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Abstract Transient receptor potential V1 (TRPV1) is

specifically expressed in the nociceptive receptors and can

detect a variety of noxious stimuli, thus potentiating pain

sensitization. While peripheral delivery of capsaicin causes

the desensitization of sensory neurons, thus alleviating

pain. Therefore capsaicin is used in the clinical treatment

of various types of pain; however, these treatments will

bring many side effects, such as a strong burning pain in

the early stages of treatment which hampers the further use

of capsaicin. Thus, the studies of the functional regulation

of TRPV1 are mainly focused on two aspects: to develop

more potent analogues of capsaicin with less side effects;

or to elucidate the mechanisms of TRPV1 in pain sensi-

tivity, especially of that TRPV1 as a target of various

protein kinases such as PKD1 and Cdk5 is involved pain

hypersensitivity. Thus we would summarize the progress of

these two aspects in this mini review.
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Introduction

Pain is not only one of the most common signs in the clinic,

the chronic pain is also considered to be a type of mental

disease. The lack of adequate and effective treatment

makes the chronic pain as a serious problem affecting the

daily work and life of the people. Therefore, exploring the

intrinsic molecular mechanism of chronic pain to provide

new targets for analgesic pharmacology is becoming the

key step in the clinical treatment for pain. It is also

important to study how to improve the effects of the

existing analgesics and how to reduce the side effects of

these drugs such as the burning pain caused by capsaicin

and the tolerance of morphine.

Pivotal Role of TRPV1 in Pain and Pain Modulation

Among the mechanisms of pain, the most important

mechanism is thought to be peripheral (dorsal root gan-

glion, DRG) and central (spinal dorsal horn) sensitization.

Many factors contribute to the development and mainte-

nance of pain sensitivity, such as neurotrophic factors,

protein kinases and ion channels; these factors ultimately

lead to the strengthening of synaptic transmissions and the

development of sensitization [17, 45]. The nociceptive

sensors in DRG neurons are the first station in the trans-

mission of pain; therefore, the DRG has become an

important target for pain treatment. At the same time, the

specific nociceptive receptors in DRG have become the

focus of pain research.

The transient receptor potential V1 (TRPV1) channel is

one of the nociceptive receptors in DRG neurons. TRPV1,

also known as vanilloid receptor 1 or capsaicin receptor

was cloned in 1997 [4], and it is a member of a large family

of calcium-permeable nonselective cation channels which

are gated by heat, low pH, or endogenous ligands termed

‘‘endovanilloids’’ including anandamide, lipoxygenase

derivatives of arachidonic acid, and long-chain, linear fatty

acid dopamines such as N-arachidonyldopamine [4–6, 12,
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24, 31, 38, 50]. This channel is specifically expressed in the

nociceptive receptors which can detect a variety of noxious

stimuli such as thermal, chemical stimuli like capsaicin and

resiniferatoxin (RTX) causing pain, inflammation and

hyperalgesia [11]. Studies with TRPV1-deficient mice

demonstrate that the TRPV1 channel is essential for

selective modalities of thermal hyperalgesia induced by

tissue injury and inflammation, supporting the hypothesis

that TRPV1 is a molecular integrator of painful stimuli [4].

On the other hand, peripheral delivery of capsaicin causes

the desensitization of sensory neurons with C fibers and Ad
fibers, thus alleviating pain. Based on this characteristic,

capsaicin is used in the clinical treatment of various types

of pain, including diabetes mellitus neuropathic pain, joint

inflammatory pain and post-herpetic neuropathic pain [29,

30]. However, these treatments bring many side effects,

such as a strong burning pain in the early stages of treat-

ment that can prevent the further use of capsaicin.

Therefore, understanding the mechanism of the functional

regulation of TRPV1, or developing potent capsaicin ana-

logues with minor side effects are two major focuses in

pain research.

