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Abstract During evolution, living organisms develop a

specialized apparatus called nociceptors to sense their

environment and avoid hazardous situations. Intense

stimulation of high threshold C- and Ad-fibers of noci-

ceptive primary sensory neurons will elicit pain, which is

acute and protective under normal conditions. A further

evolution of the early pain system results in the develop-

ment of nociceptor sensitization under injury or disease

conditions, leading to enhanced pain states. This sensiti-

zation in the peripheral nervous system is also called

peripheral sensitization, as compared to its counterpart,

central sensitization. Inflammatory mediators such as pro-

inflammatory cytokines (TNF-a, IL-1b), PGE2, bradykinin,

and NGF increase the sensitivity and excitability of noci-

ceptors by enhancing the activity of pronociceptive

receptors and ion channels (e.g., TRPV1 and Nav1.8). We

will review the evidence demonstrating that activation of

multiple intracellular signal pathways such as MAPK

pathways in primary sensory neurons results in the induc-

tion and maintenance of peripheral sensitization and

produces persistent pain. Targeting the critical signaling

pathways in the periphery will tackle pain at the source.

Keywords Peripheral sensitization � Dorsal root

ganglion � Inflammatory pain � Neuropathic pain � MAP

kinases � Neural plasticity

Introduction

It is absolutely essential for the survival of animals and

human beings to be able to avoid hazardous situations. This

capability is gained during evolution through the develop-

ment a specialized apparatus by living organisms to sense

their immediate environment in order to protect themselves

from potentially dangerous inputs. This special apparatus is

called nociceptor that can detect noxious stimuli from the

environment. Intense stimulation of nociceptors that have

high thresholds will elicit a pain sensation, through a path-

way that is initiated from the action potential generated in

the peripheral nociceptor terminal. This pain signal is con-

ducted via thin fibers containing unmyelinated C-fibers and

myelinated Ad-fibers of primary sensory neurons to sec-

ondary order neurons in the spinal cord dorsal horn, finally

to the cortex via a relay in the thalamus. Nociceptive pain is

an acute ‘‘ouch’’ pain, and has a protective role. In last

decade, many pain transduction molecules have been iden-

tified, such as thermal receptors transient receptor potential

(TRP) ion channel family. While TRPV1 and TRPV2 detect

heat stimuli [1], TRPM8 [2, 3] and TRPA1 [4] sense cold

stimuli. For example, activation of TRPV1 after a heat

stimulus ([42�C) generates inward currents in the noci-

ceptor peripheral terminal and results in action potentials in

the nociceptor axon, leading to pain sensation [5–8].

A further evolution of the early pain system was

development of the capacity to produce increases in sen-

sitivity after injury, nociceptor sensitization, which will

lead to the development of persistent pain.
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Electrophysiologically, this sensitization is characterized

by increased background firing, increased responses to

supra-threshold (noxious) stimuli, and decreased threshold

for thermal and mechanical stimuli. These electrophysio-

logical phenomena may underlie corresponding behavioral

phenomena: spontaneous pain, hyperalgesia (increased

responses to noxious stimuli), and allodynia (nociceptive

response to previously innocuous stimuli). Nociceptive

sensitization was found even in simple organisms such as

Aplysia, where an intense noxious stimulus can produce a

long lasting sensitization of the gill withdrawal reflex [9].

This sensitization is also referred to peripheral sensitiza-

tion [6, 7, 10, 11], because it occurs in the peripheral

nervous system. In contrast, central sensitization, a coun-

terpart of peripheral sensitization, refers to an increased

sensitivity in the central nervous system [12]. Although

central sensitization after injury is also important for the

development of persistent pain and especially important for

the maintenance of persistent pain, this review will focus

on peripheral sensitization.

