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Abstract Glucose metabolism is essential for normal brain

function and plays a vital role in synaptic transmission.

Recent evidence suggests that ATP synthesized locally by

glycolysis, particularly via glyceraldehyde 3-phosphate

dehydrogenase/3-phosphoglycerate kinase, is critical for

synaptic transmission. We present evidence that ATP gen-

erated by synaptic vesicle-associated pyruvate kinase is

harnessed to transport glutamate into synaptic vesicles.

Isolated synaptic vesicles incorporated [3H]glutamate in the

presence of phosphoenolpyruvate (PEP) and ADP. Pyruvate

kinase activators and inhibitors stimulated and reduced PEP/

ADP-dependent glutamate uptake, respectively. Membrane

potential was also formed in the presence of pyruvate kinase

activators. ‘‘ATP-trapping’’ experiments using hexokinase

and glucose suggest that ATP produced by vesicle-associ-

ated pyruvate kinase is more readily used than exogenously

added ATP. Other neurotransmitters such as GABA, dopa-

mine, and serotonin were also taken up into crude synaptic

vesicles in a PEP/ADP-dependent manner. The possibility

that ATP locally generated by glycolysis supports vesicular

accumulation of neurotransmitters is discussed.

Keywords Glycolysis � Energy metabolism �
Neurotransmitter � Refilling � VGLUT � Nerve terminal

Abbreviations

ACPD 1-Aminocyclopentane-1,3-dicarboxylic acid

Cl-PEP 3-Chlorophosphoenolpyruvate

DTT Dithiothreitol

FCCP Carbonyl cyanide p-(trifluoromethoxy)-

phenylhydrazone

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

PEP Phosphoenolpyruvate

3-PGK 3-Phosphoglycerate kinase

SDS Sodium dodecyl sulfate

V-ATPase V-type proton-pump ATPase

VGLUT Vesicular glutamate transporter

Introduction

Glucose metabolism is required for normal brain function

and synaptic transmission [1]. Recent evidence demonstrates
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a direct correlation between glucose utilization and cog-

nitive function as well as dynamic neural activity [2, 3].

Memory function is impaired by hypoglycemia [4].

Under normal conditions, glucose serves as the major

substrate for cerebral energy [5]. Thus, the glucose

requirement has been attributed to ATP production.

However, hypoglycemia-induced pathophysiological

states and aberrant synaptic transmission precede signif-

icant reduction in brain tissue ATP levels [6–12].

Moreover, substitution of pyruvate for glucose does not

support normal evoked neuronal activity, despite the fact

that normal tissue ATP levels are maintained [13–15].

Fleck et al. [10] have provided evidence that evoked

release of glutamate, the major excitatory neurotrans-

mitter, is diminished by lowered extracellular glucose.

These observations suggest that either a certain glycolytic

intermediate(s) or a minor ATP pool, possibly maintained

by local synthesis of ATP, might be critical for normal

synaptic transmission. Ikemoto et al. [16] have provided

evidence suggesting that ATP produced locally by

synaptic vesicle-associated glyceraldehyde-3-phosphate

dehydrogenase (GAPDH)3/3-phosphoglycerate kinase (3-

PGK) may play a critical role in filling synaptic vesicles

with glutamate.

The major excitatory neurotransmitter glutamate is

involved in learning and memory formation [17, 18], as

well as being required for basic neuronal communication

[19–23]. Glutamate accumulation into synaptic vesicles is

the first critical step in glutamate synaptic transmission [22,

24–28]. This process requires ATP, harnessed to generate

an electrochemical proton gradient by V-ATPase, the direct

driving force for glutamate transport into the vesicle [29–

36]. The glycolytic requirement for normal synaptic

transmission could result from the spatial distance between

synaptic vesicles and mitochondria in the nerve ending.

When mitochondria are not located within the nerve end-

ing, glycolytically made ATP would be even more critical

for maintaining neurotransmission. Morphometric analysis

at the electron microscopic level has revealed that half of

nerve endings lack mitochondria [37]. In order to maintain

continuous neurotransmission, the energy demand for rapid

vesicle refilling might be met by ATP synthesized locally

by glycolysis.

In this study, we have explored the possibility that the

glycolytic ATP-generating enzyme pyruvate kinase, in

addition to GAPDH/3-PGK, might also be associated with

synaptic vesicles and that it can support vesicular gluta-

mate and other neurotransmitter uptake in the presence of

its substrates. Evidence is presented to support this notion.

Based upon this and additional evidence presented here, as

well as previous studies, the possibility is discussed that

glycolytic ATP-generating enzymes may be important for

the transport of neurotransmitters into synaptic vesicles.

Experimental Procedures

Materials

L-[G-3H]Glutamic acid (43 Ci/mmol), 4-amino-n-[2,

3-3H]butyric acid (GABA, 88 Ci/mmol), [7,8-3H]dopamine

(41 Ci/mmol), and 5-hydroxy-[G-3H]tryptamine creatinine

sulfate (serotonin, 21 Ci/mmol) were purchased from GE

Healthcare Bio-Sciences. Goat anti-pyruvate kinase antibody

was purchased from Research Diagnostics Inc. Affinity-

purified chicken polyclonal (IgY) anti-human V-ATPase

subunit A antibodies (anti-ATP6A1) were from GenWay

Biotech, Inc. Monoclonal anti-VGLUT1, anti-VGLUT2, and

anti-synaptophysin 1 antibodies were from Synaptic Systems.