TRPV1 Acts as a Target for a Variety of Protein

Kinases and Plays a Pivotal Role in Pain Sensitization

Pain sensitization can occur on two levels, that is, post-

transcriptional modification and changes in the level of

transcription, which mediate early and long-term pain

sensitization, respectively [17, 45]. To date, however, there

is no factor that can fully explain the development of pain

sensitivity, which undoubtedly has more complex molec-

ular mechanisms. Among these mechanisms, the most

attractive is the signal transmission network formed by the

close link and the interaction among the intracellular signal

molecules. In this network, both the post-transcriptional

modification and the changes in the level of transcription

act through second messengers and specific protein kina-

ses. At present, the involvement of protein kinases in pain

and in pain modulation is relatively clear. It is well

established that the ERK protein kinase participates in both

the peripheral and central mechanisms of pain sensitiza-

tion, and other protein kinases such PKA, PKC, CaMK and

PI3K are also involved in the regulation of pain [14, 16].

For example, a recent study indicated that peripheral nerve

injury could increase the phosphorylation of ERK, p38 and

JNK in DRG neurons. The phosphorylation of p38 in DRG

neurons was upregulated for as long as three weeks after

spinal nerve ligation. Nerve injury can cause the activation

of MAPK kinases in non-DRG neurons such as satellite

cells, and stimulate the synthesis of inflammatory media-

tors. Inhibitors of ERK, JNK and p38 can alleviate

neuropathic pain [14]. The latest research showed that ERK

activation in the amygdala could enhance peripheral sen-

sitization caused by inflammation [3], indicating that

inflammatory injury could activate ERK signaling not only

in the peripheral nociceptive receptors, but also in the

central nervous system, which further strengthened the

hyperalgesia.

We mentioned above that TRPV1 plays an important

role in the transmission of pain [4, 5, 38]. At the early

stages of inflammation and injury, locally-released

inflammatory mediators, such as prostaglandin (mainly

prostaglandin-2), bradykinin, substance P, NGF and pro-

tease, are the primary contributors to pain sensitization.

These inflammatory mediators cannot activate pain recep-

tors directly but can lower the nociceptive receptor

threshold. They often activate protein kinases such as ERK,

p38 and PKC through the corresponding receptors. Acti-

vated protein kinases can phosphorylate TRPV1, leading to

rapid and dynamic changes in pain sensitivity [1, 15, 25,

34, 47, 49]. Our pharmacological study indicates an

interaction between a novel protein kinase, PKD1 and

TRPV1. PKD1 was successfully cloned by two laboratories

from the United Kingdom and Germany in 1994. The

human homologue is protein kinase C l (protein kinase C

l, PKC l), and the mouse homologue is called PKD1. This

protein was first considered to be a new member in protein

kinase C family and was classified as an atypical PKC

subfamily [18, 40]. However, the enzymatic properties and

molecular structure of PKD1 are very different from that of

PKC. Based on this, PKD1 is now classified to a new

protein kinase family that is distinct from PKC.

The protein kinase D family has a variety of important

biological functions such as regulation of nuclear tran-

scription factor NFj B-mediated gene expression [32, 33],

participation in the Na+/H+ transport [9], the promotion of

Golgi vesicle transport and release [8, 13], and Golgi-to-

membrane trafficking [23]. To date, however, almost of the

research on PKD is concentrated on non-neural cells, and

most of these studies are based on the overexpression of

exogenous PKD. Very little is known about the function of

PKD in the nervous system.

We first proved that PKD1 can directly phosphorylate

rat TRPV1 (rTRPV1) at Serine 116 which is located in the

N-terminal of rTRPV1 in vitro, and we identified that

PKD1 can bind to the N-terminal but not C-terminal of

rTRPV1. Furthermore, mutation of Ser116A in rTRPV1

both blocked the phosphorylation of rTRPV1 by PKD1 as

well as the enhancement by PKD1 of the rTRPV1 response

to capsaicin. We conclude that PKD1 functions as a direct

modulator of rTRPV1 [42]. Next, we detected an interac-

tion between PKD1 and TRPV1 in animal model of

inflammatory hyperalgesia caused by CFA. Through the

study of PKD1 phosphorylation and the use of intrathecal
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gene delivery and electrophysiological techniques, we

found that PKD1 mediated the effect of heat hyperalgesia

but not of mechanic hyperalgesia. We concluded that

PKD1 in DRG, through interaction with TRPV1, is

involved in the developing and maintaining inflammatory

heat hypersensitivity [48]. The phosphorylation site iden-

tified in TRPV1 and the involvement of PKD1 in

inflammatory hyperalgesia will provide a new target for the

design of novel analgesics thus having great theoretical and

practical significance.

