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Abstract Mitochondrial Complex I [NADH Coenzyme Q

(CoQ) oxidoreductase] is the least understood of respira-

tory complexes. In this review we emphasize some novel

findings on this enzyme that are of relevance to the path-

ogenesis of neurodegenerative diseases. Besides CoQ, also

oxygen may be an electron acceptor from the enzyme, with

generation of superoxide radical in the mitochondrial

matrix. The site of superoxide generation is debated: we

present evidence based on the rational use of several

inhibitors that the one-electron donor to oxygen is an iron-

sulphur cluster, presumably N2. On this assumption we

present a novel mechanism of electron transfer to the

acceptor, CoQ. Complex I is deeply involved in patho-

logical changes, including neurodegeneration. Complex I

changes are involved in common neurological diseases of

the adult and old ages. Mitochondrial cytopathies due to

mutations of either nuclear or mitochondrial DNA may

represent a useful model of neurodegeneration. In this

review we discuss Parkinson’s disease, where the patho-

genic involvement of Complex I is better understood; the

accumulated evidence on the mode of action of Complex I

inhibitors and their effect on oxygen radical generation is

discussed in terms of the aetiology and pathogenesis of the

disease.
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Abbreviations

CoQ (Q) Coenzyme Q ubiquinone

Cyt. c Cytochrome c

EPR Electron paramagnetic resonance

FeS Iron-sulphur cluster

GPx Glutathione peroxidase

DA Dopamine

DCIP Dichlorophenol indophenol

DPI Diphenylene iodonium

Gpx Glutathione peroxidase

LB Lewy bodies

LHON Leber’s hereditary optic neuropathy

MPP+ 1-Methyl-4-phenylpyridinium

MPTP 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

PD Parkinson’s disease

PTP Permeability transition pore

ROS Reactive oxygen species

SMP Submitochondrial particles

SN Substantia nigra

SOD Superoxide dismutase

a-syn a-Synuclein

UCP Uncoupling protein

VDAC Voltage-dependent anion channel

The Mitochondrial Generation of Reactive Oxygen

Species

The products of partial reduction of molecular oxygen and

their derivatives are cumulatively designated as Reactive

Oxygen Species (ROS). There are several reactions in cells
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that are able to give rise to superoxide anion radical and/or

to hydrogen peroxide; the latter can react with a reduced

metal ion (such as Fe2+ or Cu+) and generate the most

aggressive hydroxyl radical. Within a cell, mitochondria

largely contribute to the production of ROS via the respi-

ratory chain [1–4]. The relevance of mitochondrial

production of ROS within a cell is indirectly revealed by

the results of deficiency of mitochondrial antioxidant

enzymes. Mitochondria contain an isozyme of superoxide

dismutase (SOD-2) and glutathione peroxidase (GPx). The

lack of SOD-2 [5] and of mitochondrial GPx [6] is dele-

terious to cells.

Although the first product of oxygen reduction by the

respiratory chain is superoxide [7, 8], this radical has a

short life and is rapidly converted into hydrogen peroxide

by mitochondrial SOD or by spontaneous disproportion-

ation, or can attack other molecules, such as lipids, before

being able to escape the mitochondrion. Although

hydrogen peroxide is also removed by GPx, it is much

more stable than superoxide, so that some molecules can

escape the organelle and be detected outside [7]. Most of

superoxide is generated at the matrix side of the inner

membrane, as appears from the observation that super-

oxide is detected in submitochondrial particles which are

inside-out with respect to mitochondria, while, in intact

mitochondria, only hydrogen peroxide was detected. A

study with suitable spin traps, however, demonstrated the

formation of superoxide radical in mitoplasts [9] indi-

cating that a significant aliquot of this species is released

at the outer face of the inner membrane [10]. It is likely

that Complex I releases ROS in the matrix while Com-

plex III in the intermembrane space. The superoxide

anion released at the intermembrane space may be

exported to the cytoplasm through an anion channel

related to VDAC [11]; the hypothesis that superoxide in

the matrix is exported to the intermembrane space via an

anion channel in uncoupling proteins (UCPs) has been

excluded [12].

It is worth noting that mitochondria from different tis-

sues may vary conspicuously in their capacity to produce

ROS using different substrates [13], and this capacity may

also be related to animal species and age.

The first site of damage of the ROS produced by mito-

chondria is the mitochondrion itself: superoxide dismutates

to H2O2 and the hydroxyl radical produced by H2O2 in

presence of reduced metal ions may damage several bio-

molecules in the inner membrane and in the matrix [1, 14].

Another important effect of ROS is induction of perme-

ability transition by opening the cyclosporin-sensitive pore

(permeability transition pore) in the inner membrane [15].

An important question is whether free radicals produced

by mitochondria are also physiologically released to the

cytosol. Staniek and Nohl [16] applied a non-invasive

detecting system for hydrogen peroxide and found that

isolated intact rat heart mitochondria do not produce

detectable H2O2, unless when using succinate in presence

of antimycin. Korshunov et al. [17] also found no hydrogen

peroxide formation by intact rat heart mitochondria, unless

pretreated in such a way to deplete them of endogenous

antioxidants. It may be inferred that under normal condi-

tions ROS are not exported out of mitochondria. There is

however overwhelming evidence that ROS production

detected in different cells and acting as signal transducers

has a mitochondrial origin [18].