A monoclonal anti-SV2 antibody-producing hybridoma clone

was provided by Dr. Kathleen Buckley [38]. An anti-SV2

antibody in hybridoma culture supernatant was utilized for

Western blotting. (Z)-3-chlorophosphoenolpyruvate (Cl-

PEP) and (E)-Cl-PEP [39] were kind gifts from Dr. Bernhard

Erni and Dr. Luis Garcia-Alles (University of Bern). Hexo-

kinase and all other chemicals were purchased from Sigma-

Aldrich unless otherwise mentioned.

Preparation of Subcellular Fractions

Synaptic vesicles were prepared from frozen rat brains

(unstripped, Pel-Freeze) by ultracentrifugation through a

discontinuous sucrose gradient as previously described

[40], with the following modifications. The rat crude syn-

aptic vesicles were prepared as described [40], except that

4 mM Tris–HCl (pH 7.4) containing 0.32 M sucrose and

0.1 mM DTT, and 6 mM Tris-maleate (pH 8.1) containing

0.1 mM DTT were used as solution B and solution F,

respectively. Crude vesicles obtained from 50–100 rat

brains were then layered over a discontinuous sucrose

gradient consisting of 3.5 ml (per 25 brains) of 0.2 M,

0.3 M, and 0.4 M sucrose in 4 mM Hepes-KOH (pH 7.4)

and 0.1 mM DTT. The crude synaptic vesicles were cen-

trifuged at 24,800 rpm (109,400 9 gmax) in a Beckman

SW40.1 rotor for 2 h. The interface between the sample

layer and the 0.2 M sucrose layer, enriched with pyruvate

kinase, was diluted with 4 mM Hepes-KOH (pH 7.4)

containing 0.1 mM DTT, and then centrifuged at

55,000 rpm (278,000 9 gmax) in a Beckman Ti70 rotor for

60 min. The synaptic vesicle-containing pellets were

resuspended in a solution containing 0.32 M sucrose,

1 mM NaHCO3, and 1 mM DTT. The purified synaptic

vesicles were stored in liquid N2. A synaptosomal cytosolic

fraction, a plasma membrane fraction, and a microsomal

fraction were prepared from frozen rat brains (Pel-Freeze)

as described [41]. Protein concentration was determined by

the method of Bradford [42], with bovine serum albumin as

a protein standard.
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Assay for Neurotransmitter Accumulation into Synaptic

Vesicles

Uptake of 3H-labelled neurotransmitters including

[3H]glutamate was measured by a filtration-based assay

using Whatman GF/C filters, as described previously [29,

30], with minor modifications, as described previously by

Kish and Ueda [40]. In the standard assay for [3H]gluta-

mate uptake, aliquots (15 lg protein) of rat synaptic

vesicles were incubated at 30�C for 20 min with 50 lM

[3H]glutamate (0.5 Ci/mmol) in 0.1 ml of 20 mM Hepes-

Tris (pH 7.4) containing 50 mM sucrose, 100 mM potas-

sium gluconate, 4 mM KCl, 4 mM MgSO4, 2 mM

aspartate, 1 mM PEP, and 0.1 mM ADP. In the GABA

uptake assay, 50 lM [3H]glutamate were replaced with

50 lM [3H]GABA (0.6 Ci/mmol). To examine dopamine

uptake and serotonin uptake, synaptic vesicles were incu-

bated with carrier-free [3H]dopamine (49 nM, 41 Ci/mmol)

or [3H]serotonin (95 nM, 21 Ci/mmol) at 30�C for 20 min

in 12 mM potassium phosphate buffer (pH 7.4) containing

100 mM KCl, 4 mM MgSO4, and 1 mM ascorbic acid, in

the presence or absence of a mixture of 1 mM PEP and

0.1 mM ADP.

HPLC Analysis of Tritiated Compounds in Synaptic

Vesicles

Purified synaptic vesicles (30 lg) were incubated with

50 lM [3H]glutamate at 30�C for 40 min in the presence

of 1 mM PEP/0.1 mM ADP under the standard conditions

for glutamate uptake as described above, followed by

filtration with Whatman GF/C as described [40]. The GF/

C filter was further washed with 12 ml of ice-cold 0.32 M

sucrose to remove KCl. The washed filter was then

immersed in 2 ml of 80% ethanol, sonicated on ice for

4 min, and placed on a rotating orbital shaker at 4�C for

2 h to extract the vesicular content. The extract was

vacuum-concentrated to about 100 ll and filtrated with an

Ultrafree�-MC filter unit (0.1 lm, Millipore). The filtrate

was diluted with one volume of HPLC medium and

loaded at room temperature onto a Nucleosil 100-5C18

reversed phase column (Macherey-Nagel, 4.8 9 250 mm)

attached to an HPLC system (Beckman). The column was

eluted isocratically at a flow rate of 1 ml/min, with

13 mM trifluoroacetic acid containing 1 mM 1-octane-

sulfonate as a mobile phase [43]. Elution of glutamate and

other compounds was detected spectrophotometrically at

214 nm. Fractions were collected every 6 s, and radio-

activity determined with a Beckman LS 6500 liquid

scintillation spectrophotometer. The retention times of

aspartate, glutamine, glutamate, and GABA were 8.4, 9.9,

12.5, and 17.4 min, respectively, under these experimental

conditions.