In addition, we confirmed cell cycle-dependent protein

kinase 5 (Cdk5), involved in pain hypersensitivity. Cdk5

was cloned in 1992 by several laboratories [10, 21]. The

studies of Cdk5 for two decades indicate that Cdk5 is a

unique member which is functionally different from the

other members of the Cdk family. Cdk5 is widely distrib-

uted in the nervous system with high kinase activity which

participates in a variety of the functions of the nervous

system, including neuronal migration during development,

regulation of cytoskeletal dynamics and changes in synaptic

plasticity [7, 22]. Similar to other Cdks [26], Cdk5 activity

requires the presence of its activators, p35 and p39 [20, 37,

39] or their truncated forms, p25 and p30 [19, 20, 37].

The Pareek group and us proved almost simultaneously

that Cdk5 activation was involved in [7] pain transmission

and heat hyperalgesia [28, 46]. However, there are dis-

crepancies of the results between these two groups. First,

we used different animal models: Pareek group indicated

that Cdk5 participated in carrageenan-induced acute pain

and pain transmission, while our group showed that Cdk5

was involved in CFA-induced chronic pain and peripheral

and central pain sensitization. Second, the results from

Pareek group were mainly based on the p35 knock-in and

knockout mice, whereas the conclusions from our group

were acquired largely through intrathecal gene delivery.

Since p35 was also distributed in motor neurons with

abundant content, thus gene delivery into the spinal cord

may be more specific toward elucidating the role of Cdk5

in pain modulation. Third, the results from Pareek group

showed that the upregulation of Cdk5 activity in DRG and

in the spinal cord was due to the increased levels of p25.

However, we found that p25 was not detected in the DRG

and that the increase in Cdk5 activity in DRG was due to

the upregulation of p35, but in the dorsal horn, the increase

in Cdk5 activity was due to the increased levels of p25.

Lastly, they found that Cdk5 was involved in the basic state

of pain conduction, but we found that Cdk5 did not affect

the pain threshold under basic conditions. In summary, the

results of these two groups are complementary which

illustrate the participation of Cdk5 in pain transmission,

providing a new target for the treatment of pain.

The further studies indicate that one of the mechanisms

underlying the role of Cdk5 in pain sensitization is through

direct phosphorylation of TRPV1. The evidences are as

follows: First, Cdk5 colocalizes with TRPV1 in DRG

neurons. Second, inhibition of Cdk5 activity attenuates

TRPV1 mediated calcium influx in cultured DRG neurons.

Third, Cdk5 directly phosphorylates TRPV1 at Threonine

407. Fourth, conditional depletion of Cdk5 in C-fiber

specific neurons abrogated phosphorylation of TRPV1 at

Threonine 407 and induced hypoalgesia [27, 28]. In our

ongoing studies, we also found that Cdk5 could regulate

the membrane trafficking of TRPV1; this observation needs

to be further investigated.

Development of the Agonist and Antagonist of TRPV1

The Blumberg laboratory at the NIH found a potent cap-

saicin analogue, RTX. Compared with capsaicin, RTX

causes a stronger desensitization of pain sensory neurons

but only caused a moderate degree of burning pain, thus

this compound is more suitable for clinical use [35]. In

addition to using capsaicin and its analogues to desensitize

pain sensory neurons, capsaicin receptor antagonists also

can be used as a supplementary treatment. As mentioned

above, capsaicin first activates the TRPV1 in C fiber sen-

sory neurons and then causes receptor desensitization.

Receptor desensitization is a lasting process, and the early

and brief activation of the receptor causes burning pain.

