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Abstract Metabolic alterations are a key player in-

volved in the onset of Alzheimer disease pathophysi-

ology and, in this review, we focus on diet, metabolic

rate, and neuronal size differences that have all been

shown to play etiological and pathological roles in

Alzheimer disease. Specifically, one of the earliest

manifestations of brain metabolic depression in these

patients is a sustained high caloric intake meaning that

general diet is an important factor to take in account.

Moreover, atrophy in the vasculature and a reduced

glucose transporter activity for the vessels is also a

common feature in Alzheimer disease. Finally, the

overall size of neurons is larger in cases of Alzheimer

disease than that of age-matched controls and, in indi-

viduals with Alzheimer disease, neuronal size inversely

correlates with disease duration and positively associ-

ates with oxidative stress. Overall, clarifying cellular

and molecular manifestations involved in metabolic

alterations may contribute to a better understanding of

early Alzheimer disease pathophysiology.

Keywords Alzheimer disease � Apolipoprotein E �
Diet � Metabolism � Neuronal size

Brief introduction

There are a great number of hypotheses concerning

Alzheimer disease (AD). The predominant theories

focus on specific abnormalities that are used in the

diagnosis of disease such as production of amyloid-b
(Ab42) [1–3] and s phosphorylation [4, 5]. As previ-

ously discussed [6–8], the lesions of disease should be

viewed as surrogates or consequences of the disease

process rather than pathogenic. With this in mind, we

previously found that oxidative stress precedes both

pathologies by decades in both sporadic and familial

AD [9–14]. Key factors contributing to oxidative stress

in AD are slowly being elucidated with redox metal
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ions [15, 16], mitochondria [17], and mitotic alterations

being the focus of our groups. Bringing all these

aspects together, this review explores the interplay

between metabolic factors, which have been implicated

in the progression and pathogenesis of AD.

Brain metabolism in Alzheimer disease

John Blass and colleagues presented some of the ear-

liest, and many would say best, biochemical studies of

AD highlighting deficiencies in key enzymes of energy

metabolism, in particular a-ketoglutarate and pyruvate

dehydrogenase [18–20]. Reduced enzymatic activities

were not only noted in brain of AD cases but also in

other tissues and even in fibroblasts cultured from AD

patients. Consistent with this, metabolic imaging stud-

ies show reduced glucose utilization as early as, maybe

even preceding, the onset of clinical symptoms, in

genetically predisposed individuals [21]. Indeed, re-

duced glucose metabolic rate in the temporoparietal

and posterior cingulate cortex is evident in both AD

and in subjects with mild cognitive impairment (MCI)

[22]. That such metabolic alterations are key contrib-

utors to the pathogenesis of AD is highlighted by

studies on patients with at least one e4 allele of apoli-

poprotein E (ApoE), where reduced glucose metabo-

lism levels in limbic and associative areas of the brain

supports the notion that ApoE4 carriers are more

prone to develop metabolic deficiency and AD at an

early age [23]. Moreover, such changes are evident

even in young and presymptomatic ApoE4 carriers

[24], indicating a possible causal route of AD in ApoE4

individuals.

The vasculature, the major metabolic exchange

surface of the brain, is consistently atrophied in AD

[25] and, like other brain compartments, shows re-

duced glucose transport [26]. These findings emphasize

the multiplicity of causes and effects of lowered met-

abolic function such that baseline glucose metabolism

and medial temporal lobe brain volumes are predictive

of cognitive decline in normal older people [27].

Notably, amyloid-b interacts with insulin receptors and

glucose transporters [28] and there are emerging par-

allels being drawn between diabetes and AD [29–32].

Indeed, amyloid formation in the pancreas is associ-

ated with b-cell loss in Type 2 diabetes [33] and a

disturbance in the control of neuronal glucose metab-

olism, consequent to impaired insulin signaling atro-

phy, resembles the pathophysiology of Type-2 diabetes

in non-neuronal tissue [34]. Seen together, these find-

ings make a case for a metabolic contribution to the

pathogenesis of AD.

Dietary intake and Alzheimer disease

The cerebral metabolic alterations in AD patients

mentioned above are likely reflective or consequential

to a number of factors including dietary intake. In this

regard, a high caloric diet seemingly predates onset of

disease [35–37] (Table 1). Moreover, patients who la-

ter develop AD show reduced intake of key antioxi-

dant nutrients throughout life (Table 2).

Lipid transport is a known function of apolipopro-

tein E (ApoE), whose genotype has been established

as a risk factor for AD [38]. Proper functioning of this

protein is critical to membrane formation and the

repair of nervous system injuries. Notably, a high fat

diet is a risk factor in the development of AD [39, 40].

