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Abstract Environmental toxins, genetic predisposition and

old age are major risk factors for Parkinson’s disease (PD).

Although the mechanism(s) underlying selective dopami-

nergic (DA) neurodegeneration remain unclear, molecular

studies in both toxin based models and genetic based models

of the disease suggest a major etiologic role for mitochondrial

dysfunction in the pathogenesis of PD. Further, recent studies

have presented clear evidence for a high burden of mtDNA

deletions within the substantia nigra neurons in individuals

with PD. Ultimately, an understanding of the molecular events

which precipitate DA neurodegeneration in idiopathic PD will

enable the development of targeted and effective therapeutic

strategies. We review recent advances and current under-

standing of the genetic factors, molecular mechanisms and

animal models of PD.
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Introduction

Parkinson’s disease (PD) is a progressive movement dis-

order characterized pathologically by the relatively

selective degeneration of midbrain dopamine (DA) neurons

and the presence of prominent cytoplasmic inclusions,

termed Lewy bodies [33]. The percentage of affected

individuals within a population rises from *1% at

65 years to *5% at 85 years, making age the main risk

factor for PD. The majority of cases are thought to be

idiopathic. However, in *5–10% of cases, PD is thought

to have a genetic component, showing both recessive and

dominant modes of inheritance [129]. In these cases, the

causative genes that have been identified are: a-synuclein,

parkin, nuclear receptor-related 1 (Nurr1), ubiquitin car-

boxy-terminal hydrolase L1 (UCHL1), PTEN-induced

putative kinase 1(PINK1), leucine-rich repeat kinase 2

(LRRK2) and DJ-1 [14, 108].

Although the mechanisms responsible for neurodegen-

eration in PD are largely unknown, they result in damage

and subsequent loss of DA neurons [82]. Both environ-

mental and genetic factors have been implicated in the

pathogenesis of PD [103].

While mitochondrial dysfunction has been indirectly

linked to idiopathic PD [33, 110], studies of families with

rare inherited forms of PD have identified genes involved

in regulating mitochondrial function [27, 94, 102].

Recently, clear evidence has been presented for a high

burden of mtDNA deletions within the substantia nigra

neurons in individuals with PD [9, 67]. Additional support

comes from experimental studies with toxins that inhibit

Complex I of the mitochondrial respiratory chain and cause

selective death of midbrain DA neurons [109]. However,

the interpretation of results from experiments with neuro-

toxins is complicated by the fact that they may have
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pleiotropic pharmacological effects in DA neurons, effects

on non-DA cell types, or both [109]. Although the roles of

mitochondrial dysfunction and mtDNA mutations in the

pathogenesis of PD remain controversial, parkinsonism has

been associated with several mtDNA mutations, including

large-scale rearrangements [15, 20, 106] and point muta-

tions or microdeletions [34, 110, 120].

The most compelling evidence yet comes from Mito-

Park mice. These are mice possessing conditional knockout

of mitochondrial transcription factor A (Tfam) in DA

neurons. These mice have reduced mtDNA expression with

subsequent respiratory chain deficiency in midbrain DA

neurons. This in turn leads to a parkinsonism phenotype

characterized by adult onset of a progressive impairment of

motor function accompanied by formation of intraneuronal

inclusions and DA nerve cell death [37]. Further support

for mitochondrial involvement in the pathogenesis of PD is

supported by post-mortem biochemical studies which show

a disease specific and drug independent defect of Complex

I in substantia nigra and other tissues in persons with idi-

opathic PD [95, 99].