Thus, if a capsaicin receptor antagonist is combined with

capsaicin, we may be able to alleviate the sensation of

burning pain by blocking the early activation of TRPV1 but

still retain the desensitized effect of capsaicin. Unfortu-

nately, at present, the only commonly-used TRPV1

antagonist is capsazepine. Capsazepine is a TRPV1

antagonist with moderate activity, but to some extent,

capsazepine also acts in other channels including voltage-

dependent calcium channels and the ATP receptor [2, 36].

Therefore, it is necessary to develop more potent and more

specific TRPV1 antagonists. Several laboratories have

initiated the development of new TRPV1 antagonists. The

Thomsen lab has identified a highly efficient TRPV1

antagonist, 5-iodo-RTX. This TRPV1 antagonist is 40

times potent than capsazepine [41] and can block the

burning pain caused by capsaicin in animal experiments.

However, 5-iodo-RTX is a non-competitive antagonist of

TRPV1, and it may weaken the analgesic effect of capsa-

icin; this may limit clinical utility.

RTX, which was designed by changing a few chemical

radicals in the trunk structure of capsaicin, can desensitize

pain sensory neurons more effectively than capsaicin while

reducing the burning sensation [35]. This observation

suggests that different chemical radicals in capsaicin may

contribute to the distinctive biological effects. Based on

this principle, we analyzed the structure of capsaicin and
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capsazepine and changed certain chemical radicals, thereby

designing and synthesizing a series of analogues of cap-

saicin and capsazepine. We then identified two specific and

efficient TRPV1 antagonists through pharmacological and

cell biological experiments. These newly-discovered-

TRPV1 antagonists have the following advantages: (1)

potent antagonism, 25 and 60 times potent as compared to

5-iodo-RTX and capsazepine, respectively; (2) high spec-

ificity, including no activation of the ATP receptor; (3)

effective inhibition of TRPV1 that includes blocking the

activation of TRPV1 by capsaicin, H+ and temperature; (4)

being competitive antagonists. Our results further indicate

that we can change the pharmacological properties of

capsaicin and its analogues by varying certain chemical

radicals in their structures. Therefore, we can acquire

capsaicin analogs, which provide hints for the development

of new capsaicin analogs with efficient analgesia and minor

side effects, thereby expanding the options for the treat-

ment of pain [43].

During the search for new types of capsaicin analogues,

we found that the same capsaicin analogue can present

distinctive pharmacological properties under different

physiological and pathological conditions. The partial

agonists had some properties of weak antagonists and thus

could be mistakenly considered to be antagonists under

certain conditions. Furthermore, these partial agonists could

be converted to full agonists depending on the pH, tem-

perature, TRPV1 receptor density and the degree of PKC

activation. Discovery of this phenomenon has two impli-

cations: it reveals the complexity of the role of capsaicin

analogs and exerts a warning for the future screening of

TRPV1 antagonists with respect to the importance of the

strict control of drug screening conditions; and these find-

ings suggest that partial agonists may also have potential

clinical applications. The effects of weak partial agonists

might be greatly enhanced under inflammatory or other

pathological conditions. Since the weak effect of partial

agonists remains unchanged in non-pathological tissues,

they may reduce the systemic side effects of capsaicin. In

summary, this study explored a new area for the synthesis of

novel TRPV1 agonists and provided new evidence for the

clinical treatment of a number of diseases [44].

In summary, TRPV1 is a multi-signal detector and

integrates a variety of pain stimuli. It is necessary to

investigate how TRPV1 can detect these different stimuli

as a multi-signal pain receptor in physiological and path-

ological conditions. It is also important to elucidate how

the structure and function of TRPV1 vary with changes in

the external environment. All of these results will help us

to understand the transfer and integration of pain signaling

by DRG and the dorsal spinal horn, and to find new anal-

gesic drugs with strong positive effects and minor side

effects. At present, little is known about the molecular

mechanisms that underlie the involvement of TRPV1 in

pain sensitization, although numerous studies have focused

on structural and functional analysis of TRPV1. In addi-

tion, the mechanisms of TRPV1 desensitization are far

from being elucidated. Thus, the structure and function of

TRPV1, as well as its role in pain sensitivity, are still an

important area in pain research.
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