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Abstract Since the discovery of the significance of the

cholesterol-carrying apolipoprotein E and cholestero-

laemia as major risk factors for Alzheimer’s Disease

(AD) there has been a mounting interest in the role of

this lipid as a possible pathogenic agent. In this review

we analyse the current evidence linking cholesterol

metabolism and regulation in the CNS with the

known mechanisms underlying the development of

Alzheimer’s Disease. Cholesterol is known to affect

amyloid-b generation and toxicity, although it must be

considered that the results studies using the statin class

of drugs to lower plasma cholesterol may be affected

by other effects associated with these drugs. Finally, we

report some of our results pointing at the interplay

between neurons and astrocytes and NADPH oxidase

activation as a new candidate mechanism linking

cholesterol and AD pathology.
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Introduction

Alzheimer’s Disease (AD) is the most common form

of dementia. It is characterized by deposition in the

brain of neuritic plaques, mainly constituted of masses

of fibrillary amyloid b (Ab) peptide, and surrounded by

dystrophic neurites (rich in phosphorylated tau), acti-

vated astrocytes and microglia. Apart from the small

percentage of cases where there is a clear familial

component due to a mutation in the genes either for

the amyloid precursor protein (APP) or presenilins, for

the vast majority of sporadic cases the primary causes

of the disease remains elusive. Ab is thought to be

associated with neurodegeneration, and is neurotoxic

in vitro and in vivo, but its exact role in the develop-

ment of the disease is not fully understood. It has been

linked with an increase in oxidative stress, dysregula-

tion of calcium dynamics and inhibition of the activity

of some enzymes, possibly through interaction with

cellular membrane structures [1–3].

The cholesterol connection

Apart from mutations in the proteins involved in Ab
generation (APP, presenilins), the strongest known

risk factor influencing the incidence of sporadic AD is

the genotype for apolipoprotein E (ApoE), the major

carrier of cholesterol in the CNS. Individuals carrying

one or two copies of the ApoE e4 allele have a higher

risk of developing the disease [4], compared to those

carrying the e3 (the most common) or e2 (which

appears to be protective) forms. The ‘‘Rotterdam

study’’ found an association between atherosclerosis

and dementia, which was particularly strong in those

with the apoE e4 genotype [5]. In addition, it has been
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observed that patients with cardiovascular disease

undergoing cholesterol lowering therapy with choles-

terol synthesis inhibitors (statins) have a lower risk of

developing AD [6, 7]. This has led to the hypothesis,

now supported by further evidence, that cholesterol is

somehow involved in AD pathogenesis, although the

mechanism is at present not clear.

In this review we will focus on the growing evidence

of an involvement of brain cholesterol in the patho-

genesis of AD with particular reference to its interac-

tions with Ab.

Cholesterol metabolism

Cholesterol is a crucial component of mammalian

membranes, as well as being an important precursor of

steroid hormones and bile acids. The complex structure

of cholesterol confers rigidity to lipid bilayers, affecting

the fluidity, permeability and thickness of cell mem-

branes. It is fundamental for the functionality of the

membranes and many membrane-associated proteins

(reviewed in [8]). Cholesterol is mainly concentrated in

the detergent-resistant dynamic liquid-ordered do-

mains in the plasma membrane called lipid rafts, which

are also rich in sphingolipids and saturated phospho-

lipids [9]. Cholesterol is also present in caveolae,

membrane invaginations rich in the protein caveolin

[10]. A number of proteins involved in signal trans-

duction, cell adhesion and other functions are associ-

ated with the rafts, including the amyloid precursor

protein and c-secretase, one of the enzymes involved in

APP cleavage to generate Ab. Membranes of intracel-

lular organelles such as the ER and mitochondria

typically have low levels of cholesterol [11].

Cholesterol in the body originates partly from the

diet, and partly from de novo synthesis, mainly in the

liver and intestine. The biosynthetic pathway also

generates intermediates used in the synthesis of

ubiquinone and in the prenylation of proteins. The

first steps of cholesterol synthesis (Fig. 1) are the

conversion of three molecules of acetyl-CoA into one

3-hydroxy-3-methyglutaryl-CoA (HMG-CoA) in the

cytoplasm. Then HMG-CoA is converted to mevalo-

nate by the HMG-CoA reductase (HMGR), associated

with the ER. This is the rate-limiting step, and is

subject to complex regulation. High levels of choles-

terol exert control by feedback inhibition and by

stimulating HMGR ubiquitination and degradation by

the proteasome. When levels are low, cleavage of the

ER-bound sterol regulated element binding protein

(SREBP) induces the generation of transcription

factors which bind to the sterol regulatory element

(SRE-1) which in turn controls the transcription of

HMGR and other genes involved in the metabolism

and transport of cholesterol and other lipids (Fig. 2).