While nociceptive pain or physiological pain is transient,

clinical pain or pathological pain is often chronic. Animal

models of persistent pain are often produced by peripheral

tissue damage (inflammatory pain) or peripheral nerve

lesions (neuropathic pain). Peripheral sensitization results in

pain hypersensitivity in animals, such as spontaneous pain

and hyperalgesia including heat hyperalgesia and mechan-

ical hyperalgesia. Pain hypersensitivity is also manifested as

allodynia. For example, animals normally do not respond to

acetone (a cooling agent) or low force of von Frey hair

stimulation (sub-threshold mechanical stimulation). How-

ever, after nerve injury, animals show robust painful

responses to acetone application (cold allodynia) and low

force mechanical stimulation (mechanical allodynia).

Induction and Maintenance of Peripheral

Sensitization

Tissue injury such as surgical incision [13] or injection of

chemical substances (e.g., capsaicin, formalin, carra-

geenan, or complete Freund’s adjuvant (CFA)) produces

inflammation and heightened pain states [14]. This pain

hypersensitivity arises from the production and release of

inflammatory mediators such as prostaglandin E2 (PGE2),

bradykinin, ATP, protons, nerve growth factor (NGF), and

proinflammatory cytokines such as tumor necrosis factor-a
(TNF-a) and interleukin-1b (IL-1b) from non-neuronal

cells (e.g., fibroblasts, mast cells, neutrophils, monocytes,

and platelets) as well as from primary sensory terminals.

After nerve damage, these mediators can also be released

from enclosing Schwann cells and damaged axons [15].

The soma and axons of primary sensory neurons contain

receptors for these inflammatory mediators, such as

G-protein-coupled receptors for PGE2 and bradykinin,

ionotropic receptors for ATP and protons, tyrosine kinase

receptors for NGF and cytokines [16, 17] (Fig. 1).

Importantly, all these inflammatory mediators have been

implicated in pain sensitization, and molecular mecha-

nisms underlying the actions of these mediators have been

intensively investigated [6, 7, 10, 11, 16–18].

Primary sensory neurons in the dorsal root ganglion

(DRG) can be separated into two populations: neurofila-

ment-200-positive (myelinated) and neurofilament-200-

negative (unmyelinated). The majority of DRG neurons

(around 70%) are unmyelinated (C-fiber) neurons that also

express peripherin. These unmyelinated neurons are further

divided into peptidergic neurons (40% of total DRG neu-

rons) that express the neuropeptide calcitonin gene-related

peptide (CGRP) and substance P, as well as NGF receptor

TrkA and non-peptidergic neurons (30% of total DRG

neurons) that express isolectin B4 (IB4) and glia-derived

neurotrophic factor (GDNF) receptor c-ret [19–21]. Based

on this neurochemical characterization, the majority of

DRG neurons are nociceptors, which include (1) peripheral

axonal terminals in the skin or muscle, (2) peripheral nerve

axons (i.e., sciatic and saphenous nerves), (3) cell bodies in

the DRG, (4) central axons in the dorsal root, and (5)

central axonal terminals in the spinal cord. Although

Fig. 1 Induction of peripheral sensitization. Peripheral tissue injury

or nerve damage leads to the production of various inflammatory

mediators, such as TNF-a, PGE2, bradykinin, and NGF. These

mediators are released and stimulate the corresponding receptors on

terminals, axons, or cell body of nociceptive primary sensory neurons.

Activation of different receptors results in the activation of multiple

protein kinase pathways, leading to rapid posttranslational regulation

of TRPV1 and TTX-R Na+ channels. Hyperactivity of TRPV1 and

TTX-R Na+ channels induces peripheral sensitization and

hyperalgesia
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peripheral sensitization is best studied in the peripheral

terminals and cell bodies, it can occur at all the sites of

sensory neurons. Nociceptors express various types of ion

channels such as TRP channels (TRPV1-V4, TRPA1,

TRPM8) [4–6], ATP receptor P2X3 [22, 23], acid-sensitive

channel (ASIC1-4) [24], and tetrodotoxin (TTX)-sensitive

Na+ channels (TTX-S, such as Nav1.1, Nav1.2, Nav1.3,

Nav1.6, and Nav1.7) and TTX-resistant Na+ channels

(TTX-R, such as Nav1.8 and Nav1.9) [25–28], as well as

various kinds of Ca2+ channels [29] and K+ channels [30].

