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Abstract Parkinson’s disease (PD) is the second most

prevalent age-related neurodegenerative disease with

physiological manifestations including tremors, bradyki-

nesia, abnormal postural reflexes, rigidity and akinesia and

pathological landmarks showing losses of dopaminergic

neurons in the substantia nigra. Although the etiology of

PD has been intensively pursued for several decades, bio-

chemical mechanisms and genetic and epigenetic factors

leading to initiation and progression of the disease remain

elusive. Environmental toxins including (1-methyl-4-phe-

nyl-1,2,3,6-tetrahydropyridine) MPTP, paraquat and

rotenone have been shown to increase the risk of PD in

humans. Oxidative stress remains the leading theory for

explaining progression of PD. Studies with cell and animal

models reveal oxidative and inflammatory properties of

these toxins and their ability to activate glial cells which

subsequently destroy neighboring dopaminergic neurons.

This review describes pathological effects of neurotoxins

on cells and signaling pathways for production of reactive

oxygen species (ROS) that underline the pathophysiology

of PD.
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Oxidative Stress and Neurodegenerative Diseases

Many cellular reactions utilize molecular oxygen for

catalysis and energy production. These reactions in turn

produce reactive oxygen species (ROS) such as superoxide

anions, hydrogen peroxide, hydroxyl radicals, peroxy rad-

icals and in the presence of nitric oxide, reactive nitrogen

species (RNS) such as peroxynitrite and nitro-tyrosyl rad-

icals are also produced. While these reactive species are

important for execution of physiological functions, exces-

sive production is detrimental to cell membranes and can

cause cell death [1]. To cope with the many oxidative

reactions, antioxidants such as glutathione and vitamin E as

well as antioxidant enzymes such as superoxide dismutase,

catalase and gluthathione peroxidase are present in cells to

balance the oxidative mechanisms. Oxidative stress in cells

due either to excessive production of ROS or insufficient

antioxidant defense (particularly in the elderly) can damage

cellular proteins, lipids and DNA and activate apoptotic

pathways [1–4].

The brain is only 2–3% of the total body mass, but it

consumes 20% of body oxygen [3, 5]. Cells in the brain are

particularly susceptible to oxidative damage due to high

levels of polyunsaturated fatty acids in their membranes

and relatively low activity of endogenous antioxidant

enzymes [3]. Aging is associated with increased oxidative

stress and accumulation of oxidatively damaged biomole-

cules which gradually weakens cognition [3, 6]. More

oxidized proteins, including carboxyls and nitro-protein

adducts are found in brains as they age [3]. High levels of

8-hydroxy-2-deoxy-guanosine, a marker of oxidized DNA,

were detected in both nuclear and mitochondrial DNA in

elderly brain [3]. The increase in oxidative stress together

with the decline in endogenous antioxidants are important

underlying risk factors for older people to develop
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neurodegenerative diseases including Alzheimer’s and

Parkinson’s disease [3, 6].

Parkinson’s Disease

Over one million people in the United States are affected

by PD [7]. PD, a movement disorder, is the second most

common neurodegenerative disease in the elderly, gener-

ally affecting people over 55 years of age [8, 9]. This

disease is characterized by a progressive loss of dopami-

nergic neurons in the substantia nigra pars compacta and a

gradual accumulation of Lewy bodies which are deposits of

specific cytoplasmic proteins such as ubiquitin, a-synuc-

lein, and oxidized neurofilaments [10–14]. Dopaminergic

neurons are necessary for motor function and thus loss of

these neurons can cause resting tremors, bradykinesia,

abnormal postural reflexes, rigidity and akinesia [11, 15].

By the time symptoms appear, 50–80% of the dopami-

nergic neurons have been lost [8, 15]. Normally there are

around 400,000 pigmented nerve cells in the substantia

nigra but with normal aging, approximately 2,500 of these

nerve cells are lost every year [15]. Mechanism(s) that

account for the accelerated loss of dopaminergic neurons in

PD patients remains elusive [16].

Post mortem studies demonstrated increased oxidation

of proteins, lipids, and DNA in neurodegenerative diseases

including Alzheimer’s disease, Parkinson’s disease, stroke,

progressive supranuclear palsy, Huntington’s disease,

Creutzfedt-Jakob disease, and amyotrophic lateral sclerosis

[3, 6, 15, 17–20]. Dopaminergic neurons oxidize dopamine

by monoamine oxidase, a reaction known to cause pro-

duction of superoxide and hydrogen peroxide [3, 6, 21, 22].

