells supplemented with the high concentration of DHA.

Two families of IEG genes were studies by qRT-PCR

analysis: EGR and PC.

EGR Family Egr1 transcripts of both control and DHA

supplemented cells were significantly (P \ 0.05) elevated

by 60- and 70-fold (respectively), as compared to non-

differentiated cells (pre-NGF supplementation). This effect

was evident within 0.5 h post-NGF induction, and contin-

ued to significantly (P \ 0.05) increase by 1 h post-NGF

induction, reaching 80- and 90-fold increase in Egr1 tran-

script levels for control and DHA-supplemented cells,

respectively (compared to Egr1 transcript levels in non-

differentiated pre-NGF supplementation cells). However,

Egr1 transcript levels were not significantly different

between control and DHA supplemented cells. Egr3 tran-

scripts were significantly (P \ 0.05) elevated (by 60- and

120-fold for control and DHA-supplemented groups,

respectively) compared to non-differentiated cells (pre-

NGF supplement). This effect was evident within 0.5 h

post-NGF induction, and continued to significantly

(P \ 0.05) increase by 1 h post-NGF induction: 300- and

320-fold for control and DHA-supplemented groups,

respectively, compared to non-differentiated (pre-NGF

supplementation) cells. Egr3 transcript levels of DHA

supplemented cells were significantly (P \ 0.05) elevated

by twofold compared to control cells at 0.5 h. Egr3 tran-

script levels at 1 h post-DHA supplementation were not

different from those of control cells (Fig. 3).

PC Family In both DHA supplemented and control cells,

PC3 transcript levels were significantly (P \ 0.05) ele-

vated (by 10- and 12-fold, respectively) compared to non-

differentiated (pre-NGF supplementation) cells. This effect

was evident within 0.5 h, reaching a peak at 1 h post-NGF

supplementation. At 1 h, PC3 transcript levels of DHA-

supplemented cells were significantly (P \ 0.05) elevated

by twofold compared to control cells (Fig. 4). PC4 tran-

script levels in both DHA supplemented and control cells

were significantly (P \ 0.05) elevated (by twofold) com-

pared to non-differentiated cells (pre-NGF supplement)

within 0.5 h, reaching a peak at 6 h post-NGF supple-

mentation (12- and 14-fold change for control and DHA-

supplemented, respectively). Although DHA-supplemented

cells showed elevated (not significant) PC4 levels at 2 and

4 h, PC4 transcript levels were not significantly different

between the DHA supplemented cells and the control

groups.

Fig. 3 Levels of Egr1 (a) Egr3 (b) during NGF-induced differen-

tiation of PC12 cells supplemented with DHA. PC12 cells were

differentiated with NGF (50 ng/ml) in absence and presence of

DHA (30 lM), as described in ‘‘Material and Methods’’. Samples

were taken at 0, 0.5 and 1 h. Total RNA was isolated and

subjected to qRTPCR. Statistical analysis of qRTPCR was carried

out using the (2-DDCt) method, which calculates the relative

change in mRNA levels normalized to an endogenous reference

(18S). Results expressed as fold change (mean ± SE, 2 indepen-

dent experiments, 3 repeats within each experimental group).

Treatment not sharing a symbol are significantly different

(P \ 0.05)
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Discussion

We demonstrate in this study that DHA supplementation

induces immediate morphological changes of neurite out-

growth coupled with alterations in the transcript levels of

early molecular markers of neuronal differentiation. These

changes are evident as early as 2 h following DHA sup-

plementation. One of the critical steps in neuronal

differentiation is the outgrowth of neurites [21, 22]. In our

study, DHA supplementation promoted neuronal differen-

tiation by increasing the population of neurons with longer

neurites, most notably as soon as 2 h post-DHA supple-

mentation. This effect continued to be evident throughout

the 10 days in which the experimental groups were fol-

lowed. A few in vitro studies have shown the beneficial

effect of DHA supplementation on neurite outgrowth for

various (and different) time periods. Altogether, these and

our current study studies indicate a continuous beneficial

effect of DHA on neuritogenesis events [3, 23]. Generally,

longer neurites bear more synaptic connections, enhancing

neuronal function. The rapid DHA-induced neurite out-

growth demonstrated in our study, is in line with previous

studies showing that DHA uptake and incorporation into

neurons is extremely rapid, and that DHA is trafficked

rapidly to the nerve endings and nerve end cones [17, 24].

DHA-supplementation with both concentrations used (10

and 30 lM) showed similar beneficial effects on neurite

growth. Although the higher DHA concentration (30 lM)

induced longer neurite growth than that induced by the

lower concentration (10 lM), the difference between those

groups was not statistically significant. This is indicative

that DHA supplementation in the physiological range

(10 lM) is sufficient to maximize neurite growth. The

effect of DHA on neurogenesis events is highly specific as

was previously shown in other studies. Other fatty acids

which are abundant in the mammalian brain, such as ara-

chidonic acid (20:4n - 6), oleic acid (18:1n - 9) and

docosapentaenoic acid (22:5n - 6, an n - 6 PUFA that

significantly increases to compensate the loss of DHA in

n - 3 fatty acid deficiency), do not show similar effects on

neurite growth and even demonstrate inhibition of neurite

growth [3, 20, 25].