It is not easy, however, to demonstrate that ROS

detected in cells are produced by mitochondria; the effect

of respiratory inhibitors appears to be the best way to

discriminate between mitochondrial and non-mitochondrial

ROS. However, the effect of inhibitors is ambiguous.

Although antimycin is usually found to stimulate ROS

production [19] in intact cells, as it does in mitochondria,

the effect of rotenone is contradictory. Some studies

showed that rotenone enhances ROS production in intact

cells [20–22] whereas others showed inhibition of cellular

ROS production by the same inhibitor [23–25]. Since

rotenone decreases ROS production by Complex III while

enhancing ROS production by Complex I, and the relative

contribution of the two Complexes to ROS production may

vary in different cells, if ROS production by Complex III is

relatively high, rotenone inhibition would decrease total

ROS production, whereas, if ROS production by Complex

III is low, then enhancement of ROS release by Complex I

would prevail and total ROS would be increased. Since

ROS production by reverse flux of electrons is decreased

by rotenone [26], another critical point is represented by

membrane potential and the contribution of reverse elec-

tron transfer in Complex I.

Mitochondrial ROS production is enhanced in State 4

and when the rate of electron transfer is lowered [27]. The

rationale is in a more reduced state of the respiratory car-

riers capable of donating electrons to oxygen. To this

purpose uncoupling and release of excessive membrane

proton potential may protect mitochondria from damage

due to excessive free radical production. In rat hepatocytes

the futile cycle of proton pumping and proton leak may be

responsible for 20–25% of respiration [28]; in perfused rat

muscle the value is even greater. Uncoupling may be

obtained by activating proton leak through UCPs [8]. In

such way a tissue may dissipate a conspicuous part of the

energy conserved by its mitochondria, however it keeps the

mitochondrial respiratory chain under more oxidized con-

ditions preventing the formation of damaging free radicals.

Indeed, superoxide activates proton transport through

UCPs [12].

The major sites of superoxide formation in the respiratory

chain are within respiratory complexes I and III [29]. Further
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sites, however, may have importance and physiological

relevance, such as Complex II [30], glycerophosphate

dehydrogenase [31], dihydroorotate dehydrogenase [32].

Recently, an additional source of ROS in mitochondria

(directly in the form of hydrogen peroxide) has been dem-

onstrated in the p66Shc protein: a fraction of p66Shc has a

mitochondrial localization in the intermembrane space and

has been demonstrated to directly produce hydrogen per-

oxide by accepting electrons from reduced cytochrome c

[33]

In this review we emphasize some novel findings on

mitochondrial Complex I [NADH Coenzyme Q (CoQ)

oxidoreductase], that are of relevance to the pathogenesis

of neurodegenerative diseases. In particular we will con-

sider the mechanism by which Complex I reduces oxygen

to superoxide radical.

Structure and Function of Complex I: General Aspects

Most organisms possess Complex I, a very large enzyme

catalyzing the first step of the mitochondrial electron

transport chain [34]. The enzyme oxidizes NADH in the

mitochondrial matrix and reduces Ubiquinone (CoQ), a

lipid soluble electron carrier embedded in the lipid bilayer

of the inner mitochondrial membrane. The total number of

subunits in the bovine enzyme is 46 [35] or 45 [36] for a

molecular mass of about 1,000 kDa. Seven subunits are the

products of the mitochondrial genome [37, 38] and corre-

spond to hydrophobic components named ND1-ND6 and

ND4L. The minimal active form of the enzyme is that

found in bacteria, composed of 14 subunits, all of which

are homologous to their mitochondrial counterparts, while

all other ‘‘accessory’’ subunits still have an undefined role.

From structural and phylogenetic considerations, the

enzyme is envisaged to consist of three different sectors: a

dehydrogenase unit and a hydrogenase-like unit, consti-

tuting the peripheral arm protruding into the matrix, and a

transporter unit deeply embedded in the membrane and

involved in proton translocation [39–41] (Fig. 1).

Several prosthetic groups contribute to electron transfer

within the enzyme: FMN is the entry point for electrons

that are then transferred to a series of iron-sulphur clusters

[42]. Enzymes from different sources have different num-

bers of iron-sulphur clusters, most of which share the same

midpoint potential. Two clusters present different charac-

teristics: N1a, that is of the kind Fe2S2, has the lowest

midpoint potential (Em = –370 mV), while N2, that is of

the kind Fe4S4 and resides at the interface between the

PSST and the 49 kDa subunits [43], has the highest mid-

point potential (Em between -150 mV and -50 mV),

presenting EPR magnetic interactions with the ubisemiq-

uinone radicals; for these reasons it is considered to be the

direct electron donor to ubiquinone [44]. N2 iron-sulphur

cluster is most likely located in the connection between the

peripheral and the membrane arm. The magnetic interac-

tion with the semiquinone radical, corresponding to a

distance of about 10 Å [45, 46], suggests that the ubiqui-

none headgroup could somehow reach up into the

peripheral arm as recently assumed by Brandt et al. [47],

who have hypothesized an amphipathic ‘‘ramp’’ guiding

ubiquinone into the catalytic site. Recently the arrangement
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Fig. 1 Schematic

representation of Complex I

formed by the apposition of

three different modules: a

dehydrogenase module, where

NADH is oxidized, containing

FMN and iron sulphur clusters

N1a, N1b, N3, N4 and N5; a

hydrogenase module where

CoQ is reduced, containing

iron-sulphur clusters N6a, N6b

and N2; and a transporter

module containing no prosthetic

groups and involved in proton

translocation
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of iron-sulphur clusters in the hydrophilic domain of

Complex I from T. thermophilus has been determined by

x-ray crystallography, showing a linear chain of all clusters

except N1a and N7 [48, 49].