Consequently, dopaminergic neurons are in a perpetual

state of oxidative stress, and this imbalance may lead to

reduced levels of endogenous antioxidants [6, 18, 19, 21].

Herbicide Use and PD

Epidemiological studies have identified several risk factors

for PD including using well water, living on a farm,

occupational use of herbicides, family history of PD, and

head trauma [23, 24]. Among these, the greatest risk for

developing PD is age, followed by family history, head

injuries and herbicide use [24]. Mutations in a-synuclein

and parkin have been shown in a small fraction of early

onset familial Parkinson’s disease [7]. It is unclear whether

the familial component of PD reflects genetic reasons or

exposure to the same environmental toxins, but most likely

it is the combination of both [24]. The majority of patients

do not report a positive family history of PD, suggesting

that nongenetic factors are more important risk factors [24].

Non-familial PD occurs after the age of 50 and is over 90%

of cases [7, 9, 14, 25]. Twin studies have shown head

trauma to be a significant risk factor [24]. A twin that had

suffered a head injury was twice as likely to develop PD as

their healthy twin [24]. An increased risk for Parkinson’s

disease is correlated with exposure to environmental fac-

tors including herbicides containing paraquat, but there was

no increased risk with occupational exposures to chemicals

in general, heavy metals, and minerals [26–28]. However,

despite a three-fold increase in PD diagnosis, only 10% of

patients reported using any herbicide [24].

Neurotoxins Producing PD-like Symptoms

6-Hydroxydopamine

6-Hydroxydopamine (6-OHDA) was the first dopaminergic

neurotoxin discovered and has been used experimentally in

models of PD for over 30 years [15, 29]. This analog of

dopamine and norepinephrine can be taken up by catechol-

aminergic neurons through the dopamine and

norepinephrine transporters [8, 29]. 6-OHDA can damage

catecholaminergic neurons throughout the body; it can even

deplete norepinephrine in sympathetic nerves in the heart [8,

29]. This compound not only is toxic to neurons but also can

induce activation of glial cells [29]. Like dopamine,

6-OHDA does not readily cross the blood-brain barrier, but it

accumulates (or remains trapped) in the brain if injected

directly into the ventricles [8, 29]. Interestingly, accumula-

tion of endogenous 6-OHDA has been shown in PD patients

[8]. Upon transport to the neurons, 6-OHDA is oxidized like

dopamine to generate free radicals and quinines [8, 29].

6-OHDA inhibits mitochondrial complex I and produces

superoxide and hydroxyl radicals through participation in the

Fenton reaction [8]. Although administration of 6-OHDA

produces many symptoms resembling those in PD, it is worth

noting that treatment with this compound does not cause the

formation of Lewy bodies [15, 29].

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

In 1982, several drug abusers in Northern California

developed severe Parkinson-like symptoms from a con-

taminant in synthetic heroin, MPTP [8, 29–31]. This

discovery gave the first indication that exogenous toxins

may be involved in the pathophysiology of PD [30].

MPTP-intoxicated individuals exhibit clinical neurological

features of PD including tremor, rigidity, slowness of

movement, postural instability, and freezing [8, 29, 32]. As

in PD, patients also show, upon autopsy, damage to the

dopaminergic system in the substantia nigra, but unlike PD,

Lewy bodies were not found [8, 29, 31].
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MPTP is a lipophilic molecule that readily crosses the

blood-brain barrier. This parent compound is not harmful

to dopaminergic neurons, but is readily metabolized into a

toxic metabolite [8, 15]. In astrocytes, monoamine oxidase

type B first converts MPTP into MPDP and then oxidizes it

to a toxic pyridinium ion (MPP+) [8, 22, 30]. This polar

metabolite is released from astrocytes and taken up by

dopaminergic neurons [8]. MPP+ binds to dopaminergic

transporters with high affinity, and mice lacking these

transporters fail to exhibit toxicity to MPTP [8, 15, 22].

Normal dopaminergic neurons accumulates MPP+ to high

levels in mitochondria where it inhibits electron transport

chain complex I and in turn produces ROS [8, 15, 21, 22,

29, 33, 34]. MPP+ is also transported into synaptic vesicles

through vesicular monoamine transporters that store

dopamine [8, 21]. This uptake system serves as a detoxi-

fication mechanism. Mice with significant depletion of

vesicular monoamine transporters are more sensitive to

MPP+ toxicity because MPP+ is preferentially taken up by

mitochondria [8]. In dopaminergic cell lines, MPP+ pro-

duces ROS in mitochondria which then triggers the classic

apoptosis cascade including caspase activation and DNA

fragmentation [34]. MPTP toxicity shares many similarities

to PD except there are no Lewy bodies [8, 29, 31]. The

accidental intoxication of drug abusers with MPTP in the

early 1980’s demonstrated that even limited exposure to

this compound can result in neurodegeneration that is both

self perpetuating and long lasting [31].