Somatic mtDNA mutations and Parkinson’s disease

Recent research has shown that the substantia nigra neu-

rons from individuals with PD have a high level of deleted

mtDNA compared to controls [110]. Kraytsberg et al. [67]

using a novel single-molecule PCR approach, have quan-

tified the total burden of mtDNA deletions in aged human

substantia nigra neurons compared to neurons from

younger individuals as controls. They found high levels of

mtDNA deletions in the aged neurons. They also found that

affected substantia nigra neurons also lost cytochrome c

oxidase (COX) expression. In a parallel study, Bender et

al. [9] using long range PCR in single cells confirmed the

presence of somatic and clonally expanded mtDNA dele-

tions that were associated with respiratory chain deficiency

in individuals with PD. These studies suggest direct

involvement of mtDNA deletions in the development of

respiratory chain deficiency in substantia nigra neurons in

individuals with PD. Another study, however, has shown

that somatic mtDNA mutations are capable of inducing

aging phenotypes without affecting reactive oxygen spe-

cies (ROS) production suggesting that oxidative stress is

not a key modulator of neurodegeneration in aging [121].

Environmental factors and mitochondrial dysfunction

in PD

The discovery in 1983 of persons developing typical signs of

PD after intravenous injection of drugs contaminated with 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and

the subsequent finding that MPTP selectively damages DA

cells in the substantia nigra [72], led to the hypothesis that

exposure to environmental toxins might be related to the risk

of PD. Complex I is inhibited in dopamine-containing neu-

rons by systemic administration of 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), which can induce par-

kinsonism in animal models and in humans [7]. The defect

appears to be restricted both to Complex I and the substantia

nigra, with other brain areas showing normal activity of the

ETC [29]. Studies on platelets of PD patients show a con-

sistent Complex I defect either alone or in combination with

a mild defect in other Complexes [95]. The question then

arises as to the origin of the Complex I-deficiency in PD. It

could result from an environmental toxin or an acquired or

inherited mtDNA mutation(s). To define the origin of oxi-

dative phosphorylation deficit in PD, cybrid PD models have

been developed. PD platelet mitochondrial genes expressed

in cybrids produce reduced Complex I activity [48, 116],

suggesting that the Complex I deficiency was determined by

the mtDNA derived from PD patient platelets. Since then,

many epidemiological studies have been done to examine the

association between exposure to pesticides and herbicides,

as well as hypothesized surrogate measures, such as farming,

living in rural areas, and drinking of well water, and the risk

of PD. Evidence fairly consistently points towards a positive

association between pesticide exposure and PD risk,

although results were statistically significant in only half of

the studies [35]. Environmental neurotoxins such as rote-

none, paraquart, maneb, and dieldrin are also inhibitors of

Complex I and able to induce dopaminergic loss [98].

Genetic factors and mitochondrial dysfunction in PD

Many of the genes associated with familial forms of PD

also implicate mitochondria in disease pathogenesis. At

least nine nuclear genes have been identified as causing PD

or affecting PD risk. Of the nuclear genes, a-synuclein,

parkin, DJ-1, tensin homologue (PTEN)-induced kinase 1

(PINK1), leucine-rich-repeat kinase 2 (LRRK2) and high

temperature requirement A2 (HTRA2) directly or indi-

rectly impact mitochondrial function [8, 75]. In transgenic

mice, a-synuclein overexpression impairs mitochondrial

function, increases oxidative stress and enhances the tox-

icity of MPTP [111]. Parkin is an ubiquitin E3 ligase that

can associate with the outer mitochondrial membrane and

protects against cytochrome c release and caspase activa-

tion [32]; it may also associate with Tfam and enhance

mitochondrial biogenesis [71]. When oxidized, DJ-1

translocates to mitochondria (intermembrane space and

matrix), downregulates the PTEN-tumour suppressor pro-

tein, and protects the cell from oxidative-stress-induced
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cell death [64]. PINK-1 is a nuclear-encoded kinase

localized to the mitochondrial matrix [107] that seems to

protect against apoptosis, an effect that is reduced by PD-

related mutations or kinase inactivation [97]. About 10% of

the kinase LRRK2 is localized to mitochondria, and PD-

related mutations augment its kinase activity [128].

Mutations in other nuclear-encoded genes such as HTRA2,

UCH-L1, synphilin-1, glucocerebrosidase, POLG, NR4A2

and tau, have been identified in individual patients with

idiopathic PD [1, 87]. HTRA2, a serine protease localized

to the mitochondrial intermembrane space, degrades

denatured proteins within mitochondria and, if released

into the cytosol, promotes programmed cell death by

binding inhibitor of apoptosis proteins [113, 115]. Table 1

provides a general overview of how the majority of these

gene products directly or indirectly implicate mitochondria

in the disease pathogenesis. This suggests that mitochon-

drial dysfunction may be central to the molecular

pathogenesis of both idiopathic and familial forms of PD.