Complex I is inhibited by more than 60 different fami-

lies of compounds [50] starting from rotenone, the

prototype of this series, to a number of synthetic insecti-

cides/acaricides. These inhibitors were grouped into three

classes based on their effects on the kinetic behaviour of

the enzyme, having as prototypes piericidin A, rotenone,

and capsaicin, respectively. Nevertheless kinetic studies

did not allow to assign different binding sites for these

three classes of inhibitors: it is commonly accepted that

they share the same hydrophobic large pocket in the

enzyme [51].

Complex I is also involved in the formation of the trans-

membrane proton gradient with a stoichiometry of 4H+/

2e-. The limited knowledge about the mechanism of

electron transfer of Complex I makes it difficult to predict

the mechanism by which this respiratory chain complex

uses redox energy to translocate protons across the inner

mitochondrial membrane (for reviews see [52–54]).

Besides its well known redox role in the electron transport

chain, Complex I is considered one of the main sites of

production of ROS: electron leaks at Complex I can release

single electrons to oxygen and give rise to superoxide anion.

The mechanism of superoxide production by Complex I is

not clear, probably for lack of knowledge of the exact

sequence of the electron carriers and how electron transfer is

coupled to proton translocation. The major sites of ROS

production in the mitochondrial electron transport chain

have been localized in Complex I and Complex III [3, 29,

55]; while the site of electron escape in Complex III has been

identified in the so-called centre ‘‘o’’, the direct oxygen

reductant site in Complex I is not yet known with certainty.

The notion of Complex I as an individual enzyme stems

out of its isolation as a discrete lipoprotein unit by deter-

gent fractionation [56]. Recent structural and kinetic

evidence, however, strongly suggests that Complexes I and

III form stable functional supercomplexes [57–59].

ROS Production by Complex I

Complex I is generally considered as the major enzyme

contributing to generation of ROS in mitochondria [4]; the

site of univalent oxygen reduction in Complex I is still

controversial and the reason is in part in the scant knowl-

edge of the mechanism of electron transfer within the

enzyme prosthetic groups. The physiological relevance of

ROS generation by Complex I as well as by different

mitochondrial sites is still uncertain and is even questioned

by some investigators [60].

Early experiments proved the involvement of Complex I

in ROS production [61]; addition of either NADH at low

concentration or NADPH, which feeds the electrons at

decreased rate into the Complex, led to copious ROS

production detected by lipid peroxidation; addition of

NADH at high concentration, but in presence of rotenone,

also induced peroxidation. Water-soluble CoQ homologs

used as electron acceptors from isolated Complex I stim-

ulated H2O2 production whereas CoQ6 and CoQ10 were

inactive [62]. More recent studies confirmed that Complex

I is a major source of superoxide production in several

types of mitochondria [29, 63] and localized the oxygen

reducing site between the ferricyanide and the quinone

reduction sites [63, 64].

The superoxide production by Complex I is higher

during the reverse electron transport from succinate to

NAD+ [17, 65–69], whereas during the forward electron

transport it is much lower. Reverse electron transfer-sup-

ported ROS production requires high membrane potential

and is inhibited by uncouplers and by processes dissipating

membrane potential [26, 68–70]. Rotenone has been found

to enhance ROS formation during forward electron transfer

[63, 64] and to inhibit it during reverse electron transfer

[46, 66, 71].

The identification of the oxygen reducing site has been

the subject of extensive investigation, and several pros-

thetic groups in the enzyme have been suggested to be the

direct reductants of oxygen.

Ubisemiquinone

On the basis of the significant differences found in the

stimulating effects of rotenone, piericidin and myxothiazol

on ROS production by Complex I, Brand [66] excluded any

site upstream of the quinone/semiquinone couple itself:

since all these are inhibitors of the CoQ site, the sites

upstream of CoQ should have been affected to the same

extent by the different inhibitors. However, using the same

reasoning, it is not possible to exclude as the site of

superoxide generation the electron donor(s) to CoQ, such

as iron-sulphur cluster N2, that share the acceptor pocket

with the quinone itself. Ohnishi et al. [46] reached similar

conclusion from the differential effects of rotenone and

piericidin in both forward and reverse electron transfer, and

concluded that cluster N2 and/or ubisemiquinones bound to

cluster N2 may be the electron donor(s) to oxygen. From

the EPR data reported by the Ohnishi group [45] it appears

that Complex I inhibitors such as rotenone and piericidin A

turn off the EPR signal from the semiquinone species.

Unfortunately there is no available evidence about the

effects of the other Complex I inhibitors on the EPR

semiquinone signals. From our unpublished results on ROS

production it appears that inhibitors known to shut down
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the semiquinone signal are also most efficient in the direct

transfer of electrons to molecular oxygen. These results

would suggest that the endogenous semiquinone formed

during the redox cycle of the enzyme is not involved in

ROS production. This conclusion is also in line with a

previous report showing that in CoQ-depleted mitochon-

dria Complex I is able to produce oxygen radicals at a rate

comparable with the enzyme in non-extracted mitochon-

dria [64].