Paraquat

Paraquat (PQ), 1,10-dimethyl-4,4-bipyridinium, is a widely

used herbicide in the 20th and early 21st centuries [26, 27,

35]. PQ is a cationic non-selective herbicide used to control

weeds and grasses in agriculture fields such as cotton [13,

25, 36]. Unfortunately, the waste greenery from cotton is

fed to beef cattle [13]. PQ, regulated in the United States, is

considered safe by industry and worldwide standards, but

some of the long-term effects of paraquat include Parkin-

son’s disease, lung damage, and skin cancer [26, 27, 35].

There is significant overlap between geographic areas

where paraquat is used and areas where PD is prevalent

[37]. People exposed to paraquat develop Parkinson-like

symptoms. Paraquat is structurally similar to MPP+, the

active metabolite for MPTP [7, 12, 13, 26, 27, 37]. Epi-

demiological data have shown that exposure to MPP+ or

paraquat are risk factors for Parkinson’s disease [7]. Sim-

ilar to MPTP, paraquat also depletes dopaminergic neurons

in substantia nigra and cause the symptoms of Parkinson-

ism [13, 27, 35, 38, 39]. In fact, a study by Kang et al. [40]

showed that paraquat is more cytotoxic than MPP+.

Despite being a polar molecule, paraquat has been

shown to accumulate in the brain [7]. It crosses the blood-

brain barrier, mainly through the neutral amino acid

transporter [7, 13, 26, 27]. L-valine can competitively

inhibit transport of paraquat across the blood brain barrier

by neutral amino acid transporters [25, 41]. Once in the

brain, paraquat is selectively taken up into terminals of

dopaminergic melanin-containing neurons in substantia

nigra through the dopamine transporter [7, 13, 25–27, 36].

Therefore, inhibition of dopamine transporter by cocaine

and other compounds is protective against paraquat toxic-

ity to dopaminergic neurons [25, 36]. Paraquat

injected intraperitoneally concentrates in the substantia

nigra and seemingly causes the loss of dopaminergic neu-

rons [27, 38]. Interestingly, this toxicity is selective since

GABAergic cells in the same region were not affected [27, 38].

Within neurons, paraquat can produce intracellular ROS

leading to production of malondialdehyde, protein carbon-

yls, and DNA fragmentation [12, 36, 42]. Paraquat is reduced

by NADPH in redox cycling to give rise to paraquat radicals

and eventually to hydroxyl free radicals and superoxide

anions [13, 27, 39, 40]. Paraquat inhibits mitochondrial

complex I and perturbs the mitochondrial respiration chain

causing impaired energy metabolism, proteasomal dys-

function and intracellular ROS production [25, 36, 43].

Rotenone

One of the most recent approaches to develop cell models

to study PD results from use of the pesticide rotenone,

which was previously used by Indians to poison fish [15,

29]. Rotenone is the most potent member of a family of

cytotoxic compounds called rotenoids [29]. Around the

world, rotenone is used commonly as an insecticide and

pesticide [15, 29, 34]. Rotenone is used in vegetable gar-

dens to kill insects and in lakes to kill fish that are invasive

and overpopulated [15, 34]. To date, soil and water treat-

ment with rotenone in the USA is restricted to times when

crops are not growing and people are not swimming [29].

Rotenone is a naturally occurring complex ketone extracted

from the roots of Lonchocarpus species [15, 34]. Rotenone

is easily degraded by exposure to sunlight, soil and water.

Therefore, this clearance makes the likelihood of envi-

ronmental exposure to rotenone very low, which make it

advantageous as a pesticide [15, 29].

Ingestion of rotenone is not likely to have adverse effects

in healthy people. It is slowly and incompletely absorbed in

the stomach and intestines and then efficiently degraded by

the liver’s first pass effect [29]. Thus, one would have to

either ingest a large amount of this compound or have a

liver disease in order for rotenone to exceed the liver’s

ability to detoxify it and only then would it enter the general

circulation [29]. Once rotenone enters the body, like MPTP,

it is very lipophilic and crosses the blood-brain barrier to

distribute evenly throughout the brain [15, 29].
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Since the 1950s, it is believed that rotenone acts as an