Assay of Pyruvate Kinase Activity

Vesicle-associated pyruvate kinase activity was measured

spectrophotometrically by coupling pyruvate formation to

lactate dehydrogenase reaction (NADH utilization) [44].

Synaptic vesicles (15–30 lg protein) were incubated in a

reaction mixture (0.8 ml) containing 20 mM Hepes-Tris

(pH 7.4), 50 mM sucrose, 100 mM potassium isethio-

nate, 4 mM LiCl, 4 mM MgSO4, 2 mM aspartate,

0.1 mM or 1 mM PEP, 0.1 mM ADP, 50 lM glutamate,

4.7 unit/ml lactate dehydrogenase, and 0.22 mM NADH.

The reaction was started by addition of ADP, and

pyruvate kinase activity was calculated from the rate of

NADH decrease as monitored by changes in absorbance

at 340 nm at 30�C. One unit of pyruvate kinase activity

was defined as the amount of pyruvate kinase required to

convert 1 lmol of the substrate to product per minute at

30�C.

Other Biochemical Analyses

SDS-polyacrylamide gel electrophoresis was carried out

according to the method of Laemmli [45]. Two-dimen-

sional electrophoresis was carried out by the Michigan

Proteome Consortium as follows. Samples were solubilized

in 200 ll of Destreak Rehydration solution (GE Healthcare

Bio-Sciences) containing 1% (v/v) IPG buffer pH 3–10

(GE Healthcare Bio-Sciences). Isoelectric focusing in the

first dimension was performed at 25�C using Immobiline

DryStrip (pH 3–10, 11 cm, GE Healthcare Bio-Sciences)

and a Protean IEF cell (Bio-Rad), essentially according

to Bio-Rad’s instructions. After isoelectric focusing,

Immobiline strips were equilibrated for 25 min with gentle

rocking in a solution containing 6 M urea, 20% (v/v)

glycerol, 2% SDS, 2.5% (v/v) tributylphosphine, and

50 mM Tris–HCl (pH 8.8), and for an additional 25 min in

the same solution as above except for the replacement of

2.5% tributylphosphine with 2.5% iodoacetamide. Equili-

brated strips were placed on top of a Criterion XT Bis-Tris

Gel (4–12%, 11 cm IPG Strip, Bio-Rad) for the second

dimension. SDS-polyacrylamide gel electrophoresis was

carried out to separate proteins based on molecular weight.

Western blotting analysis was performed as described

by Harlow and Lane [46] using peroxidase-conjugated goat

anti-mouse IgG or peroxidase-conjugated rabbit anti-goat

IgG as secondary antibodies (Cappel/MP Biomedicals).

The Western blots were subjected to an enhanced chemi-

luminescence detection procedure (SuperSignal� West

Femto Maximum Sensitivity Substrate, Pierce).

Generation of membrane potential across the synaptic

vesicle membrane was monitored by fluorescence

quenching of the membrane potential-sensitive dye oxonol

V (Molecular Probes, Inc.) using a Fluorolog III
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fluorospectrophotometer (Horiba Jobin Yvon Co. Ltd.) as

described previously [34, 47].

Results

PEP/ADP-dependent Glutamate Uptake into Synaptic

Vesicles

When incubated with [3H]glutamate, synaptic vesicles

exhibited PEP/ADP-dependent glutamate uptake (Fig. 1).

At ADP concentrations above 0.1 mM, ADP alone showed

some uptake, but the uptake was markedly enhanced by

PEP. HPLC analysis of radioactive vesicular content

obtained in the presence of PEP and ADP demonstrated

that greater than 95% of radioactivity taken up into syn-

aptic vesicles was glutamate (data not shown).

Figure 2 shows Western blotting analysis of the isolated

synaptic vesicles used in this study, with antibodies raised

against synaptic vesicle-specific proteins including

VGLUT1/2 [29, 31, 48–50], SV2 [38], and synaptophysin

1 [51]. These vesicle-specific proteins were highly enriched

in synaptic vesicle fractions (SV), but minimally detected

in plasma membrane (PM) or microsomal fractions (M)

prepared from rat brain. Moreover, the catalytic subunit of

V-ATPase, functionally linked to glutamate uptake into

synaptic vesicles through VGLUT [25, 29, 31, 36], was

also enriched in synaptic vesicle fractions, but not in

plasma membrane or microsomal fractions.