Flavin Mononucleotide

A major candidate as the electron donor to oxygen has been

proposed to be FMN [71–73]; the rationale for such iden-

tification has been that diphenylene iodonium (DPI), an

inhibitor of Complex I at the FMN region, blocks reverse

electron transfer-supported ROS formation [72]; however,

DPI also inhibits NADH-supported ROS formation [29,

72]. On the other hand, Ohnishi and co-workers [46]

showed that DPI enhances ROS production in the reverse

electron transfer, while inhibiting it in the forward electron

transfer. The loss of ROS detection in presence of DPI

seems to exclude any involvement of FMN in ROS pro-

duction to advantage of a direct involvement of iron-

sulphur clusters. In fact DPI inhibits the iron-sulphur

clusters reduction while the reduced state of protein-bound

FMN is stabilized [74]. Indeed the FMN involvement in

ROS production still remains an open question and the

discrepancies in the literature should be at least in part

ascribed to difficulty in achieving complete inhibition of

the enzyme: the inhibition of Complex I activity was never

more than 80–85%, allowing a residual electron flux to

iron-sulphur clusters. Herrero and Barja [63] found that

ROS production in forward electron transfer in Complex I

was also inhibited by ethoxyformic anhydride, an inhibitor

of iron-sulphur clusters, clearly excluding FMN as the site

of oxygen reduction. In addition, the studies by Lambert

and Brand [66] and by Ohnishi et al. [46] also exclude

FMN as the reductant of oxygen, pinpointing a site close to

or coincident with the CoQ-binding site (see above).

These findings are in contrast with findings in isolated

Complex I [75, 76] where FMN is considered the major

electron donor to oxygen to form superoxide anion. Galkin

and Brandt [75] showed that ROS production was still

present in complex I from a mutant of Yarrowia lipolytica

lacking iron-sulphur cluster N2, concluding that FMN is

directly involved in this activity. Accurate redox titrations

of the electron donor and an EPR study of the different

redox centres [76] appeared however to exclude either

FMN semiquinone or any FeS cluster as the source of

superoxide, suggesting that the fully reduced flavin delivers

an electron to oxygen and the other one to the chain of

iron-sulphur clusters.

The identification of flavin as the site of oxygen

reduction would be incompatible with our finding that two

classes of inhibitors both acting downstream of the iron-

sulphur clusters in the enzyme have opposite effects, in that

rotenone enhances superoxide production whereas stigm-

atellin inhibits it [29]. A possible explanation is that two

sites for oxygen reduction exist in the complex, represented

by flavin and an iron-sulphur cluster; the latter site would

be predominant in membrane particles whereas the former

one might be made better available after Complex I iso-

lation. The role of super-complex organization in shielding/

opening different sites in the enzyme cannot be overlooked.

Nevertheless, a major role can be envisioned for FMN in

the formation of radical species by Complex I in the

presence of physiological hydrophilic quinones (i.e. cath-

ecolamine-derived oxidative products). The mechanism

through which adrenochrome was shown to enhance the

formation of ROS by Complex I is a multiple-step process

involving a site situated upstream in the redox-active chain

of the enzyme, likely coincident with a FMN, since the

reaction is insensitive to both rotenone and p-hydroxy-

mercuribenzoate [77].

Iron-Sulphur Clusters

Another major candidate as the direct oxygen reductant is

the iron-sulphur cluster N2; according to Brandt and col-

leagues [78, 79] this site is localized at the interface

between the matrix site and the membranous part of the

enzyme. The recent crystallographic identification of the

steric location of all iron-sulphur clusters of the bacterial

enzyme [48, 49] allows to locate N2 more precisely, closer

to the membrane sector of the enzyme than previously

suggested. Because of its midpoint potential higher than

that of the other clusters, N2 is considered as the direct

electron donor to ubiquinone. It is commonly accepted that

Complex I inhibitors share the same hydrophobic large

pocket binding site in the enzyme [51] and, according to

the structural model proposed by Brandt [53], this pocket

could be the amphipathic ‘‘ramp’’ guiding ubiquinone into

the catalytic site. In this picture rotenone and related

inhibitors would prevent the quinone access to the catalytic

site, but would not prevent the reduction of N2 cluster.

The electron transfer from NADH to ubiquinone in

Complex I requires the presence of at least eight iron-sul-

phur clusters, seven of which are well protected from

reacting with oxygen with the exception of N2. From

structural and functional studies the iron-sulphur cluster N2

seems to be localized in a region that should be accessible

to protein bound ubisemiquinones, to H+ ions and to water,

hence this region should be also accessible to molecular

oxygen. On the other hand the midpoint potential of cluster

N2 is around –0.15 to -0.05 V [80] and therefore it is
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compatible with the reduction of oxygen to superoxide

anion (mid point potential for the couple superoxide/oxy-

gen is -0.14 V). The correct value of the midpoint

potential for the superoxide/oxygen couple [46] makes less

stringent the identification of a group having lower

potential such as cluster N1a [26] and flavin itself (see

above).

We have exploited the ability of Complex I to transfer

electrons directly to molecular oxygen with the aim to elu-

cidate not only the site of electron escape in Complex I but

also the mechanism of electron transfer inside the enzyme

[29]. To this purpose we have tested the effects of different

inhibitors on the radical production from Complex I. The

findings provide evidence on a strikingly differential effect

of two classes of Complex I inhibitors, based on their ability

to affect oxygen radical production by the enzyme. Class A

inhibitors induce a strong increase in the ROS production

from Complex I, whereas Class B inhibitors completely

prevent ROS production from the enzyme.