Studies of the downstream effects through which DHA

affects neurogenesis can shed light on normal molecular

mechanisms of neuronal differentiation. To date, the

molecular mechanism(s) by which DHA promotes neurite

growth is mostly unknown. Several possible mechanisms of

DHA-induced neurogenesis have been suggested, such as

local enrichment and activation of the neuronal lipid moi-

eties (phospholipids) and possible activity of DHA as

a ligand for neural receptors (RXR), consequently activat-

ing downstream transcription factors [3, 26]. Neurogenesis

in PC12 cells is known to be induced by NGF treatment.

The action of NGF is transcription-dependent, and the

irreversible commitment into the differentiation pathway is

characterized by a sharp rise (within 30–40 min) of specific

mRNAs, which are early biomarkers (IEGs) for neurogen-

esis [27, 28]. IEGs encode for transcriptional modulators

such as ubiquitously expressed anti-mitotic genes (fos and

jun families), which are the most extensively studied, and

for more specific biomarkers of neuronal cell-programming

such as the Egr gene family (Egr1, Egr3) and PC gene

family (PC3 and PC4) [28, 29]. As we demonstrated in this

study, DHA induces immediate morphological and

molecular changes in PC12 cells. Egr1 and Egr3 are known

to play an important role in neurite outgrowth: inhibition

of Egr3 and Egr1 has been shown to effectively inhibit

NGF-elicited neurite outgrowth in PC12 cells. Both genes

display parallel and similar response patterns to NGF

[30, 31]. Both Egr1 and Egr3 transcript levels displayed

Fig. 4 Levels of PC3 (a) and PC4 (b) during NGF-induced

differentiation of PC12 cells supplemented with DHA. PC12 cells

were differentiated with NGF (50 ng/ml) in absence and presence of

DHA (30 lM), as described in ‘‘Material and Methods’’. Samples

were taken at 0, 0.5 and 1, 2, 6 and 24 h. Total RNA was isolated and

subjected to qRTPCR. Statistical analysis of qRTPCR was carried out

using the (2-DDCt) method, which calculates the relative change in

mRNA levels normalized to an endogenous reference (18S). Results

expressed as fold change (mean ± SE, 2 independent experiments, 3

repeats within each experimental group). Treatment not sharing a

symbol are significantly different (P \ 0.05)
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rapid (around 1 h) and significant increase following NGF

stimulation, in accordance to previous studies [32]. We

found that DHA supplementation induced a specific sig-

nificant elevation of Egr3 transcript levels beyond those

induced by NGF alone. Although both members of the

EGR family, Egr1 and Egr3, share nearly identical zinc

finger DNA binding domains and bind to a common Egr

response element consensus sequence, the non-homologous

portions of their sequences diverge considerably, indicating

that they might be differentially regulated [32]. Our find-

ings indicate that DHA might be a specific candidate

regulator of Egr3. It should be noted that an additional

indication of differential regulation of EGR family mem-

bers was demonstrated following electroconvulsive

stimulation, where both Egr-1 and Egr-3 mRNA levels

were induced rapidly in dentate granule cells, yet in a

sequential manner [30]. Sequential response of different

family members following stimulation has been shown also

for members of the Fos gene family, and represents an

important mechanism underlying neuronal plasticity [30,

33]. The specific regulation of DHA found in our study

might indicate time-dependent transcript changes or a

specific and differential regulation pattern of Egr family

members.

Another NGF-induced IEG family is the PC family. PC3

is the prototype member of a novel family of anti-prolif-

erative genes, expressed at the onset of neuronal

differentiation in PC12 cells [34]. In line with previous

reports [28, 33, 34], in our study NGF induced robust

transient elevation in PC3 transcripts, peaking by 1 h, PC3

encodes a putatively secreted protein that is induced by

NGF with a relatively high specificity [34, 35]. We found

that at its peak, the DHA supplementation further and

significantly elevated PC3 transcript levels. Growing evi-

dence indicates that PC3 plays a role in cell cycle arrest

and neurogenesis, which are highly coordinated and

interactive processes, governed by cell cycle genes and

neural transcription factors [36]. Canzoniere et al. [36]

found that over-expression of PC3 in neuronal tissues

during embryonic and postnatal periods leads to increase of

neuronal differentiation throughout the neural tube and in

the cerebellum. Thus, our results could indicate that the

supplementation of NGF-stimulated cells with DHA

enhances the cell cycle arrest parallel to PC3 regulation.

PC4, another member of the IEG and PC family, presents

significant sequence similarity to interferon-gamma, a

molecule known for its role in cellular differentiation [27].

Although PC4 function remains unknown, it is expressed

during neuronal differentiation in vitro and in vivo [29].

Our results indicate that PC4 transcripts are induced by

NGF; unlike Egr1, Egr3 and PC3, which all reach their

peak within the first hours, PC4 reaches its peak after

several hours, as was previously described [27, 34]. In

contrast to PC3, DHA supplementation did not have an

effect on PC4 transcript levels.

In conclusion, we show that DHA can modulate both

morphological and molecular immediate-early neurogene-

sis events. The morphological changes, expressed by

enhanced and prolonged neurite outgrowths, begin within a

couple of hours post-DHA supplementation, and are cou-

pled to a rapid and transient up-regulation of IEG gene

transcripts. The up-regulation of specific IEG genes can

indicate newly identified DHA-regulated genes, and sug-

gests a possible molecular pathways by which DHA

enhances neurogenesis.
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