Oxidative stress and PD

Oxidative stress has been demonstrated in PD [51, 126] and

evidence also clearly supports the involvement of impaired

mitochondrial function in PD [63, 100]. In particular,

increased iron, oxidation of proteins, and lipid peroxidation

in the SN appear to be common [2, 36, 132]. Reduced

levels of glutathione (GSH) in the midbrain may be

indicative of increased free radical levels [105]. Dopamine

metabolism can also be a source of ROS in nigral neurons.

Cytosolic dopamine produces electrophilic semiquinones

and quinones which themselves act as oxidants by sup-

porting ROS formation [114]. The possible involvement of

oxidative stress as an etiological factor of PD is further

supported by studies with specific neurotoxins that are

potent inducers of Parkinsonism in humans and animals.

MPTP treatment in mice generates hydroxyl radicals in the

striatum which in turn leads to oxidant damage and could

cause initiation of apoptosis [23]. Activated glial cells were

observed at sites of neurodegeneration in PD, and might

participate in the mechanism of nerve cell death by pro-

ducing more ROS and reactive nitrogen species (RNS).

Antioxidants have been proposed as a means to accomplish

neuroprotection in PD [17]. It has also been recognized that

oxidative stress leading to caspase activation and conse-

quent apoptosis are clearly evident in PD [42].

Animal models

Several animal models of PD, such as the rotenone [11, 43]

Drosophila DJ-1 mutants, [84, 85], and 6-hydroxydop-

amine (6-OHDA) [26] and MPTP [31], have been shown to

have multiple mitochondrial dysfunctions including

increased ROS generation and striking sensitivity to

stressors. Of these, the mammalian models have activated

migroglia.

Already substantial and still accumulating evidence

shows that lipopolysaccharide (LPS)-induced microglial

Table 1 Summary of the genetic causes of Parkinson’s disease and their association with mitochondria

Gene Inheritance Protein function Relationship to mitochondria

a-synuclein autosomal dominant Pre-synaptic protein KO mice resistant to mitochondrial toxins

Mitochondrial pathology in a-syn transgenic mice

Parkin autosomal recessive E3 ubiquitin ligase Partly localized to outer mitochondrial membrane

Protects against mitochondrial-dependent apoptosis

Mitochondrial deficits in KO mice and Drosophila

DJ-1 autosomal recessive Redox-responsive Chaperone Partly localized to mitochondria

Oxidative-stress-induced translocation to mitochondria

KO mice and drosophila sensitive to mitochondrial toxins

PINK1 autosomal recessive Mitochondrial kinase Localized to mitochondria

Mitochondrial pathology in KO Drosophila

LRRK2 autosomal recessive Multi-domain protein with kinase activity Localized to mitochondria

HTRA2 Unclear Mitochondrial protease Localized to mitochondria

KO mice exhibit mitochondrial deficits

UCH-L1 Unclear Ubiquitin hydrolase and ligase Uncertain

Nurr1 Unclear Orphan nuclear receptor Uncertain

PolG Unclear DNA polymerase Replication of mtDNA

Synphilin-1 Unclear Pre-synaptic protein Uncertain

MAPT (tau) Unclear Microtubule associated protein Uncertain
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activation causes DA neurodegeneration in vitro and in

vivo [4, 45, 57, 79]. Also, inducible nitric oxide synthase

(iNOS) is generally found to be upregulated in experi-

mental PD models [60, 74] and inhibition of iNOS reduces

the toxicity of LPS or LPS and interferon c (IFN- c-acti-

vated microglia on DA neurons in vitro by approximately

75%) [56, 73]. Evidence now clearly indicates that

inflammatory cytokines, such as Tumor necrosis factor a

(TNF-a), interleukin-1 and 6 (IL-1 and -6)and the signaling

molecule NO are toxic to neurons [3, 41, 45, 77, 81, 112].