Involvement of Vesicle-associated Pyruvate Kinase

in PEP/ADP-dependent Glutamate Uptake

Because PEP and ADP induced vesicular uptake of

[3H]glutamate, we conducted experiments to determine if

pyruvate kinase associated with synaptic vesicles is

involved in PEP/ADP-dependent glutamate uptake. In the

glycolytic pathway, pyruvate kinase utilizes PEP to pro-

duce ATP from ADP. Mammalian pyruvate kinase is

known to require certain monovalent cations for activity

[52]. Thus, K? is far more effective than Na? or Li? as an

activator at 100 mM, and the effect of K? is uniquely

mimicked by a low concentration (3 mM) of Tl?. We

compared the effects of K? and Na? on PEP/ADP-

dependent glutamate uptake. We also compared the effect

of Tl? with the effect of K?. As shown in Fig. 3a, PEP/

ADP-dependent glutamate uptake was significantly atten-

uated, when 100 mM K? were replaced with 100 mM

Na?. In addition, 3 mM Tl? was able to substitute for

100 mM K?. As shown in Fig. 3b, mM Tl? also markedly

activated PEP/ADP-dependent glutamate uptake. The

effect of these monovalent cations on vesicle-associated

pyruvate kinase activity was examined. Significant pyru-

vate kinase activity (0.071 ± 0.008 unit/mg protein) was

Fig. 1 Effect of various concentrations of ADP on PEP/ADP-

dependent glutamate uptake in synaptic vesicles. Purified synaptic

vesicles (15 lg) were incubated at 30�C for 20 min with 50 lM

[3H]glutamate in 20 mM Hepes-Tris (pH 7.4) containing 50 mM

sucrose, 100 mM potassium gluconate, 4 mM KCl, 4 mM MgSO4,

2 mM aspartate, and the indicated concentrations of ADP in the

presence (filled circles) or absence (open circles) of 1 mM PEP.

Glutamate uptake was measured as described in Experimental

Procedures. Values are the mean ± s.d. of three separate experiments

Fig. 2 Western blotting analysis of purified synaptic vesicles. Crude

synaptic vesicles were purified by sucrose density gradient centrifu-

gation as described in Experimental Procedures. The plasma

membrane and microsomal fractions were prepared as described in

Experimental Procedures. The purified synaptic vesicle (SV, 15 lg),

plasma membrane (PM, 15 lg), and microsomal (M, 15 lg) fractions

were analyzed by Western blotting, using antibodies raised against the

indicated proteins. Sub A, subunit A

810 Neurochem Res (2009) 34:807–818
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found associated with isolated synaptic vesicles when

assayed in the presence of 100 mM K? (Fig. 3c). When

100 mM K? was replaced with 100 mM Na?, pyruvate

kinase activity was markedly reduced, as observed with

PEP/ADP-dependent glutamate uptake (Fig. 3a, c). Tl?

(3 mM) had a similar stimulatory effect to that of K? on

pyruvate kinase activity (Fig. 3d), consistent with the data

for glutamate uptake (Fig. 3b) and the previously reported

data on muscle pyruvate kinase [52].

In an effort to obtain further evidence in support of the

notion mentioned above, we examined the effect of the

highly selective pyruvate kinase inhibitor (Z)-Cl-PEP on

PEP/ADP-dependent glutamate uptake. Garcia-Alles and

Erni [39] reported that (Z)-Cl-PEP, but not (E)-Cl-PEP, is a

potent inhibitor of pyruvate kinase activity. Therefore, we

tested (Z)-Cl-PEP and (E)-Cl-PEP for the ability to inhibit

PEP/ADP-dependent glutamate uptake. (Z)-Cl-PEP

(Fig. 4a, filled circles) inhibited PEP/ADP-dependent glu-

tamate uptake in a concentration-dependent manner,

whereas (E)-Cl-PEP (Fig. 4a, open circles) had no effect on

glutamate uptake at the concentrations tested. (Z)-Cl-PEP

(Fig. 4b, filled circles) inhibited vesicle-associated pyru-

vate kinase activity in a manner similar to that observed

with glutamate uptake, whereas (E)-Cl-PEP (Fig. 4b, open

circles) was ineffective. These observations further support

a role for vesicle-associated pyruvate kinase in PEP/ADP-

dependent glutamate uptake.

We analyzed the synaptic vesicle fraction and the

synaptosomal cytosol fraction for pyruvate kinase by

2-dimensional Western blotting using an anti-pyruvate

kinase antibody. A Western blot of the synaptic vesicle

fraction revealed 4 distinct spots, designated as spots 1–4;

their approximate isoelectric points were 7.1, 6.9, 6.7, and

6.5, respectively (Fig. 5a). In contrast, the cytosol fraction

showed several spots, including spots 2, 3, and 4, but spot 1

was barely detected (Fig. 5b). This is not due to poor

resolution of the 2D gel for the latter; the amount of the

cytosol fraction applied was much less than that of the

vesicle fraction. The presence of spot 1 in the vesicle

fraction could raise the possibility that vesicle-bound

pyruvate kinase might be different in some respect from the

enzyme in the cytosol fraction. The difference in spot

pattern suggests that cytosolic pyruvate kinase is not bound

to synaptic vesicles in a non-specific manner.

Characterization of PEP/ADP-dependent Glutamate

Uptake

Next, we examined the effect of various compounds on

PEP/ADP-dependent glutamate uptake (Fig. 6). PEP/ADP-

dependent uptake was inhibited by the proton ionophore

carbonyl cyanide p-(trifluoromethoxy)-phenylhydrazone

(FCCP) (12.5 lM), as well as by the V-ATPase inhibitor

bafilomycin (1 lM) [33, 53]. These observations suggest

that PEP/ADP-dependent glutamate uptake is driven by an

electrochemical proton gradient formed by V-ATPase.