Class A inhibitors include rotenone, piericidin A, rol-

liniastatin-1 and -2, but also myxothiazol, while Class B

includes stigmatellin, capsaicin, mucidin at high concen-

tration, and also short ubiquinone analogues such as CoQ2.

Accurate controls have excluded for these compounds a

generic effect as free radical scavengers.

Starting from available knowledge from the literature

and from the results described in this work, we proposed

that Class A inhibitors prevent access of the physiological

CoQ10 to its reduction site, thus allowing the reductant of

CoQ to release one electron to oxygen instead, while Class

B inhibitors directly act on the site of oxygen reduction.

Our results agree with cluster N2 being the direct

reductant of molecular oxygen. Anyway during normal

redox cycle the electron leak from Complex I is very low:

it can be increased by the presence of Class A inhibitors

while it is not related to the reduced state of the enzyme. In

fact in presence of 1.8 lM mucidin, that inhibits Complex

III and prevents radical formation from it without affecting

the Complex I activity, and at saturating concentrations of

NADH (condition that allows the full reduction of all redox

centres in Complex I as well as the reduction of the qui-

none pool [81], the superoxide production was not

significantly enhanced. On the other hand, when mucidin

was used at 60 lM concentration, we could achieve full

inhibition of the Complex I activity together with a full

inhibition of ROS production even in presence of Class A

inhibitors. These results suggest that to rise up the electron

escape from Complex I, Class A inhibitors are necessary. It

might be guessed that they induce in the enzyme a con-

formational change that makes the reducing centre more

accessible to molecular oxygen, whereas Class B inhibitors

would either directly block this reducing centre, or induce a

conformational change making it less accessible.

These findings have allowed to get a deeper insight into

the mechanism of electron transfer of Complex I to the

CoQ acceptor. This issue will be developed in the next

section.

Mechanism of Electron Transfer in Complex I

The primary acceptor of electrons from NADH is FMN

bound to the 51 kDa subunit [82]; since iron-sulphur

cluster N1a has a very negative potential and is situated too

far from the other iron-sulphur clusters [48], it is not

considered to reside in the main pathway of electrons [83].

Thus electrons would flow from FMN to N3 in the same

51 kDa subunit, and to N4 and N5 in the 75 kDa subunit

[80, 84, 85], and then to N6a and N6b in the TYKY subunit

[86] and to N2 in PSST subunit [39, 87, 88] but shared with

the 49 kDa subunit [89]. N2 is the direct electron donor to

bound ubiquinone [80] and probably this step is linked to

proton translocation [44], although the mechanism is still

debated [52, 53, 90–93]. A recent view favours a confor-

mational mechanism [47], since all redox groups in the

enzyme appear to be located in the hydrophilic arm or at

least at the interface with the hydrophobic arm.

The mechanism of CoQ reduction is particularly

intriguing, since more than one bound quinone species has

been assigned to the enzyme; three ubisemiquinone EPR

signals are detectable in the enzyme [42, 80].

The findings in our laboratory that two different classes

of inhibitors have opposite effects on oxygen reduction to

superoxide during forward electron transfer allow to draw

two minimal schemes of electron transfer in Complex I

(Fig. 2). In a linear scheme the electron donor to oxygen is

presumably FeS cluster N2, whose reduction would be

inhibited by stigmatellin while its reoxidation would be

inhibited by rotenone. This scheme is not compatible with

the notion that the stigmatellin inhibition site is down-

stream with respect to the rotenone site, since the

behaviour of stigmatellin as an inhibitor is shared by

reduced quinone analogs [50]. On the other hand, in the

bifurcated scheme shown in the figure, an iron-sulphur

cluster located upstream N2 centre acts as a ‘‘switch’’ for

electron delivery. In absence of quinone in the active site of

the enzyme (e.g. in presence of Class A inhibitors) the iron-

sulphur clusters chain is completely connected and elec-

trons flow directly to N2 centre. In presence of quinone,

however, the chain is interrupted at a level of the ‘‘switch’’

that gives the first electron to quinone. The resulting

semiquinone allows a conformational change connecting

the ‘‘switch’’ to the downstream Fe-S clusters, inducing the

complete reduction of semiquinone to quinol via N2 centre.

Class B inhibitors would prevent the delivery of the second

electron to semiquinone without affecting its formation
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and, acting on N2 centre, would prevent also superoxide

formation.

A further confirmation of this scheme derives from the

effect of inhibitors on reduction of the acceptor dichloro-

phenol indophenol (DCIP). Some DCIP is reduced at the

level of FMN, since there is a component insensitive to

DPI; another component is sensitive to DPI and must be

reduced at the level of CoQ. In fact both hydrophilic and

hydrophobic quinones enhance DPI-sensitive DCIP

reduction. The reduction is inhibited by rotenone but only

slightly by stigmatellin.

These findings demonstrate that DCIP is reduced at a

site situated between the rotenone and the stigmatellin

inhibition sites, a further indication for a split pathway of

electrons at the CoQ binding site. According to the scheme

presented in Fig. 2, DCIP would be reduced by ubisem-

iquinone, since its formation is rotenone sensitive but

stigmatellin insensitive.