Notably, the sensitivity of these channels is strongly reg-

ulated by inflammatory mediators [6, 7, 17].

Current studies focus on two types of channels, TRP

channels, especially TRPV1 (previously called vanilloid

receptor subtype-1 (VR1)), a transduction molecule that

can convert extracellular stimuli into electrical activity on

the membrane [6, 7], and Na+ channels, especially TTX-R

Na+ channels that are important for the conduction of

action potentials [25–27], although other channels such as

TRPA1 [31], Nav1.7 [32], and purinergic receptors such as

P2X3 [22, 23] are also well studied. TRPV1 is expressed in

C-fiber nociceptive neurons and is required for the gener-

ation of heat hyperalgesia [6]. Inflammatory heat

hypersensitivity following bradykinin [33], NGF [33],

TNF-a [34], CFA [35], and carrageenan [36] is abolished in

TRPV1 null mice. Persistent inflammation increases

TRPV1 expression in DRG neurons [37, 38] and further

increases TRPV1 transport to peripheral nociceptor termi-

nals [37]. The peripheral input that drives pain perception

depends on the presence of functional voltage-gated Na+

channels. Although fast-activating TTX-S Na+ channels

may be sufficient for the conduction of action potentials,

specific expression of TTX-R Na+ channels (Nav1.8 and

Nav1.9) in nociceptors [39] and their slow-activating and

slow-inactivating properties point to a specific role of these

channels for sustained excitability of nociceptors after tis-

sue injury [25–27]. Sensitization and hypersensitivity of

TRPV1 and TTX-R Na+ channels has been strongly

implicated in the generation of peripheral sensitization and

persistent pain [6, 25–27, 33, 34, 36–38].

Sensitization of these ion channels can occur rapidly

(within minutes) by posttranslational regulation via phos-

phorylation [17], and TRPV1 is known to have multiple

phosphorylation sites for several protein kinases [11].

However, transcriptional regulation often takes hours to

days to manifest, leading to increased expression of pron-

ociceptive molecules to maintain peripheral sensitization

and enhanced pain states (Fig. 2). Tissue injury and per-

sistent inflammation are known to induce the expression of

multiple pronociceptive genes in nociceptors, such as genes

encoding for substance P, CGRP, brain-derived neurotro-

phic factor (BDNF), TRPV1, and Nav1.8 [17, 37]. These

changes in gene expression in peptidergic and TrkA-

expressing nociceptors depend on NGF, whereas those

changes in non-peptidergic nociceptors may depend on

GDNF [17, 20]. After nerve injury, however, changes in

DRG gene transcription are much more dynamic and

complicated [40, 41], partly due to different processing of

nerve degeneration and regeneration. Some of these

changes such as upregulation of Ca2+ channel a2d subunit

[42] and Na+ channel b2 subunit [43] in DRG neurons

contributed to neuropathic pain sensitization.

Importantly, both rapid posttranslational and slow tran-

scriptional regulations in sensory neurons require the

activation of multiple protein kinases via intracellular

signaling transductions.

Classic Protein Kinase Signaling Pathways

and Peripheral Sensitization

Protein kinase A (PKA) is activated by cAMP, the first

known second messenger. Activation of PKA in nociceptor

terminal appears to be sufficient for producing hyperalgesia,

since intradermal injection of cAMP analogue or adenylate

Fig. 2 Maintenance of peripheral sensitization by transcriptional or

translational regulation. Inflammatory mediators produced after

peripheral tissue injury or nerve damage (as shown in Fig. 1), as

well as spontaneous electrical activity, induce the activation MAPK

pathways (p38, ERK, JNK) in different subsets of nociceptive

primary sensory neurons. Activation of these pathways results in

transcriptional regulation via transcription factors CREB, ELK-1, Jun,

and ATF and translational regulation via translation initiation factors.