ATP-dependent vesicular glutamate uptake is known to be

stimulated by low millimolar Cl- [30, 33, 36, 54] and

inhibited by Rose Bengal [47], as well as by trans-1-am-

inocyclopentane-1,3-dicarboxylic acid (ACPD) [55, 56];

however, this uptake is not affected by aspartate [30, 33,

36] or cis-ACPD [55, 56]. As shown in Fig. 6, Rose Bengal

Fig. 3 Effect of monovalent cations on PEP/ADP-dependent gluta-

mate uptake and vesicle-associated pyruvate kinase activity. (a)

Purified synaptic vesicles (15 lg) were incubated at 30�C for 20 min

with 50 lM [3H]glutamate in 20 mM Hepes-Tris (pH 7.4) containing

50 mM sucrose, 100 mM potassium isethionate, 4 mM LiCl, 4 mM

MgSO4, and 2 mM aspartate, in the presence or absence of 1 mM

PEP plus 0.1 mM ADP. Glutamate uptake was measured by a

filtration-based assay using Whatman GF/C filters, as described in

Experimental Procedures. Sodium isethionate was used in place of

potassium isethionate when the effect of 100 mM Na? was examined.

(b) When the effect of 3 mM thallium acetate was examined, the

medium containing 50 mM sucrose and 100 mM isethionate was

replaced by 250 mM sucrose. (c, d) Vesicle-associated pyruvate

kinase activities were measured in the presence of 1 mM PEP plus

0.1 mM ADP, with addition or omission of the indicated monovalent

cations as described in Experimental Procedures. The effect of

100 mM Na? was examined as in (a). (d) When the effect of 3 mM

thallium acetate was examined, the medium containing 50 mM

sucrose and 100 mM isethionate was replaced by 250 mM sucrose.

Values are the mean ± s.d. of three separate experiments
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(10 lM) and trans-ACPD (2 mM) both significantly

inhibited glutamate uptake, whereas cis-ACPD (2 mM)

had little if any effect. Omission of aspartate from the

uptake medium also had no effect on glutamate uptake, but

omission of 4 mM Cl- from the uptake medium signifi-

cantly reduced PEP/ADP-dependent glutamate uptake.

Taken together, these data strongly suggest that PEP/ADP-

dependent glutamate uptake into synaptic vesicles is

mediated by VGLUT, which functions in the presence of

an electrochemical proton gradient formed by V-ATPase

[25].

If PEP/ADP-dependent glutamate uptake is mediated by

the VGLUT system, an electrochemical proton gradient

Fig. 4 Effect of (Z)-Cl-PEP and (E)-Cl-PEP on PEP/ADP-dependent

glutamate uptake and vesicle-associated pyruvate kinase activity. (a)

Purified synaptic vesicles (15 lg) were incubated at 30�C for 20 min

with 50 lM [3H]glutamate in 20 mM Hepes-Tris (pH 7.4), containing

50 mM sucrose, 100 mM potassium isethionate, 4 mM KCl, 4 mM

MgSO4, 2 mM aspartate, 0.1 mM PEP, 0.1 mM ADP, and the

indicated concentrations of (Z)-Cl-PEP (filled circles) or (E)-Cl-PEP

(open circles). Glutamate uptake was measured as described in

Experimental Procedures. (b) Vesicle-associated pyruvate kinase

activity was determined in the presence of the indicated concentra-

tions of (Z)-Cl-PEP (filled circles) or (E)-Cl-PEP (open circles), as

described in Experimental Procedures, except that 4 mM KCl were

used in place of 4 mM LiCl. The results are expressed as a percentage

of glutamate uptake or pyruvate kinase activity observed in the

absence of Cl-PEP, and each value represents the mean ± s.d. of

three separate experiments

Fig. 5 Two-dimensional Western blotting analysis of vesicle-associ-

ated pyruvate kinase and synaptosomal cytosolic pyruvate kinase.

Purified synaptic vesicles (20 lg, a) and a synaptosomal cytosolic

fraction (5.3 lg, b) were subjected to 2-dimensional electrophoresis

as described in Experimental Procedures. Western blotting analysis

was carried out as described, using goat anti-pyruvate kinase

antibodies (1:1,000 dilution) and peroxidase-conjugated anti-goat

IgG (1:5,000 dilution) as primary and secondary antibodies,

respectively

Fig. 6 Pharmacological characterization of PEP/ADP-dependent

glutamate uptake. Purified synaptic vesicles (15 lg) were incubated

at 30�C for 20 min with 50 lM [3H]glutamate in a solution

containing 20 mM Hepes-Tris (pH 7.4), 50 mM sucrose, 100 mM

potassium gluconate, 4 mM KCl, 4 mM MgSO4, 2 mM aspartate,

1 mM PEP, and 0.1 mM ADP, with addition or omission of the

indicated compounds. The concentrations used were: 1 lM (bafilo-

mycin); 12.5 lM (FCCP); 10 lM (Rose Bengal); 2 mM (trans-

ACPD); 2 mM (cis-ACPD). ‘‘–Asp’’ and ‘‘–Cl’’ indicate omission of

aspartate and KCl from the incubation medium, respectively.

Glutamate uptake was measured as described in Experimental

Procedures. The results are expressed as a percentage of control (no

addition), and each value represents the mean ± s.d. of three separate

experiments
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should be formed in a PEP/ADP-dependent manner.