The results of this investigation have to be reconciled

with the linear pathway of electrons along the series of

iron-sulphur clusters as demonstrated by the crystallo-

graphic study of Hinchliffe and Sazanov [48]; our

interpretation is not in contrast with the existence of a

linear pathway, because the two electrons delivered to CoQ

for its complete reduction could well be provided alterna-

tively by two different clusters if a suitable conformational

change occurs after the first electron delivery in order to

provide a gating mechanism for the second electron.

Complex I in Pathology

Mitochondrial Cytopathies as a Model of

Neurodegeneration

Mitochondrial diseases comprise a heterogeneous group of

disorders characterized by impairment of mitochondrial

oxidative phosphorylation; muscle and brain are mostly

affected, probably because of their high dependence on

oxidative metabolism [94], but the term mitochondrial

encephalomyopathies is not totally correct because of the

systemic involvement of the whole organism: for this

reason the term mitochondrial cytopathies is to be pre-

ferred. Overall, mitochondrial cytopathies have an

incidence of about 1 in 7600–10,000 [95, 96].

A genetic classification of mitochondrial cytopathies

[97, 98] distinguishes disorders due to defects of the

mitochondrial genome and those due to nuclear DNA

mutations. Only one-third of the over 150 pathogenic

mtDNA mutations concerns structural genes, the others are

either deletions or rearrangements or they affect mito-

chondrial tRNA or rRNA genes. A more recent and broader

classification distinguishes four categories of mitochondrial

disorders [99]: those due to mutations in respiratory chain

subunits, those due to mutations affecting respiratory

complexes assembly, those due to alteration of mitochon-

drial DNA (mtDNA) translation or its integrity, and those

due to mutations affecting mitochondrial morphology and

motility. The heterogeneity of the clinical patterns of

mtDNA defects is related to the complexity of mitochon-

drial genetics [100]: the degree of heteroplasmy usually

differs in different tissues due to mitotic segregation and

other less known phenomena; in addition threshold effects

[101] allow normal biochemical phenotype until a well-

defined threshold (usually high, up to 90% mutated

mtDNA with respect to wild type) is reached.

The phenotypic threshold may be explained by com-

plementation of the altered products of mutated mtDNA by

the normal products of wild-type mtDNA at different lev-

els: transcription, translation, enzyme complex assembly,

biochemical level and cellular level. The possibility of

mitochondrial trans-complementation is controversial

[102–105]. Three mechanisms may underlie the biochem-

ical threshold [101]: an excess of active oxidative

phosphorylation complexes, the presence of inactive

complexes that are activated when the oxidative phos-

phorylation level becomes insufficient, and an increased

turnover of the active complexes due to regulation mech-

anisms. Flux control analysis [106] has been critical for the

understanding of the biochemical threshold.

Several mtDNA point mutations of structural genes have

been associated with Leber’s Hereditary Optic Neuropathy

(LHON) [107] (Table 1); here we survey some biochemi-

cal aspects of the LHON syndrome due to the three primary

mutations in Complex I ND subunits.

Leber’s Hereditary Optic Neuropathy is due to three

main mutations in genes for Complex I subunits affecting

subunits ND1, ND4, ND6. The clinical syndrome is char-

acterized by retinal ganglion cells and optic nerve

degeneration with sudden blindness. The disease mainly

affects individuals with homoplasmic mutations, but not all
Fig. 2 Hypothetical scheme for the pathway of electrons to the CoQ

acceptor and to oxygen in Complex I. Cf. text for detailed discussion
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subjects harbouring the pathogenic mutations are affected,

suggesting that other genetic and/or environmental factors

are required for the development of the disease. The three

pathogenic mutations of complex I [108, 109] occur at

positions G11778A/ND4, G3460A/ND1, and T14484C/

ND6.

Biochemical investigations of the three most frequent

mutations revealed some subtle biochemical changes in

Complex I function [110]. Only the 3460/ND1 mutation

showed a consistent reduction in complex I electron transfer

activity [111–113], while both 11778/ND4 and 14484/ND6

mutations had normal activities [111, 114–116].

Studies on the sensitivity of Complex I to different

inhibitors showed a decreased sensitivity to rotenone and

an enhanced sensitivity to quinol product inhibitors [117],

while sensitivity to other complex I inhibitors not inter-

fering with the CoQ binding site, such as rolliniastatin-2 or

amytal, was unchanged. These results might be interpreted

assuming that the mutations interfere with the interaction

of complex I with CoQ, suggesting that the CoQ binding

site may be affected by the mutations.

The complex I dysfunction in LHON may have three

major consequences: (a) the release of quinol product may

be affected, thus leading to decreased total respiratory

activity; (b) due to alteration of the hydrophobic quinone

binding site(s), proton pumping through complex I may be

defective thereby affecting energy conservation; (c) an

increase of ROS generation may occur as a consequence of

altered electron flow, as reported in the case of nuclear

complex I mutations [118]. Studies using osteosarcoma-

derived cybrids carrying each of the LHON mutations

indicate that Complex I-dependent ATP synthesis is

reduced by all three mutations, though the inhibiting effect

was less severe with the 11778/ND4 mutation. Signifi-

cantly, this mutation was associated with an uncoupling of

the oxidative phosphorylation more than with the reduced

electron transport activity of complex I, which in fact

appeared to be more effective in the presence of the 3460/

ND1 and the 14484/ND6 mutations. The reduced ATP

synthesis rate of the mutated cybrids was reflected by the

slight reduction of total ATP cellular content observed

[107, 119]. Complex II-dependent ATP synthesis does not

appear to be significantly affected.