inhibitor for mitochondria respiratory chain [34]. Because

it is very lipophilic, rotenone not only distributes

throughout the body and brain, it can enter organelles

including double-membrane encased mitochondria where it

inhibits with high affinity complex I of the mitochondrial

electron transport chain [15, 22, 29, 34]. Fortunately, most

cells are able to detoxify the oxidative damage caused by

rotenone through their antioxidant protective enzyme

pathways. Unfortunately, chronic inhibition of this mito-

chondrial complex can cause selective degeneration of

dopaminergic neurons despite being uniformly distributed

throughout the brain [15]. This raises the questions why

dopaminergic cells are targeted for destruction and whether

rotenone in the environment contributes to the etiology of

PD in certain individuals. Due to its inhibition of complex

I, rotenone is known to cause ROS generation, ATP

depletion, and cell death in neurons [15]. In agreement with

the involvement of ROS in rotenone toxicity, antioxidants

are capable of attenuating rotenone-mediated cell death

[15]. Interestingly, rotenone also inhibits the formation of

microtubules [29]. Similar to PD, treatment with rotenone

leads to the aggregation of a-synuclein and formation of

Lewy bodies [29]. Another similarity to PD is that rotenone

depletes glutathione, a primary cell antioxidant [15]. Thus,

rotenone toxicity mimics many pathological hallmarks of

PD, including neurodegeneration of dopaminergic neurons

in substantia nigra and formation of Lewy bodies which is

presumably due to oxidative damage, depletion of gluta-

thione, and disruption of axonal transport [15, 29].

Microglia Involvement in Oxidative Stress

All known dopaminergic neurotoxins exhibit a common

characteristic. They inhibit either mitochondrial complex I

or complex III in neurons [8]. Additionally, oxidative stress

in the CNS comes not only from mitochondrial-generated

ROS in neurons but also from activated microglia [7].

Reactive microglia are known to play a role in several

neurodegenerative disorders including PD [44–48]. Indeed,

Parkinson’s patients can have more than six times the

number of reactive microglia as compared to controls [49–

51]. However, it is unknown whether these microglia ini-

tiate or aggravate neurodegeneration [48]. Stimulation of

microglial and astrocyte activity is known to correlate with

neuronal injury induced by paraquat [7, 38]. However, a

study by Gao et al. [10] showed greater contribution to

MPTP-induced dopaminergic neurodegeneration by

microglial than by astrocytes.

Microglia behave as macrophages in the brain and are

one of four major cell types in the central nervous system

(CNS) [52, 53]. Similar to macrophages, a major function

of microglia is to fight infection and remove debris in the

brain [53]. Microglia become activated after brain damage

or exposure to immune mediators such as IL-1beta or TNF-

alpha [52]. Besides producing cytokines, proteases, and

prostanoids, activated microglia also produce superoxide

and nitric oxide [53]. In order to survive in the environment

of these oxidative generators, it is not surprising that

microglia also contain high levels of endogenous antioxi-

dants [53].

Activated microglia in the substantia nigra are found in

several models for PD, including exposure to MPTP,

rotenone, substance P, and methamphetamine [10, 44,

54–58] (see Table 1). In many instances, activation of

microglia and generation of ROS coincide with neuro-

chemical changes such as the decrease in dopamine

synthesis [56, 58]. While some neurochemical changes

happen quickly and can be detected before evidence of any

lesions, others are delayed and continue to be manifested

long after neurotoxin exposure [59]. These results suggest

that a brief exposure to an insult can initiate a process of

continuous neurodegeneration [60]. Microglia may play a

role in initiation and progression of PD and enhance

neurotoxicity elicited by neurotoxins [55, 61]. Inhibition of

microglial activation by minocycline, an antibiotic, could

attenuate the neurotoxicity of 6-OHDA, MPTP and rote-

none [61, 62].

Contribution of Oxidative Stress by NADPH Oxidase

NADPH oxidase is an enzyme that metabolizes molecular

oxygen and generates superoxide as a product [58]. There

is evidence that NADPH oxidase is up-regulated in the

substantia nigra in PD patients. NADPH oxidase is com-

prised of three cytosolic components (p47phox, p67phox, and

p40phox) and two membrane bound subunits, gp91phox and

p22phox [64]. Besides translocation of the cytosolic sub-

units to the membrane subunits, the enzyme complex also

requires a small GTPase Rac for full function [64].

Translocation of the cytosolic subunits is initiated by

phosphorylation by protein kinases. In the p47phox subunit,

phosphorylation results in conformational change and the

SH3 domain then binds with the p22phox membrane subunit

[64]. In recent studies, activation of NADPH oxidase is

regarded a major source of superoxide in a number of

neurodegenerative diseases including PD [46]. Mice

defective in the NADPH oxidase show less neurotoxic

response to LPS [65], MPTP [58], and rotenone [61].