Therefore, we examined whether a membrane potential

across the synaptic vesicle membrane is generated upon

addition of PEP and ADP, using the membrane potential-

sensitive fluorescent probe oxonol V, as described in

Experimental Procedures. When synaptic vesicles were

incubated with PEP plus ADP, a gradual decrease in

fluorescence was observed (Fig. 7a, b, bold solid line). This

fluorescent quenching was reversed by addition of FCCP

(12.5 lM), which indicates that PEP/ADP leads to mem-

brane potential formation. Formation of the membrane

potential was not observed when synaptic vesicles were

incubated with ADP alone (Fig. 7a, dotted line), PEP alone

(Fig. 7b, dotted line), or PEP/ADP plus FCCP (Fig. 7a, b,

thin solid line). We also examined the effect of monovalent

cations on membrane potential formation in the presence of

PEP/ADP. In the presence of 100 mM K? (bold solid line),

but not Na? (dotted line), membrane potential formation

Fig. 7 PEP/ADP-induced membrane potential in synaptic vesicles. a
Purified synaptic vesicles (30 lg) were incubated at 30�C in 20 mM

Hepes-Tris (pH 7.4) containing 50 mM sucrose, 100 mM potassium

gluconate, 4 mM KCl, 4 mM MgSO4, 2 mM aspartate, and 1.3 lM

oxonol V in the presence (bold solid line) or absence (dotted line) of

1 mM PEP. After oxonol V was allowed to equilibrate with synaptic

vesicles, ADP (0.1 mM final concentration) was added in order to

observe fluorescence quenching, which showed membrane potential

formation across the synaptic vesicle membrane (arrow). At the time

point indicated by the arrowhead, FCCP (12.5 lM) was added to

dissipate the membrane potential. FCCP was also added at the start of

the reaction, together with 1 mM PEP; ADP was then added (thin

solid line). b The purified synaptic vesicles (30 lg) were incubated at

30�C in 20 mM Hepes-Tris (pH 7.4), containing 50 mM sucrose,

100 mM potassium gluconate, 4 mM KCl, 4 mM MgSO4, 2 mM

aspartate, and 1.3 lM oxonol V in the presence of 1 mM PEP. After

oxonol V was allowed to equilibrate with synaptic vesicles, ADP

(0.1 mM, bold solid line) or H2O (dotted line) was added at the arrow-

indicated time point. At the arrowhead-indicated time point, FCCP

(12.5 lM) was added. FCCP was also added at the start of the

reaction; ADP was then added (thin solid line). (c) Purified synaptic

vesicles (30 lg) were incubated as in (b) except that 4 mM LiCl were

used in place of 4 mM KCl (bold solid line). Synaptic vesicles were

also incubated in the medium containing 100 mM sodium gluconate

in place of potassium gluconate (dotted line). ADP (0.1 mM) and

FCCP (12.5 lM) were added at the arrow-indicated and arrowhead-

indicated time points, respectively. (d) The purified synaptic vesicles

(30 lg) were incubated at 30�C in 20 mM Hepes-Tris (pH 7.4),

containing 250 mM sucrose, 4 mM LiCl, 4 mM MgSO4, 2 mM

aspartate, 1 mM PEP, and 1.3 lM oxonol V in the presence (bold

solid line) or absence (dotted line) of 3 mM thallium acetate. ADP

(0.1 mM) and FCCP (12.5 lM) were added at the arrow-indicated

and arrowhead-indicated time points, respectively
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was observed, as shown in Fig. 7c. Tl? was found to mimic

the stimulatory effect of K?, as expected (Fig. 7d, bold

solid line). These data were expected based on the mono-

valent cation-dependence of pyruvate kinase activity and

glutamate uptake shown in Fig. 3.

Effects of Hexokinase on ATP-dependent and

PEP/ADP-dependent Vesicular Glutamate Uptake

In an attempt to determine whether ATP produced by

vesicle-bound pyruvate kinase is readily used by V-ATPase

coupled to VGLUT, we carried out ‘‘ATP-trapping exper-

iments’’ using hexokinase [57], as shown in Fig. 8. In this

experiment, ATP-dependent glutamate uptake and PEP/

ADP-dependent glutamate uptake into isolated synaptic

vesicles were compared in the presence of varying amounts

of hexokinase, which would trap and consume ATP to

phosphorylate glucose in competition with the glutamate

uptake system. PEP/ADP-dependent glutamate uptake was

somewhat reduced by hexokinase in a dose-dependent

manner (Fig. 8, closed circles), suggesting that ATP pro-

duced by vesicle-bound pyruvate kinase diffuses to the

surrounding medium to some degree. However, ATP-

dependent glutamate uptake driven by 60 lM ATP, which

gave about the same glutamate uptake activity as that

observed in the presence of 1 mM PEP and 0.1 mM ADP,

was much more markedly reduced in a dose-dependent

manner by hexokinase (Fig. 8, open circles). There was a

clear difference in sensitivity to hexokinase between PEP/

ADP-induced uptake and ATP-dependent uptake. These

data suggest that the exogenously added hexokinase is less

accessible to ATP endogenously generated by vesicle-

bound pyruvate kinase.

PEP/ADP-dependent Uptake of Other

Neurotransmitters into Synaptic Vesicles

We conducted experiments to determine if neurotransmit-

ters other than glutamate can be taken up into synaptic

vesicles in a PEP/ADP-dependent manner. As shown in

Fig. 9 (filled bars), vesicular uptake of GABA (Fig. 9b),

dopamine (Fig. 9c), and serotonin (Fig. 9d) in the presence

of PEP and ADP was all higher than in their absence

(hatched bars). These results suggest that vesicle-associ-

ated glycolytic ATP-generating enzyme pyruvate kinase

could support vesicular uptake of not only glutamate but

also other classical neurotransmitters.