Inactivation of the genes involved in the synthesis of pro-

inflammatory molecules such as COX-2 [40], nicotinamide

adenine dinuleotide phosphate (NADPH) oxidase [130]

and both TNF-a receptors [112] were shown to protect DA

neurons against MPTP-induced neurotoxicity, thus indi-

cating that inflammation plays an important role in MPTP-

mediated as well as other types of nigrostriatal neurode-

generation. Interestingly, it has been observed that MPTP

and LPS act synergistically to mediate nigral DA neuro-

toxicity, probably by stimulating release of the superoxide

radical [44].

Cell models of PD

It is difficulty to assess the rate of neuronal loss in PD since it is

very slow. In vitro studies, in spite of their limitations, are

therefore a better alternative to explore degenerative pathways

involved in PD. Most in vitro studies have been conducted in

SHSY5Y, MN9D, NB41, and PC12 cell lines, in primary

mesencephalic cultures or in cerebellar granule cells.

Cybrids bearing mitochondrial DNA from patients with

idiopathic PD produce Lewy body inclusions [122]. They

have decreased Complex I activity that is associated with

increased apoptosis via the p38 and JNK pathways as

compared to age and sex matched control cybrids [93].

They are also more susceptible to oxidative stress [92].

This suggests that mtDNA, if not causative, modulates

susceptibility to PD [123].

MPP+ was found to cause apoptotic cell death in PC12

and SH-SY5Y cells and primary midbrain (mesencephalic)

cell cultures through the activation of caspase-3 [39, 53],

treatment of SH-SY5Y cells with MPP+ induced ROS

production, lactate release, inhibition of ETC, p53

expression, cleavage of caspase-3 and PARP, and apoptotic

cell death with DNA fragmentation. bcl-2 over expression

protected these cells against MPP+ toxicity whereas

decreased bcl-2 levels enhanced MPP+-induced cell death

[39, 66]. It has now been shown that upon in vivo inhibi-

tion of Complex I, p53 mediates Bax transcription and

translocation to mitochondria [96].

6-OHDA induces an early increase in p53 cellular

content in PC12 cultures [13]. Activation of caspase-3 and

caspase-9 was also demonstrated in 6-OHDA induced

apoptosis in SHSY5Y cells [28], which was inhibited by

caspase inhibitor [117].

Chronic low-grade Complex I inhibition by rotenone

exposure induces accumulation and aggregation of a-syn-

uclein and ubiquitin, as well as progressive oxidative stress

and caspase-dependent apoptotic death in human neuro-

blastoma cells [104]. In PC 12 cells inhibition of Complex

I by rotenone caused apoptotic cell death [52]. They found

both rotenone and MPTP induced apoptosis at low con-

centrations and necrosis at high concentrations.

Dopamine induced apoptosis in SH-SY5Y neuroblas-

toma cells through activation of caspase-9 and caspase-3

and cleavage of PARP. In this model nuclear condensation

was mediated by the activation of p38 mitogen activated

protein (MAP) kinase and mitochondrial cytochrome-c

release [62]. These studies suggest a role for apoptosis in

PD neurodegeneration although the signaling events

involved are yet to be clearly elucidated. Unfortunately, the

strategy of inhibiting apoptosis by preventing caspase

activation has failed clinically [12].

Mitogen activated signaling cascades and mitochondria

in PD

Kinase signaling pathways impact major mitochondrial

functions including oxidative phosphorylation, antioxidant

protein expression, mitochondrial fission, and execution of

survival-death decisions. Extracellular signal regulated

kinase (ERK) has also been implicated in promoting oxi-

dative neuronal injury [24] in PD [47, 68, 69]. Phospho-

ERK was found at high labeling densities within a subset of

mitochondria in degenerating neurons from patients with

Parkinson’s disease and Lewy body dementia [25, 134],

corresponding to a distinct granular cytoplasmic pattern of

staining not observed in age-matched control patients

[135]. It is interesting to note that mitochondrial ROS and

the permeability transition have both been implicated

upstream of JNK activation under both physiologic and

pathologic conditions [18, 89]. In a similar manner, p38

MAPK is activated by mitochondrially derived ROS [70,

92]. Thus, these kinases, like ERK, may signal to influence

mitochondrial functions as well as to communicate mito-

chondrial signals to the rest of the cell.