NADPH oxidase appears to be ubiquitously expressed in

all brain regions and cell types including neurons and glial

cells [66]. Similar to other immune cells, high levels of this

enzyme are found in microglia. Recent studies show that

paraquat can induce microglia to produce ROS through
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NADPH oxidase [63, 67] and confer neurotoxicity by

damaging neighboring neurons [68]. Microglia lacking a

functional NADPH oxidase in coculture with neurons

failed to produce neurotoxicity to paraquat as compared

with microglia having a functional NADPH oxidase [68].

Table 2 describes involvement of NADPH oxidase in PD

and PD models.

Protein Kinase C

Several protein kinases including protein kinase C (PKC)

and MAPK have been implicated in activation of NADPH

oxidase and therefore contribute to oxidative stress. PKC

isoforms are ubiquitously expressed in brain tissue and are

involved in regulation of ion channels and receptors, neu-

rotransmitter release, and synaptic development

[72–76]. Abnormal PKC has been shown in a number of

neurodegenerative diseases including PD [72, 75, 77].

There are more than 10 PKC isoforms in mammalian

cells generally grouped as conventional, novel and atypical

types based on their structure and function. Both the con-

ventional and novel isoforms contain a conserved C1

domain that binds diacylglycerol or phorbol esters [77].

The conventional PKCs also contain a C2 domain for

binding calcium [77]. The C3 and C4 domains are con-

served throughout all the isoforms and contain the ATP

Table 1 Involvement of microglia in PD patients and PD models

PD Significantly higher numbers of activated microglia in the substantia nigra of PD patients compared to controls [51]

Monkey model Loss of dopaminergic neurons in substantia nigra was associated with microglia activation despite lack of gross

histopathological lesions [56]

Alpha-synuclein Microglial activation enhanced neurodegeneration induced by aggregated alpha-synuclein [48]

6-OHDA model In animal models neurons were rescued from 6-OHDA toxicity by inhibited microglia [62]

MPTP model Microglia and not astroglia increased the toxicity of MPTP [10]

Microglial inhibition improved neuronal survival in animal models of MPTP [62]

MPTP administration increased in the amount of activated microglia [54]

Activated microglia were seen in the substantia nigra of animals 1 year after last MPTP injection [59]

Paraquat model Microglia activation is coupled with the neurotoxicity of paraquat [38]

Paraquat induces generation of reactive oxygen species in microglia [63]

Rotenone model Neuro-glia coculture amplified the toxicity of rotenone compared to neuron only culture [55]

Addition microglia increased the toxicity of rotenone to neurons in culture and inhibition of microglia prevented the

loss of neurons [61]

LPS Inhibition of microglia rescued neurons from inflammation-induced neurodegeneration [45]

Table 2 Involvement of NADPH oxidase in PD and PD models

PD NADPH-oxidase is upregulated in the substantia nigra of PD patients [58]

Alpha-synuclein Microglial NADPH oxidase mediates the neurotoxicity of alpha-synuclein [48]

MPTP model MTPT treatment upregulates NADPH-oxidase in the substantia nigra of mice and the toxicity of MPTP was

diminished in mice lacking functional NADPH oxidase [58]

Paraquat model The neurotoxicity of paraquat was reduced in neuro-glia cultures from mice lacking a functional NADPH

oxidase [68]

Superoxide is produced when paraquat is added to microglial culture [67]

Inhibition of NADPH oxidase prevented toxicity of paraquat and paraquat-induced translocation of cytosolic

NADPH oxidase subunits [63]

Rotenone model Inhibitors of the NADPH oxidase prevented rotenone neurotoxicity[55]

The neurotoxicity of rotenone was reduced in neuro-glia cultures from NADPH oxidase knockout mice [69]

LPS model Neuro-glia cultures lacking functional NADPH oxidase were less sensitive to LPS [65]

Inhibition of microglial NADPH oxidase prevented LPS-induced neurodegeneration [46]

MPTP and LPS model MPTP and LPS synergistically increased toxicity through NADPH oxidase [70]

Rotenone and LPS model Rotenone and LPS synergistically increased toxicity through NADPH oxidase [71]

Substance P Substance P was less toxic to neuron-glia cultures that lacked functional NADPH oxidase [44]

Neurochem Res (2009) 34:55–65 59

123



binding and the catalyst domains, respectively [77]. All

PKC isoforms contain a pseudosubstrate domain and under

normal conditions, the PKC kinase region is autoinhibited

by the pseudosubstrate domain [76]. The conventional and

novel PKC are translocated to the membrane and are

activated at the membrane by diacylglycerol. The presence

of several different isoforms of PKC allows substrate

specificity and differential regulation [73].