Consequently, there is increased synthesis of ion channels such as

TRPV1, TRPA1, TTX-R Na+ channels, P2X3, and Ca2+ channel a2d
subunit and neuromodulators such as BDNF, substance P, CGRP,

TNF-a, and IL-1b. Persistent increase in the synthesis of these

pronociceptive proteins in primary sensory neurons maintains hyper-

sensitivity of these neurons and persistent pain
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cyclase activator produce peripheral sensitization and

hyperalgesia [10, 44, 45]. Peripheral PKA is also required

for hyperalgesia after inflammation [10, 44, 45]. Mecha-

nistically, cAMP/PKA cascade mediates PGE2-induced

enhancement of TRPV1 currents [46] and TTX-R Na+

currents [47]. PKA also prevents desensitization of TRPV1

by direct phosphorylation [11, 48]. In contrast, opioid

receptor agonist morphine produces peripheral analgesia via

inhibition of adenylate cyclase and PKA-potentiated

TRPV1 responses [49]. PKA modulates spontaneous

activity in chronically compressed DRG neurons and is

required for TNF-a-induced neuronal discharges of C-fibers

[50, 51]. Although it is generally believed that cAMP effects

are mediated by PKA, PKA does not mediate all the cAMP-

induced responses. Other kinases may also participate. For

example, cAMP could activate Epac (exchange protein

directly activated by cAMP), a guanine nucleotide exchange

factor, leading to the activation of epsilon isoform of protein

kinase C (PKCe) [10].

The role of PKC in peripheral sensitization is well stud-

ied. Activation of PKC in nociceptor terminals is both

sufficient and required for producing hyperalgesia [52].

PKC can sensitize TRPV1 [11, 53] and TTX-R Na+ chan-

nels [47]. In particular, the PKCe, a Ca2+-independent

member of PKC family, can be translocated to the plasma

membrane of nociceptors in response to inflammatory

mediators such as bradykinin and substance P and plays a

major role in peripheral sensitization in inflammatory and

neuropathic pain conditions [10, 54, 55]. Indeed, sensitiza-

tion of TRPV1 requires PKCe-mediated phosphorylation at

S800 [10, 11, 56]. Other PKC isoforms such as PKCd [57]

and PKCl [58] may also play a role in TRPV1 sensitization.

Comparatively, less is known about the role of protein

kinase G (PKG), which is activated by nitric oxide/cGMP

pathway [10]. The role of nitric oxide/cGMP in pain con-

trol appears to be contradictory, ranging from hyperalgesia

[59, 60] to antinociception [61, 62], depending on the dose

and spatial locations [11]. However, nerve injury upregu-

lates the neuronal nitric oxide synthase in DRG neurons

[63]. In Aplysia sensory neurons, PKG couples to extra-

cellular signal-regulated kinase (ERK) pathway and

contributes to axotomy-induced long-term hyperexcitabil-

ity [64]. In particular, GTP cyclohydrolase contributes to

peripheral neuropathic and inflammatory pain, via the

synthesis of tetrahydrobiopterin, an essential cofactor for

nitric oxide synthesis [65].

MAPK Signaling Pathways and Peripheral

Sensitization

Mitogen-activated protein kinases (MAPKs) are a family of

evolutionally conserved molecules that play a critical role

in cell signaling. There are three major family members:

ERK (ERK1/2 or p44/42 MAPK), p38, and c-Jun N-ter-

minal kinase (JNK) that represent three different signaling

cascades. MAPK transduces a broad range of extracellular

stimuli into diverse intracellular responses by both tran-

scriptional and non-transcriptional regulation [66–69].