Table 1 Caloric intake of AD and control cases during three
periods of adult life, ages 20–39 years, 40–59 years and 60+ years

Age Period Mean Median S.D.

20‘S and 30‘S
AD (n=78) 2115 2051 715
Controls (n=212) 2092 2100 641
40‘S and 50‘S
AD (n=108) 2152 2089 710
Controls (n=225) 2076 2125 648
60+
AD (n=84) 2148 2076 702
Controls (n=232) 1704 1658 487

Reprinted from J Alzheimer’s Disease 1:203–206, 1999 with
permission from IOS Press

Table 2 Dietary patterns throughout life indicate significantly
greater consumption by controls than AD cases of vitamins A, C
and carotenoids, and more servings per day of foods that contain
these nutrients (37)

Nutrients per 1000
kilocalories

AD
Cases
n=104

Controls
n=223

P Value

Vitamin A (RE) 855 983 .001
a Carotene (mcg) 294 389 <.001
b Carotene (mcg) 1921 2370 .003
Pro-ACarotene (mcg) 2231 2809 .001
Lutein (mcg) 972 1214 .015
Lycopene (mcg) 666 927 <.001
Vitamin C (mg) 74.6 86.7 .007
Vitamin E (a TE) 5.6 5.9 NS
Servings per day
Yollow green vegetables 2.0 2.3 .022
Vitamin C fruit,

vegetables
2.4 2.6 NS

These data strongly support the notion that free radical scav-
engers, here dietary antioxidants, delay or prevent the onset of
AD. Reprinted from J Alzheimer’s Disease 1:203–206, 1999 with
permission from IOS Press
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Interestingly, diet can also influence pathological

markers of AD. In this regard, and associated with

insulin function/resistance and metabolism, recent data

indicates that Insulin-degrading enzyme (IDE), one

protein with a key role in degrading amyloid-b mono-

mer [41], is decreased in AD [42]. Providing interplay

between the aforementioned high fat diets contribute

to insulin resistance and lower IDE and, in animal

models of AD, lead to increased amyloid deposition

[43]. Altogether, these data indicate a key role that

dietary influences may play in maintaining healthy

brain structure and function.

Neuronal size and Alzheimer disease

To clarify the relationship between brain metabolic

activity, neuronal size, and the evolution of AD, we

found, in a study of oxidative damage in AD and

normal aging, a strong inverse relationship between

neuronal oxidative damage (8-hydroxyguanosine, a

marker of nucleic acid oxidation) and neuronal size

among cases of AD but not controls (Fig. 1). Addi-

tionally, we showed that, in AD cases, neuronal size is

inversely correlated with the duration of the disease

(Fig. 2). Previous studies found that during the pro-

gression of the disease there is a significant decrease in

the size of neurons in AD when compared to controls

[12, 35] and our data (Fig. 2) would tend to support

this. However, while the differences in neuron size are

highly correlated with oxidative damage and duration

of disease among the AD cases, the increase in size is

not statistically different from control cases. An alter-

native and more provocative possibility for this dis-

crepancy could be explained by an antioxidant role of

amyloid-b [8]. Given that amyloid-b can serve an

antioxidant function, one possibility could be that

amyloid-b appears as a protective mechanism in a

brain inherently vulnerable to oxidative stress, which

initially normalizes neuronal function and size and

then through progressive accumulation alters cellular

structures enough to cause neuronal shrinkage and

death, as other reports have shown [6–14]. Nonethe-

less, it is intriguing that large neurons in AD appear

most vulnerable and supporting this, we also observed

that neurons from cases of Down syndrome are sig-

nificantly larger than control cases (Fig. 3). Down

syndrome parallels AD in lesion formation, markers of

oxidative damage and most of the other changes of

AD, yet these changes occur decades earlier [44]. In
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Fig. 1 In cases of AD, neuron size is directly correlated with
increased levels of 8-hydroxyguanosine (8OHG) (P = 0.002),
while control cases do not display this relationship (P = 0.18).
Reprinted from Neurochem Res 28:1549–1552, 2003 with kind
permission of Springer Science and Business Media
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Fig. 2 In cases of AD, neuron size is inversely correlated with
the duration of the disease (P = 0.03). This buttresses our
previous finding that neuron size decreases with increasing levels
of amyloid. Reprinted from Neurochem Res 28:1549–1552, 2003
with kind permission of Springer Science and Business Media
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Fig. 3 Neuron size was measured in the same area of the
hippocampus in AD (n = 22), Down syndrome (n = 22) and
control (n = 64) cases. Cases of Down syndrome had significantly
larger neurons than the control cases (P = 0.00006). While the
average neuron size for the AD cases was higher than the control
cases, the difference did not reach significance (P = 0.076;
Student’s t-test). Reprinted from Neurochem Res 28:1549–1552,
2003 with kind permission of Springer Science and Business
Media
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addition, Down syndrome cases also experience neu-

ronal loss and have similar genetic risk factors [35].