Protein kinase C delta (PKCd) is a novel isoform of

PKC that is calcium-independent. This PKC isoform is

expressed in many cell types and is involved in the mito-

chondrial-dependent pathway of apoptosis [78, 79]. Cells

derived from PKCd-null transgenic mice lack activation of

the mitochondrial-dependent apoptosis pathway [79, 80]

and over-expression of PKCd in certain cell types can

exacerbate apoptosis [79, 81]. PKCd is a substrate for

caspase; cleavage by caspase-3 permanently activates

PKCd [82, 83]. Rottlerin, a selective PKCd inhibitor, can

inhibit caspase-3 activation and thereby decrease PKCd
cleavage. In turn, the latter can also activate caspase 3 thus

form a positive feedback between caspase-3 and PKCd [82,

83]. In pheochromocytoma cells, generation of ROS

resulted in proteolytic cleavage of PKCd, release of cyto-

chrome C from the mitochondria and activation of caspase

9 and caspase 3 [83]. PKCd inhibition by prolonged

treatment with PMA or pretreatment with rottlerin blocked

H2O2-induced JNK activation and apoptosis [80].

Ample evidence indicates a role for PKCd in phos-

phorylation of cytosolic subunits and activation of

NADPH oxidase. ROS production is inhibited by rottlerin

or dominant negative mutants of PKC [84–88]. For

example, cells deficient in PKCd failed to generate ROS

and overexpression of PKCd increased the generation of

superoxide anion [87, 89]. Phosphorylation of p67phox and

p47phox subunits could be inhibited by rottlerin or anti-

sense oligodeoxyribonucleotides specific for PKCd [89,

90]. PKCd phosphorylates p67phox and p47phox [84, 91].

Rottlerin or PKCd antisense oligodeoxyribonucleotides

also inhibited translocation of the subunits to the mem-

brane [63, 84].

Mitogen Activated Protein Kinases

MAPKs are highly conserved and ubiquitously expressed

in all tissue and activate many enzymatic pathways con-

tributing to oxidative stress [92, 93]. They are activated by

phosphorylation of neighboring threonines and tyrosines,

and they phosphorylate serines or threonines that are

adjacent to prolines on other proteins [93, 94]. There are

five MAPK families including extracellular-regulated

kinase (ERK)1/2; JNK1/2/3; p38a,b,c,d; ERK5; and

ERK7 [92, 94–96]. Each MAPK is activated by a MEK

(also called MAPK kinase), which is activated by a

MEKK (also called MAPK kinase kinase) [93, 96, 97].

The GTPase Ras phosphorylates and activates MEKK [94,

98]. In total there are at least 11 MAPKs, 7 MEKs and 20

MEKKs [96]. MAPKs activate a wide range of proteins

including transcription factors, other kinases and enzymes

[93, 95]. MAPKs can translocate from the cytosol to the

nucleus and affect gene expression [92, 95, 98]. ERK1/2

are the most studied MAPKs. ERK1/2 are activated by

growth factors, serum, and phorbol esters and are involved

in proliferation, differentiation and migration [92–94, 98].

ERK1/2 can also be activated by environmental stresses,

oxidative stress, LPS, and cytokines [92, 94, 97]. Envi-

ronmental stresses, oxidative stress, UV radiation,

hypoxia, ischemia, LPS, and inflammatory cytokines

activate the p38 isoforms [94, 95, 97]. P38 MAPK is

involved in inflammation, cell growth, cell differentiation,

and cell death [93, 95]. JNK is activated by similar stimuli

as p38 MAPK including cytokines, UV irradiation, LPS,

and osmotic stress [93–95]. The MAPKs are involved in

the expression of inducible nitric oxide synthase in mac-

rophages and ultimately, inflammation [94]. The MAPK

are involved in a wide variety of cellular processes

including activation of NADPH oxidase [99]. The ERK1/2

inhibitor, PD98059, was able to inhibit the phosphoryla-

tion of p47phox [99]. Paraquat induces apoptotic cell death

through activation of the JNK signaling pathway in cul-

tured neuronal cell line [12].