Besides an energy defect, overproduction of ROS may

represent a major element in LHON pathophysiology [120–

122]. This hypothesis is supported by the increased ROS

generation after partial Complex I inhibition (cf. [20] and

previous sections). The apoptotic cell death occurring in

LHON cybrids when incubated in galactose medium [123]

may be the result of both decreased OXPHOS and

increased ROS generation. [124].

Several examples of enhanced ROS production in

genetic defects of Complex I are known in the literature,

particularly for nuclear genes mutations [118, 125, 126],

whereas the effect of mitochondrial gene mutations is less

clear [107, 127, 128]; recently cybrids carrying the LHON

14487 ND6 mutation were shown to undergo a ROS

overproduction [129]. Also physiological states, such as

subunit phosphorylation, may modify the ROS generating

capacity of Complex I [126, 130, 131]. It is therefore

tempting to speculate that endocrine alterations may affect

the capacity of ROS formation by hyper- or hypo-phos-

phorylation of the Complex.

Complex I and Parkinson’s Disease

The incidence of Parkinson’s disease (PD) is estimated as

8–18 per 100,000 person-years, and the prevalence is

approximately 0.3% of the entire population: PD affects

more than 1% of those older than 60 years and up to 4% of

those older than 80 years [132].

Epidemiological studies reveal that \10% of PD has a

strict familial aetiology while the majority of cases are

sporadic. The discovery of genes linked to rare familial

forms of PD during the last decade confirmed the role of

genetics in development of PD, and provided vital clues in

understanding molecular pathogenesis of the common

sporadic illness [133].

The neuropathological hallmarks are characterized by

progressive and profound loss of neuromelanin-containing

dopaminergic neurons in the substantia nigra pars com-

pacta (SN) with presence of eosinophilic, intracytoplasmic,

proteinaceous inclusions termed as Lewy bodies (LB) and

dystrophic Lewy neurites in surviving neurons [134].

Expeditiously, after the identification of mutations in the

gene encoding the protein a-synuclein (a-syn) in kindreds

with PD [135], it was determined that filamentous a-syn is

the major component of Lewy pathology [136–140].

Markers of oxidative stress, such as products of lipid

peroxidation [141, 142], protein oxidation [143–146] and

Table 1 Pathogenic point mutations of mtDNA associated with

LHON

mtDNA

mutation

Disease Subunit

involved

Aminoacid

substitution

G3460A LHON ND1 Ala 52 Thr

A4917G ND2 Asp 150 Asn

G11778A ND4 Arg 340 His

G13708A ND5 Ala 458 Thr

T14484C ND6 Met 64 Val

T9101C ATP6 Ile 192 Thr

G9438A COX III Gly 78 Ser

G15257A Cyt b Asp 171 Asn

G15812A Cyt b Val 356 Met

G14459A LHON/dystonia ND6 Ala 72 Val
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oxidation of mtDNA and cytoplasmic RNA [147], are

increased in dopaminergic neurons of PD brains. Increased

oxidation in the SN of PD patients also may be partially

due to the reported accumulation of iron [148–152], which

in the form of Fe2+ can catalyze the formation of strong

oxidants. The presence of advanced glycation products and

3-nitrotyrosine in Lewy pathology and the demonstration

that a-syn is a specific target of nitration [153–157] sug-

gests that oxidative damage may be involved in the

formation of these inclusions [158].

Numerous studies indicated the involvement of ROS

and oxidative stress in PD pathogenesis, including reduced

amounts of the thiol-reducing agent glutathione [159, 160]

and elevated concentrations of iron [161] in SN of PD

patients. Loss of neuromelanin-containing DAergic cells is

characteristic for PD and the dark brown pigment neuro-

melanin attracted attention to the auto-oxidation of

dopamine (DA), as it consists primarily of products of DA

redox chemistry [162]. Normal metabolism of DA, partly

accomplished by monoamine oxidases, produces hydrogen

peroxide (H2O2) [163]. From this reaction alone, DAergic

neurons are exposed to oxidative stress. In addition, DA

can be oxidized to a dopamine quinone. This oxidation

occurs spontaneously, is accelerated by the presence of

transition metal ions, or can be enzyme-catalysed. The

resulting dopamine quinone covalently modifies cellular

macromolecules, which may serve as a mechanism for

dopamine-induced neurotoxicity [164, 165]. Oxidation of

DA to dopamine quinone by superoxide may trigger a

vicious cycle of oxidative stress through the reduction of

the quinone by mitochondrial Complex I to its semiquinone

form and its reoxidation by oxygen to form additional

superoxide [166, 167]. Indeed this mechanism has been

proven for an adrenaline/adrenochrome cycle in isolated

mitochondria [77, 168].