The proteasome system and PD

A significant feature of PD pathology is the presence of

Lewy bodies, which contain a variety of proteins including

a-synuclein, ubiquitin, proteasome subunits, chaperone

proteins, and neurofilament proteins [125]. This is
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indicative of incomplete clearance of the target proteins by

the ubiquitin-proteasome system (UPS). This may arise

from increased protein oxidation products overwhelming

the proteolytic capacity of the proteasome [38, 91]. Fur-

thermore, mitochondrial inhibition by neurotoxins can

deplete intracellular ATP levels, thereby adversely affect-

ing ATP-dependent proteasomal degradation.

Oligomerization of a-synuclein following exposure to

toxins, DA, DA metabolites, and upregulation of a-syn-

uclein expression inhibit proteasomal function [22, 46, 76,

91]. Nitrosylation, altered solubility or covalent modifica-

tion of Parkin diminishes its ubiquitin ligase activity, and

Uch-L1 oxidation reduces its hydrolase activity [49, 91].

These findings suggest that interactions between the UPS

and mitochondrial function promote the degenerative pro-

cesses in DA neurons.

Inflammation and PD

A large cohort study of patients has shown that the risk of

developing PD in regular non steroidal anti inflammatory

drugs (NSAID) users (for cardiovascular protection) was

decreased by up to 45% compared with those who take

NSAIDs on a non-regular basis [21]. Thus, it is suggested

that the use of NSAIDs may lead to neuroprotection in PD

[50]. However, the neuroprotective effect of COX-2

inhibitors against MPTP in vivo may not be due to the

reduced microglial activation, but rather has been linked to

inhibition of COX-induced DA oxidation [118, 119].

Inflammation also has been proposed to contribute to PD

pathogenesis, [83] in part through upregulation of inflam-

matory cytokines such as TNF-a [58, 88]. Various PD

models demonstrate inflammation in neurodegeneration,

and anti-inflammatory drugs attenuate toxin-induced PD

[43, 55, 124]. The well known association between

encephalitis and parkinsonism [10, 16] and a report of

parkinsonism induced by accidental exposure to lipopoly-

saccharide (LPS) from Salmonella minnesota [90] have

supported the role of inflammation in the etiology of PD.

Intranigral and intrapallidal LPS induce microglial activa-

tion and DA neuronal death [4, 5, 19, 60, 78, 80, 133].

Microglial activation initiates or perpetuates neuronal loss

by increasing cytotoxic molecules like superoxide, NO,

various pro-inflammatory cytokines, and prostaglandins [6,

65, 86]. Recently, LPS-induced mitochondrial dysfunction

has been demonstrated in vitro [131], where mitochondrial

dysfunction precedes cell death [30, 127]. In these studies,

LPS toxicity was associated with respiratory chain dys-

function. In mitochondria isolated from the striatum, there

was evidence of oxidative damage to mitochondrial com-

ponents, which suggests that mitochondria may be a target

of free-radical stress initiated by activated microglia. The

fact that both celecoxib and pioglitazone can reduce

mitochondrial dysfunction suggests that mitochondrial

impairment may be secondary to inflammation [59].

Future directions

Mitochondrial dysfunction and oxidative stress are thought

to play an important role in the pathogenesis of idiopathic

PD [54, 61, 101]. Although the mechanisms by which this

leads to neurodegeneration in DA neurons are still

unknown, recent advances in recessive PD implicate par-

kin, PINK1, LRRK2 and DJ-1 in mitochondrial function.

Further studies in both in both toxin based models and

genetic based models of the disease will help elucidate the

molecular relationships between the two models and

hopefully lead to development of therapeutic interventions

that prevent, reduce or ameliorate PD associated mito-

chondrial dysfunction and oxidative stress.
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