Nitric Oxide Synthase

Another possible source of oxidative stress is nitric oxide

(NO) which is produced by nitric oxide synthase (NOS)

by converting of L-agrinine to L-citrulline utilizing

NADPH and O2 as cofactors [100–104]. Three isoforms of

NOS have been identified and they are classified as neu-

ronal or type 1 NOS, immunologic or type 2 NOS, and

endothelial or type 3 NOS [100, 101]. NOS1 and NOS3

are constitutive whereas NOS2 is inducible [100, 105].

The constitutive NOS isoforms require calcium and cal-

modulin for activity and the inducible NOS requires de

novo synthesis of the enzyme upon activation of tran-

scriptional pathway by cytokines or LPS [101, 102, 106].

NOS2 plays a role in host defense and can produce a

1000-fold higher amounts of NO in the micromolar con-

centrations compared to the constitutive isoforms that only

produce nanomolar NO concentrations [104, 107]. NOS2

was first discovered in macrophages where it is involved

in host defense, but NOS2 is also present in many other

cells including certain types of neurons, astrocytes, and

microglia [105, 108].

NO has diverse roles in the body depending on the

concentration, the type of cell and the isoform expressed. It
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is regarded as a signaling molecule involved in a wide

array of physiological events including smooth muscle

relaxation, inflammation, host defense, cell death, blood

pressure regulation, inhibition of platelet aggregation,

atherosclerosis, and septic shock [100, 102, 104–106, 109].

In the brain, NO is involved in neurotransmitter release and

reuptake, neurodevelopment, synaptic plasticity, and gene

expression [100–102, 104, 110]. Because NO is a vasodi-

lator, increased production may benefit the brain after

injury [111]. On the other hand, excess production of NO

can cause neurodegeneration manifesting as stroke, PD and

HIV dementia [101, 112]. NO can form adducts with

mitochondrial enzymes and dysregulate mitochondrial

function. There is a positive correlation between NO levels

and cellular oxidation from the mitochondrial electron

transport chain [101, 104, 107]. Other possible mechanisms

associating NO with neurodegeneration are inhibition of

cytochrome oxidase, ribonucleotide reductase, superoxide

dismutase, and glyceraldehydes-3-phosphate; impairment

of iron metabolism; and generation of hydroxyl radicals

and peroxynitrite [101, 104, 107].

Under many conditions, activated glia can simulta-

neously produce NO, ROS and cytokines and together,

form the basis of many neuroinflammatory responses [106,

113] (see Table 3). Increased proinflammatory cytokines

such as interleukin-1b (IL-1b) and interferon gamma

(IFNc) are observed in PD brains, and they can induce

iNOS in activated microglia. Among the proinflammatory

cytokines, IFNc is produced by immune effector cells in

response to intracellular pathogens [70, 114–117]. It is a

pro-inflammatory cytokine that rapidly alerts immune cells

of an infection [116]. Macrophages have a more rapid and

heightened response to lipopolysacharide (LPS) on the

surface of gram-negative bacteria when first exposed to

IFNc [116]. The activated morphology of macrophages

including expulsion of cytoplasmic granules and extension

of pseudopodia is achieved after exposure to IFNc and LPS

[116]. In the murine immortalized microglial cells (BV-2),

INFc can induce iNOS and production of NO without other

pathogens [118, 119].

Lipopolysacharides

Endotoxins such as LPS from bacteria are potent inflam-

matory molecules known to activate microglia and damage

dopaminergic neurons [49, 120]. LPS is a component of the

outer membrane of gram-negative bacteria [115, 121, 122]

and is a highly toxic and a strong stimulus for inflammatory

responses in CNS [115, 122]. LPS is more neurotoxic to

dopaminergic neurons than neurons lacking tyrosine

hydroxylase such as the gamma-aminobutyric acidergic

and serotonergic neurons [49, 120]. LPS can induce loss of

dopaminergic neurons in substantia nigra [70] and activate

astrocytes and microglia to produce NO. However, in the

absence of glial cells, LPS is not neurotoxic to neurons,

suggesting the important role of glial cells in mediating

neurotoxicity [114]. Microglia have been shown to be

major mediators of the neurotoxicity of dopaminergic

neurons by LPS [49]. LPS failed to induce neurotoxicity in

dopaminergic neurons when activation of microglial cells

was inhibited [46]. NOS2 inhibitors can also attenuate the

loss of dopaminergic neurons induced by LPS, suggesting

that NO is an important factor in mediating toxicity [114].

Pregnant rats treated with LPS gave birth to pups that had

fewer dopaminergic neurons than normal controls [123].

The NOS2 gene has regulatory regions that have consensus

elements for interferons and LPS [102].