Moreover, multiple lines of evidence suggest a patho-

genic role of oxidative damage and mitochondrial

dysfunction in causing PD [169]. The direct relation

between mitochondrial dysfunction and PD came from the

post-mortem description of complex I deficiency in the SN

of patients with PD [170]. Subsequently, the deficiency was

also seen in the skeletal muscle and platelets [171, 172] and

there was a decrease in complex I proteins in the SN of

patients with PD [173]. Consistent deficits in the subunits

and activity of mitochondrial complex I of the electron

transport chain in blood platelets and SN of PD patients is a

prominent phenomenon [174, 175]. Reduced complex I

activity is also seen in cytoplasmic hybrid (cybrid) cell

lines containing mtDNA from PD patients [176]. The

complex I deficiency in the substantia nigra and platelets

implies that it is a systemic defect in a proportion of cases

(*25% on the basis of platelet activities) and this might be

due to genetic or environmental (endogenous or

exogenous) causes. The complex I defect in patients with

PD lowers the threshold of apoptosis mediated by the

mitochondria—through a decrease in ATP production and

by the generation of free radicals—and sensitises cells to

the proapoptotic protein Bax [177]. The specificity of the

complex I defect in the brains of patients with PD and its

relation with oxidative stress have been supported by the

recent finding that this is the only respiratory chain protein

complex that is affected by endogenous oxidative damage

and has reduced structural stability [174].

The connection between mitochondria and PD has been

reinforced by the finding that several of the genes that

cause familial PD encode mitochondrial proteins and that

mitochondrial toxins can cause PD in animals [178].

Mutations or polymorphisms in both mtDNA and

nuclear DNA were implicated in causing PD or in affecting

PD risk [179]. To this purpose, mtDNA mutations may be

involved in the aetiology and predisposition to the idio-

pathic disease, since cybrids containing mitochondria from

Parkinson’s patients exhibit a reduced activity of Complex

I [180] and generate Lewy inclusion bodies [181]. How-

ever, exhaustive sequencing of mtDNA has not yet

revealed mutations that consistently associate with PD

[182]; nevertheless, somatic deletions of mtDNA are found

more frequently in SN from PD patients [183, 184].

Mitochondrial dysfunction has long been implicated in

PD pathogenesis; this hypothesis arose with the discovery

that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

produced PD-like symptoms in designer drug abusers [185].

Its metabolite, 1-methyl-4-phenylpyridinium (MPP+), is

actively transported into DAergic neurons by the dopamine

transporter. Within these neurons MPP+ enters mitochon-

dria, and selectively inhibits mitochondrial respiration at

complex I of the electron transport chain [186, 187]. Chronic

infusion of rotenone, a highly selective complex I inhibitor,

also reproduced behavioural and neuropathological features

of PD in rats [188, 189]. These neurotoxins and neurotoxic

animal models of PD renewed interest in possible environ-

mental causes of PD, as similar compounds in the

environment might play a causative role in the disease [190–

192]. Furthermore, the environmental toxins causing par-

kinsonism identified thus far are all inhibitors of Complex I,

e.g. MPTP, rotenone and annonacin [190].

In addition, genetic defects causing familial forms of PD

have been identified in the last decade. Despite the rarity of

these familial forms of PD the identification of PD-linked

genes has fuelled our understanding of possible pathogenic

mechanisms of PD, and placed ubiquitin–proteasome sys-

tem dysfunction, oxidative stress and mitochondrial

dysfunction at centre stage [192]. The discovery of com-

plex I deficiency in PD and the role of mitochondria in PD

has been enhanced by the subsequent identification of

mutations in genes encoding mitochondrial proteins, e.g.
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PINK1 and DJ1 as causes of autosomal recessive PD, and

by the mitochondrial abnormalities associated with a-syn-

uclein and parkin expression.

A major step in our understanding of the aetiopatho-

genesis of the disease came when mutations were identified

in a-synuclein in 1997, followed by mutations in parkin a

year after that [135, 193]. The demonstration that a-syn is

the main constituent of Lewy bodies in the same year

suggested a primary role for a-syn aggregation, however,

later studies revealed close interplay between a-syn

aggregation and oxidative stress in the pathogenesis of PD

[136, 194, 195]. The identification of mutations in DJ1 [PD

(autosomal recessive, early onset), a possible redox sensor]

in 2003 and phosphatase and tensin homologue (PTEN)-

induced kinase 1 (PINK1, a mitochondrial kinase) in 2004

provided strong evidence that mitochondrial dysfunction

and oxidative stress might have a primary role in the

pathogenesis of PD, although how mutations in these genes

cause neuronal degeneration is still unclear [196, 197]. The

recent observation [198] that a-syn can be imported into

mitochondria and inhibit Complex I inducing enhancement

of ROS production and that these effects have an earlier

onset with mutated a-syn is strongly relevant to the role

and interplay of all these factors in the pathogenesis of PD.

Thus, although classically regarded as an archetypical

non-genetic disease due to the high proportion of sporadic

cases, hugely significant advances in our understanding of

PD have stemmed directly from the study of these genes

associated with a small proportion of familial cases. [199].

A precise role of mitochondrial Complex I in the for-

mation of Lewy bodies through a-synuclein aggregation is

not yet defined: nevertheless the hypothesis is tenable that a

primary mitochondrial dysfunction may lead to enhanced

ROS production [200], triggering cell death mechanisms in

dopaminergic cells [201] by an interplay of different

endogenous and exogenous factors: indeed neurotoxins

inducing parkinsonism, such as MPP+ and rotenone,

stimulate ROS production by Complex I (see Sect. ‘‘ROS

Production by Complex I’’). Figure 3 schematically depicts

possible pathogenetic mechanisms of PD.
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