Although ERK was originally implicated in regulating

mitosis, proliferation, differentiation, and survival of

mammalian cells during development, it also plays an

important role in regulating neuronal plasticity and

inflammatory responses in the adult [66, 70]. p38 and JNK

are typically activated by cellular stress (ultraviolet irra-

diation, osmotic shock, heat shock), lipopolysaccharide,

and proinflammatory cytokines such as TNF-a and IL-1b
[70]. MAPKs are activated by upstream kinases via phos-

phorylation. Notably, MAPK studies greatly benefit from

phosphorylation-specific antibodies available to investigate

the activation of each MAPK pathway. Unlike many other

kinases, relatively specific inhibitors are available to study

the function of MAPK pathways. Inhibition of all three

MAPK pathways with multiple inhibitors has been shown

to attenuate persistent pain after tissue and nerve injuries

without changing basal pain perception [67–69].

ERK activation involves sequential activation of a cascade

including Ras, Raf, MEK, and ERK [66]. As a major effecter

of growth factors, ERK is strongly activated by NGF in DRG

neurons [71]. Unlike embryonic DRG neurons, adult DRG

neurons do not require NGF for survival, but require NGF for

maintaining nociceptor phenotype [20]. As an inflammatory

mediator generated in inflamed tissue, NGF also sensitizes

nociceptors and ion channels (e.g., TRPV1 and TTX-R Na+

channels) [72]. In addition to acting on high affinity TrkA

receptor, NGF at high concentrations may also bind low

affinity p75 receptor to sensitize TTX-R Na+ currents via the

putative second messenger ceramide [73]. Blocking the ERK

cascade using a MEK1/2 inhibitor, PD98059, abrogated NGF

dependent capsaicin sensitivity [74], but this result was not

confirmed in another study [75]. The discrepancy may result

from chronic [74] versus acute [75] NGF treatment. It is also

important to point out that the MEK inhibitor PD98059

requires sufficient pretreatment time ([20 min) to get optimal

membrane permeability. We have shown that ERK activation

is also required for NGF-induced TRPV1 sensitization and

heat hyperalgesia [71]. ERK is not only activated by growth

factors but also by nociceptive activities both in central dorsal

horn neurons [76] and peripheral DRG neurons [68]. Acti-

vation of C-fiber nociceptors by capsaicin induces a rapid and

transient ERK activation in cultured DRG neurons [71]. This

transient ERK activation is also observed in vivo following

peripheral noxious stimuli [77]. In addition, ERK activation is

found both in the soma and axonal terminals of nociceptors

[71, 77]. Inhibition of ERK pathway attenuates heat or

mechanical hyperalgesia induced by capsaicin [77], NGF
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[71], and epinephrine [78]. ERK is likely to mediate heat

hyperalgesia by sensitizing TRPV1 [71]. Interestingly, in

normal conditions PGE2-induced hyperalgesia is ERK-inde-

pendent. However, when the tissue is ‘‘primed’’ by

carrageenan pretreatment, PGE2-induced hyperalgesia

becomes ERK-dependent [79], suggesting an important role

of ERK in nociceptor plasticity. In addition to aforementioned

posttranslational regulation, ERK also maintains pain sensi-

tization by transcriptional regulations in DRG neurons [68].

p38 is typically activated by cellular stresses and

inflammatory mediators [70]. p38 activation in DRG neu-

rons is also induced by nociceptive activities [80].

Downstream, activation of phospholipase A2 leads to the

generation of arachidonic acid for prostaglandin production

[70]. Further, activated p38 is translocated to the nucleus

phosphorylating the transcriptional factors and increasing

the biosynthesis of multiple inflammatory mediators such

as TNF-a and IL-1b [66, 70, 81]. Phospho-p38 (p-p38), the

active form of p38, is normally expressed in 10–15% of

DRG neurons that are primary C-fiber nociceptors [37, 82].