Toxins that target dopaminergic neurons combine with

LPS to synergistically enhance toxicity; toxicity was

increased with MPTP and LPS treatment together or in

tandem [70]. LPS alone did not induce dopaminergic

neurotoxicity but enhanced the toxicity of MPTP [115].

MPTP and LPS induced additive generation of superoxide

and NO, and neurotoxicity was found only in the presence

of microglia [70]. Apparently, MPTP and LPS induce ROS

production through NADPH oxidase and activate inflam-

matory cytokine pathways for NO production [101, 115].

Inhibitors of NADPH oxidase and NOS2 can attenuate

dopaminergic neurotoxicity due to MPTP and LPS [70].

These reactions require close proximity of neuron-glia;

mixed cultures lacking functional NADPH oxidase were

Table 3 Involvement of NOS in PD and PD models

MPTP model NOS inhibitors and mice lacking nNOS gene prevented MPTP-induced dopaminergic neurotoxicity [101]

Paraquat model The expression of INF-c was significantly increased in the paraquat-challenged animals (lungs) at day 7 [117]

Inhibitors of NOS rescued dopamine neurons from the toxicity of paraquat [37]

Microglial NOS and NADPH oxidase could promote the generation of ROS via the redox cycling of paraquat-like

toxicants [67]

Paraquat uncouples NOS and producing of O2
- at the expense of NO [103]

Inhibition of NO generation prevented the toxicity of paraquat [111]

NO is involved in toxicity of paraquat [112]

LPS Neurons were rescued from LPS toxicity by inhibiting iNOS [114]
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spared toxicity of MPTP and LPS [70]. Similarly, a com-

bination of rotenone and LPS at nontoxic levels induced

significant loss of dopaminergic neurons [71]. Prenatal

exposure to LPS lead to increased levels of oxidized pro-

teins, and formation of Lewy bodies-like inclusions

containing alpha-synuclein [123]. Rotenone together with

LPS further increased the number of activated microglia

and synergistic loss of dopaminergic neurons [123]. Taken

together, these results suggest that combinations of envi-

ronmental toxins or drugs, even at nontoxic levels, may

increase neuroinflammation and risk for development of

PD [115, 123].

Besides MPTP and rotenone, NO enhances the toxicity

of paraquat. NO donors exacerbate the toxicity of paraquat

despite being minimally toxic by themselves [111, 112].

Paraquat generates superoxide intracellularly in glial cells

by redox cycling and increases generation of NO by glial

cultures [106, 111]. Pro-inflammatory cytokines may

increase paraquat’s toxicity through combined production

of superoxide and NO [112]. In the presence of superoxide,

NO can form peroxynitrite, a compound more toxic than

either of the two agents [111]. However, nitrotyrosine, an

indicator of peroxynitrite, was not detected when an NO

donor and paraquat were combined, suggesting that other

factors are involved in the increased toxicity [111].

Toxins such as paraquat may cause toxicity by interacting

directly with NOS; the underlying mechanism remains to be

determined. Our results indicate that paraquat decreases NO

production induced by IFNc and LPS. However, paraquat

combined with cytokines significantly increased ROS gen-

eration and disrupted membrane integrity more than

paraquat alone (Miller et al., unpublished data). Similar to

cytochrome P-450, NOS can be uncoupled by shunting

electrons away from the heme in the reductase domain to

other molecules [103]. It is possible that in the presence of

paraquat, electrons are shunted away from the heme to

paraquat which thus decreases NO production and increases

superoxide production [67, 103]. When paraquat undergoes

a one electron reduction, it produces a radical that can

transfer its electron to oxygen to produce superoxide [67].

Conclusion

A number of models are available for PD but each has its

strengths and weaknesses in mimicking the pathophysio-

logical features of the disease. There are models that mimic

mitochondrial dysfunction and raise oxidative stress; both

features have been shown in postmortem studies of PD

patients. There is also evidence that glia cells, especially

microglia, play an active role in generation of ROS in PD.

NADPH oxidase and NOS are known to play a role in

inflammation and generation of ROS, and inhibition of

these enzymes offers protection to dopaminergic neurons.

Activation of NADPH oxidase involves phosphorylation of

the cytosolic subunits by protein kinases such as PKC and

MAPK. These models suggest that besides the genetic

component, environmental factors also play a role in the

progression of PD. Furthermore, exposure of neurons in

substantia nigra to neurotoxins can cause dopaminergic cell

loss similar to PD. Future investigations to develop thera-

peutics for PD and its prevention should focus on anti-

oxidant and anti-inflammatory compounds that may inhibit

ROS formation and suppress microglial activation.
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