Discussion

We have presented evidence that the glycolytic ATP-gen-

erating enzyme pyruvate kinase is bound to synaptic

vesicles (Fig. 5a) and that its substrates can support

vesicular glutamate uptake (Figs. 1 and 9a). This study

represents the first functional evidence, to our knowledge,

suggesting that vesicle-bound pyruvate kinase may play a

role in synaptic transmission. The synaptic vesicle fraction

used here is enriched with synaptic vesicle marker proteins

such as SV2, synaptophysin 1, VGLUT1, and VGLUT2,

which occur minimally in plasma membrane and micro-

somal fractions (Fig. 2). Our finding is in agreement with

the recent demonstrations by Morciano et al. [58] and

Takamori et al. [59] that pyruvate kinase is associated with

synaptic vesicles purified by immunoisolation and by

sucrose density gradient centrifugation in combination with

size exclusion chromatography, respectively. Pyruvate

kinase has also been associated with brain clathrin-coated

vesicles [60]. The monovalent cations K? and Tl?, agents

known to activate pyruvate kinase, stimulate glutamate

uptake into isolated synaptic vesicles, in the presence of

PEP and ADP (Fig. 3). The highly selective pyruvate

kinase inhibitor (Z)-Cl-PEP, but not its geometric isomer

(E)-Cl-PEP, diminishes vesicular glutamate uptake in the

presence of PEP and ADP (Fig. 4). Pharmacological

characterization suggests that PEP/ADP-dependent uptake

is mediated by VGLUT, which functions in the presence of

an electrochemical proton gradient generated by V-ATPase

Fig. 8 Effect of ‘‘ATP-trapping’’ by use of hexokinase. Purified

synaptic vesicles (15 lg) were incubated with 1 mM PEP plus

0.1 mM ADP (filled circles) or 60 lM ATP (open circles) for 20 min

at 30�C in 20 mM Hepes-Tris (pH 7.4), containing 150 mM sucrose,

50 mM potassium gluconate, 4 mM KCl, 4 mM MgSO4, 2 mM

aspartate, 5 mM [3H]glutamate, 10 mM glucose, and the indicated

amounts of hexokinase. Glutamate uptake was determined as

described in Experimental Procedures. Under these experimental

conditions, PEP/ADP-dependent Glu uptake and ATP-dependent Glu

uptake in the absence of hexokinase showed similar level of uptake

(7.2 nmol/20 min/mg and 6.1 nmol/20 min/mg, respectively). The

results are expressed as a percentage of control (no hexokinase), and

each value represents the mean ± s.d. of three separate experiments
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(Fig. 6). Moreover, addition of PEP and ADP to the iso-

lated synaptic vesicle fraction results in formation of a

membrane potential (Fig. 7). These observations indicate

that synaptic vesicle-associated pyruvate kinase, when

activated, can provide ATP necessary to generate an

electrochemical proton gradient, the driving force for glu-

tamate transport into vesicles.

In ATP trap experiments (Fig. 8), hexokinase at high

concentrations somewhat consumed ATP generated by

vesicle-bound pyruvate kinase to reduce PEP/ADP-

dependent glutamate uptake, suggesting that ATP produced

by vesicle-bound pyruvate kinase is not directly transferred

to V-ATPase, and diffuses into the surrounding milieu.

However, PEP/ADP-dependent glutamate uptake was

much more refractory to hexokinase than glutamate uptake

driven by exogenously added ATP. This suggests that ATP

produced by vesicle-bound pyruvate kinase is restricted to

the microenvironment around the vesicle where V-ATPase

is more accessible to ATP than exogenously added hexo-

kinase. In the close quarters of the nerve ending in vivo,

ATP concentration may increase much more rapidly than

we observed for the in vitro assay conditions in this study,

since the diffusion of cyotosolic components is limited due

to the presence of rather concentrated protein constituents

[61]. Thus, ATP locally produced by vesicle-bound pyru-

vate kinase might be more readily utilized in vivo by

V-ATPase to achieve vesicular uptake faster than that

observed under our experimental conditions.

Previously, we showed that inhibitors of GAPDH reduce

vesicular glutamate uptake in synaptosomes, while inhibi-

tors of mitochondrial ATP synthase have little effect,

despite the fact that both treatments substantially reduce

total synaptosomal ATP [16]. This provided evidence

suggesting that under normal conditions in which glucose

serves the major substrate for energy metabolism, mitoc-

hondrially produced ATP has a minimal role in vesicular

accumulation of glutamate in synaptosomes. Recent pro-

teomic studies [58, 59, 62] indicate that glycolytic enzymes

including GAPDH and pyruvate kinase are present in iso-

lated synaptic vesicle preparations. Moreover, in the nerve

ending, mitochondria are not always localized close to

synaptic vesicle clusters or neurotransmitter release sites

[63]. Temporarily, glycolytic ATP production precedes

mitochondrial ATP synthesis. Thus, it is conceivable that a

pool of ATP produced by glycolytic enzymes associated

with synaptic vesicles is predominantly utilized at the site

of production to carry out certain cellular processes, such

as neurotransmitter refilling of synaptic vesicles, which

occurs rapidly in vivo [64]. Shephard and Harris [37]