p-p38 is increased in DRG neurons following peripheral

inflammation and nerve injuries [37, 82, 83]. After nerve

injuries, p38 is activated not only in injured DRG neurons

but also in adjacent intact neurons [82, 84]. While TNF-a
produces early p38 activation [85, 86], NGF induces more

persistent p38 activation after inflammation and nerve

injury [37, 87]. Importantly, intrathecal injection of p38

inhibitors inhibits heat and cold hypersensitivity after

inflammation and nerve injury [37, 82, 85]. NGF plays a

pivotal role in triggering p38-mediated thermal hypersen-

sitivity [88]. Target-derived NGF is retrogradely

transported to the soma in the DRG where it activates p38,

leading to an upregulation of TRPV1 [37] and TRPA1 [87].

Consistently, p-p38 is co-expressed with TRPV1 and

TRPA1 in DRG nociceptors, and inhibition of p38 sup-

presses the upregulation of TRPV1 and TRPA1 following

inflammation [37, 87]. Since increase of TRPV1 protein

level is much more robust than that of TRPV1 mRNA

level, p38 appears to increase TRPV1 expression via

translational regulation [37] (Fig. 2), although transcrip-

tional [66, 89] and posttranscriptional regulation [70, 90] of

p38 on other targets cannot be denied. Additionally, p38

can sensitize nociceptors via fast posttranslational regula-

tion. For example, TNF-a activates p38 and rapidly

enhances TTX-R Na+ currents in isolated DRG neurons,

and this enhancement is blocked by the p38 inhibitor

SB202190 [34].

Compared with ERK and p38, less is known about the

role of JNK in pain regulation. JNK can be activated by

cell stresses such as heat shock, direct DNA damage, and

reactive oxygen species [66], and plays an important role in

the induction of apoptosis [91]. Nerve injury induces a

rapid (\1 day) but transient (\10 days) JNK activation in

DRG nociceptors [92]. Unlike p38, JNK is only activated

in injured neurons [82, 92]. JNK activation in DRG neu-

rons is not associated with apoptosis, because neuronal

apoptosis after nerve injury is not noticeable in the first

several weeks [93]. Instead, the transient JNK activation is

involved in the early development of mechanical allodynia

after nerve injury, because DRG infusion of the peptide

JNK inhibitor D-JNKI-1 prevents mechanical allodynia for

a week but does not reverse mechanical allodynia [92].

Downstream, JNK is known to activate the transcription

factor c-Jun that is also activated in injured DRG neurons

[92, 94], leading to the transcription of many genes con-

taining AP-1 binding sites [95]. Apart from transcriptional

regulation, JNK is also involved in fast posttranslational

regulation. Acute hyperalgesia induced by intraplantar

capsaicin, endothelin-1, CFA, or bee venom is suppressed

by the JNK inhibitor SP600125 [95–98].

PI3K Signaling Pathway and Peripheral

Sensitization

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that

phosphorylates the D-3 position of phosphatidylinositol

lipids to produce PI(3,4,5)P3, acting as a membrane-

embedded second messenger to activate serine/threonine

kinase Akt (also called protein kinase B). Akt is postulated to

mediate most of PI3K’s effects [99]. PI3K/Akt is a major

pathway activated by growth factors. For example, NGF can

strongly activate PI3K pathway in DRG neurons [71, 100].

Capsaicin also activates PI3K in DRG neurons via intracel-

lular Ca2+ increase [71]. Further, Akt activation in DRG

neurons was shown to be activity-dependent [101]. Intrapl-

antar injection of PI3K inhibitors prevents heat hyperalgesia

induced by both NGF and capsaicin [71]. Consistently,

activation of Akt in the periphery contributes to pain

behaviors induced by capsaicin [102]. PI3K was shown to

mediate NGF-induced acute sensitization of TRPV1 [71,

100]. In particular, NGF induces sequential activation of

PI3K and Src kinase, and Src then binds to TRPV1 and

phosphorylates TRPV1 [103]. Phosphorylation of TRPV1 at

a single tyrosine residue Y200 by Src results in insertion of

TRPV1 channels into the surface membrane, which may

underlie NGF-induced rapid sensitization of TRPV1 [103].