To determine the relationship between neuronal

size, AD, and ApoE genotype, we determined the

ApoE genotype of the control cases to identify those at

risk of AD. Control cases (ages 42–85 years) with at

least one ApoE4 allele had a cross sectional area sig-

nificantly larger compared to other controls lacking

ApoE4. In contrast, young controls (ages 20–40 years)

show no correlation between neuronal size and ApoE

genotype. These findings further suggest that the

ApoE4 allele may play a role during aging and disease

progression that influences neuron size. As such, one

possibility is that the alteration of lipid or axonal

transport of ApoE4 carriers may be a cause of the

accumulation of organelles [45] within neurons early in

the disease, leading to a neuronal enlargement and

then to neuronal shrinkage and death during the pro-

gression of AD. Supporting this idea, while AD is

associated with a significantly reduced size of the Golgi

apparatus, individuals with mild cognitive impairment

(MCI) show substantially increased size [46]. Another

possibility is that, in order to compensate for metabolic

dysfunction produced by, for example, ApoE4 status,

organelles associated with metabolism undergo a

compensatory enlargement that may then lead to fur-

ther damage and subsequent shrinkage and death of

the neuron in more advanced stages of AD.

As a side note, related to ApoE genotype, an

interesting trend was apparent when analyzing young

controls. Out of 13 cases under the age of 32, six car-

ried an ApoE2 allele. Most of the genetic studies in

aging and AD focus on the increase in ApoE4 [47] and

some studies [48–50], but not all [51], have noted that

ApoE2 is protective for AD. We compared our rela-

tively small sample population with published studies

and determined that the frequency of ApoE2 was

much higher than those reported for other control

populations (Table 3). Of note was the fact that our

samples were obtained postmortem and of the 6 cases

carrying an ApoE2 allele, 3 committed suicide and 2

succumbed to violence. In previous studies, the fre-

quency of ApoE2 was increased in cases with psychosis

[24, 52]. Our results fall into this category-perhaps,

ApoE2 genotype is a determinant of susceptibility to

violent death.

Conclusion

While the data presented above do not illustrate a

causal relationship between neuronal size and AD

development and progression, these changes occur due

to metabolic alterations that appear early in the onset

of the disease. Although there is insufficient data to

know if diet can be protective for neurodegeneration,

or, instead, is a surrogate marker of other lifestyle

patterns promoting general health, it is well known that

proper nutrition and a healthy diet are essential for

maintaining overall good health and, therefore, can be

beneficial to AD patients. These findings allow the

development of new studies focused on the events

associated with the onset of the disease process such as

diet, glucose metabolism, and neuronal size. Those

Table 3 Comparison of previous population studies of ApoE allele frequencies and the cases used in this study

Diagnosis ApoE2 (%) ApoE4 (%) Ratio E4/E2 Age n

Control [53] 7.8 16.9 2.17 76 71
Dementia [53] 2.8 22.2 7.9 80 18
Psychiatric history [53] 12.5 10.7 0.85 71.8 28
Control (Caucasian) [54] 7 12.5 1.79 <30 939
Control (African-American) [54] 14 20 1.43 <30 696
Psychotic (Bipolar) [52] 6.3 15.1 2.39 Mean 33–67 156
Control [52] 6 12.1 2.0 Mean 43.5 91
Schizophrenic [55] 7 7.5 1.07 12–87 54
Dementia [55] 4.6 30.2 6.6 50–95 43
Control [55] 6 15.2 2.5 24–88 33
Control [56] 3.7 19.5 5.7 <18 486
Post-mortem Controla 23 11.5 0.5 <40 13
Post-mortem Controla 0 12.5 >40 8

a Cases obtained from the Cuyahoga County Coroner Office, Cleveland, Ohio

As expected, the populations with dementia display the highest frequency of eE4 and the highest ratio of eE4/E2, 6.6 and 7.9. The 6
control populations, not including our data, have a E4/E2 ratio from 1.43–5.7, with the average frequency of E4 being about 2.5 times
greater than E2. Interestingly, in 2 of the 3 previous studies of ApoE genotype and psychotic behavior, the ratio of E4/E2 is 1.07 and
0.85. Our population study displayed an even greater frequency of ApoE2. Of the 6 cases carrying the ApoE2 allele, 3 committed
suicide. In other words, ApoE2 may be a risk factor for mental illness
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studies could be critical for the understanding of basic

mechanisms underlying AD pathophysiology and,

consequently, the development of new therapeutic

strategies.
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