reported that half of nerve endings in certain brain regions

lack mitochondria. Dependence on glycolytic ATP would

be even greater in these nerve endings devoid of mito-

chondria. This notion is further supported by the

observation reported here that activation of synaptic vesi-

cle-associated pyruvate kinase is capable of vesicular

glutamate accumulation. Glycolytic ATP locally produced

by vesicle-bound enzymes could diffuse to the microen-

vironment around the vesicle to be utilized by V-ATPase in

proximity to them, efficiently generating an electrochemi-

cal proton gradient to transport glutamate into synaptic

vesicles. This concept could be applied to vesicular trans-

port of other classical neurotransmitters such as GABA,

dopamine, and serotonin, as these transmitters were also

shown to be taken up upon activation of vesicle-bound

pyruvate kinase (Fig. 9). In some other nerve endings,

however, ATP utilized for neurotransmitter uptake could

Fig. 9 PEP/ADP-dependent uptake of glutamate, GABA, dopamine,

and serotonin into synaptic vesicles. Crude synaptic vesicles were

freshly prepared just prior to the experiment, as described in

Experimental Procedures. Crude synaptic vesicles (31–35 lg) were

incubated at 30�C for 20 min with 50 lM [3H]glutamate (a) or with

50 lM [3H]GABA (b) in 20 mM Hepes-Tris (pH 7.4), containing

150 mM sucrose, 50 mM potassium isethionate, 4 mM KCl, 4 mM

MgSO4, and 2 mM aspartate, in the presence (filled bars) or absence

(hatched bars) of 1 mM PEP and 0.1 mM ADP. Glutamate uptake and

GABA uptake were determined under these conditions, as described

in Experimental Procedures. For dopamine (c) and serotonin (d)

uptake, freshly prepared crude synaptic vesicles (31–35 lg) were

incubated with 49 nM [3H]dopamine or 95 nM [3H]serotonin,

respectively, at 30�C for 20 min in 12 mM potassium phosphate

buffer (pH 7.4), containing 100 mM KCl, 4 mM MgSO4, and 1 mM

ascorbic acid, in the presence (filled bars) or absence (hatched bars) of

1 mM PEP and 0.1 mM ADP. Dopamine uptake and serotonin uptake

were determined as described in Experimental Procedures. Values are

the mean ± s.d. of three separate experiments
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also come from ‘‘soluble’’ glycolytic enzymes as well as

from neighboring mitochondria. The specific activity of

pyruvate kinase activity in the soluble fraction was found

to be much higher than that in the vesicle fraction studied

here. Moreover, Pellerin and Magistretti [65] and Rikhy

et al. [66] provided evidence supporting the importance of

mitochondrial ATP in synaptic transmission; however, the

role of mitochondrial ATP in neurotransmitter vesicular

accumulation is not addressed. The extent to which vesicle-

bound pyruvate kinase contributes to the ATP requirement

for neurotransmitter uptake into synaptic vesicles in vivo

remains to be clarified.

Since the brain usually metabolizes ketone bodies for

energy during prolonged periods of fasting, and functional

mitochondria are required to generate ATP from ketone

bodies, it has been assumed that mitochondrial ATP has

more significant roles than glycolytic ATP in the fasting

brain. Under calorically restricted conditions, early glyco-

lytic intermediates such as glucose 6-phosphate and

fructose 6-phosphate are reduced as expected. However,

most of the downstream metabolites, as well as 3-phos-

phoglycerate kinase, are not decreased in the liver; they

include fructose 1,6-bisphophate, glyceraldehyde 3-phos-

phate, dihydroxyacetone phosphate, 3-phosphoglycerate,

2-phosphoglycerate, and phosphoenolpyruvate [67].

Rather, the first three of these metabolites are increased

under caloric restriction conditions. Thus, it is likely that

the amount of ATP produced by 3-phosphoglycerate kinase

under caloric restriction is no less than that generated under

normal conditions. In the brain, it has been argued that

caloric restriction could lead to an increase in 3-phospho-

glycerate kinase activity in aged rats, because of less

inactivation due to formation of smaller amounts of

nitrotyrosine residues [68]. These lines of evidence support

the notion that vesicular glutamate uptake driven by ATP

generated by 3-phosphoglycerate kinase would be hardly

compromised under caloric restriction. On the other hand,

pyruvate kinase activity in the liver is reduced resulting in

an increase in phosphoenol pyruvate and a decrease in

pyruvate under caloric restriction [67]. In contrast, in the

brain, caloric restriction has been thought to increase

pyruvate kinase activity, since it produces smaller amounts

of carbonylation, resulting in less inactivation of the

enzyme [68]. This suggests that vesicular glutamate uptake

fueled by pyruvate kinase-generated ATP would not be

suppressed under restricted diet. Thus, overall glutamate

accumulation in synaptic vesicles achieved by glycolytic

ATP may not be significantly affected under caloric

restriction conditions.

There is growing evidence that membrane-bound gly-

colytic ATP-generating enzymes are linked to the transport

of other cations [69]. These lines of evidence altogether

suggest a common theme: local glycolytic ATP production

is coupled to the transport of cations including Na?, K?,

and Ca2? as well as H?, playing vital roles in various

cellular processes. Further investigation is warranted into

the role of glycolytic ATP, in particular that locally pro-

duced by membrane-associated enzymes, in maintaining

normal synaptic transmission and other cellular processes.
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