Apart from acute pain sensitization, activation of PI3K and

Akt in DRG nociceptors also contributes to the development

of nerve injury-induced neuropathic pain [104].

Concluding Remarks and Future Directions

It is estimated that chronic pain affects 20% of the popu-

lation worldwide. Current treatments only have limited
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success in attenuating this pain. Chronic pain is initially

evoked by peripheral sensitization in primary sensory

neurons that is triggered by inflammatory mediators pro-

duced after tissue injury or nerve damage. Activation of

multiple intracellular signal pathways such as PKA, PKC,

PKG, PI3K, and three MAPK pathways has been impli-

cated in the induction and/or maintenance of peripheral

sensitization and persistent pain. Other kinase pathways

such as Ca2+/calmodulin-dependent kinase-II (CaMKII)

[105] and cyclin-dependent kinase 5 (Cdk5) [106] may also

be involved. These kinase pathways act via the following

mechanisms. First, the rapid posttranslational regulation by

these signaling pathways leads to phosphorylation and

hyperactivity of TRPV1, TTX-R Na+ channels, and other

pain-promoting molecules in primary nociceptive neurons,

inducing peripheral sensitization and hyperalgesia (Fig. 1).

Second, the slow transcriptional or translational regulation

by these pathways leads to increased synthesis of ion

channels (e.g., TRPV1 and TTX-R Na+ channels) and

neuromodulators (e.g., BDNF, substance P) in nociceptors,

therefore, maintaining peripheral sensitization and persis-

tence of pain (Fig. 2). Moreover, the sensitivity of

nociceptors can also be regulated by stimulus-induced

surface insertion of receptors and ion channels that may

involve some of these pathways [103, 107].

Although all these signaling pathways are involved in

peripheral sensitization and pain hypersensitivity, two crit-

ical questions remain to be answered. First, what is the

distinct role of each pathway in peripheral sensitization? To

address this issue, distinct activation pattern (e.g., time

course and cellular localization) of these signaling pathways

in primary sensory neurons should be compared after

stimulation with the same inflammatory mediator or under

the same injury condition. Also, the effects of inhibition of

different pathways should be compared in the same pain

model at the same time points. A more difficult task is to

elucidate the molecular targets (e.g., critical ion channels

and receptors) that are regulated by these pathways. Second,

are there interactions or cross-talks between these signal

pathways? ERK pathway appears to be downstream of PI3K

[71, 100], PKG [64], cAMP/Epac [108], as well as PKA and

PKC [109, 110], indicating a crucial role of this pathway in

integrating multiple signal cascades. Further investigation

of cross-talks among different signal pathways in sensory

neurons is of great importance to reveal essential signaling

mechanisms and validate critical drug targets.

Sensory neurons express hundred’s of ion channels and

G-protein-coupled receptors that may contribute to

peripheral sensitization and are considered as drug targets

for developing new analgesics. However, given the large

number of these receptors and channels, the antinociceptive

effect of blocking a single channel or receptor could be

limited. Instead, targeting a critical signal transduction

pathway such as MAPK pathway that can regulate the

activity of multiple channels and receptors should be a

more effective strategy for pain management. Inhibition of

all three MAPK pathways with multiple inhibitors has been

shown to attenuate persistent pain after tissue and nerve

injury without affecting basal pain perception [67–69],

which is quite different from traditional analgesics such as

opioids and ion channel blockers that also inhibit basal pain

perception. It is important to keep normal pain sensation

intact, since the physiological pain is protective in our daily

life. In summary, blockade of a critical signaling pathway

in primary sensory neurons with a kinase inhibitor can

effectively tackle abnormal pain at the source. Develop-

ment of peripheral acting kinase inhibitors will also

minimize the side effects of these inhibitors.
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