Cholesterol is transported in the serum mainly in

esterified form, bound to apolipoproteins ApoB and

ApoE, in low-density lipoproteins (LDLs). These

deliver the lipid to cells by desorption or receptor-

mediated internalization. Once in the cells it passes

through the endosome system via a mechanism involv-

ing NPC1, the protein responsible for Niemann-Pick

type C disease (NPC), a disorder which shares several

features with AD (see below). Internalised cholesterol

can then be cycled to the plasma membrane via

vesicular transport [12].

Excess cholesterol is esterified in the ER by the

Acyl-CoA acyltransferase (ACAT) and stored as lipid

droplets, or released via a mechanism involving the

ATP-binding cassette transporter ABCA-1. Choles-

terol released in the serum is transported in high

density lipoproteins (HDLs), and taken up by the liver

which excretes it in the form of bile salts.

Cholesterol in the CNS

Cholesterol has a fundamental role in brain develop-

ment and function. The CNS is particularly rich in

cholesterol, containing a quarter of the total body

content of this lipid, despite representing only 2% of

body weight.

Brain cholesterol appears to be largely independent

and unaffected by the serum levels [13], being imper-

meable to the blood brain barrier. Accordingly, cho-

lesterol introduced with the diet has little or no impact

on brain cholesterol, which is largely synthesised de

novo within the organ.

Cholesterol turnover in the brain is slow, the half-

life being estimated around 4–6 months in rodents [14]

and 5 years in humans [15]. Release from the brain

occurs only after oxidation to 24(S)-hydroxycholesterol

(24-OHC) by the cholesterol 24-hydroxylase (also

known as CYP46, a cytochrome P450 family member),

a brain-specific, neuronal enzyme [16]. 24-OHC can
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Fig. 1 Schematic diagram of
the first steps of cholesterol
biosynthesis
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cross the blood-brain barrier into the plasma, and is

subsequently excreted by the liver. Oxysterols also

have important regulatory functions on cholesterol

metabolism within the brain. Circulating 24-OHC

derives almost exclusively from the brain and is used

as a marker of brain cholesterol metabolism [15].

Cholesterol metabolism in the brain has been recently

reviewed by Dietschy [17].

Brain cholesterol is mainly unesterified; most of it is

associated with myelin, but it is present also in the

membranes of astrocytes and neurons.

Cholesterol synthesis occurs mainly in glial cells

[18], together with synthesis of ApoE, the main

lipoprotein in the CNS (which also has ApoA-I, ApoJ

and ApoD [19]). The ApoE-cholesterol complex is

secreted, in a process involving the ABCA-1 [20].

After the first stages of brain development, most

mature neurons synthesise only small amounts of

cholesterol, they become heavily dependent on uptake

of cholesterol synthesised in astrocytes, which they

internalize via a member of the LDL receptor (LDLR)

family - mainly the LDLR itself and the LDL receptor-

related protein, LRP, but also VLDL receptor, ApoE

receptor 2, megalin and others [19] (Fig. 2). It has been

shown that neurons require ApoE-cholesterol to

develop numerous and efficient synapses in vitro [21].

Cholesterol homeostasis is regulated by the dynamic

equilibrium of uptake, de novo synthesis, esterification,

catabolism (oxidation) and release. The genes for both

ApoE and ABCA-1 are among those controlled by the

Liver X receptors (LXR) [22], nuclear receptors

(originally identified in the liver) widely expressed

throughout the body, which are activated by oxysterols

[23]—these are therefore major regulators of choles-

terol homeostasis, since they switch on the mechanism

of efflux and excretion via ABCA-1 and ApoE [24],

and also inhibit HMGR [25], therefore cholesterol

synthesis (Fig. 2).

Cholesterol and AD

A number of studies point to a deleterious effect of

cholesterol in the development of AD. As mentioned

above, the risk of developing AD is increased in

individuals expressing the e4 form of the cholesterol-

carrying ApoE, and is decreased in patients treated

with cholesterol-lowering statins. Cholesterol accumu-

lation has been observed in association with neuritic

plaques in the brain in AD and in a transgenic AD

mouse model [26]. In addition to the decreased AD

incidence with statin treatment mentioned above,

elevated total serum cholesterol has been associated

1-ACBALDL

LDH

RLDL

_

Fig. 2 Schematic diagram of cholesterol metabolism in a model
cell. Cholesterol bound to ApoE in LDLs is taken up into the cell
via a LDLR-dependent mechanism, transported through the
endosomal system and delivered to the ER via NPC-1.
Endogenous synthesis of cholesterol also occurs in the ER.
Excess cholesterol inhibits further synthesis by inhibiting HMGR
while low levels stimulate cleavage of SRBP in the ER, to

generate transcription factors which induce SRE-1-dependent
transcription of HMGR, LRLR and other genes involved in
cholesterol metabolism. Excess cholesterol can also be esterified
by ACAT, oxidised to 24-OHC by CYP-46 (in neurons) or
released together with ApoE (in astrocytes). ApoE transcription
is enhanced by the nuclear LXR receptors, which are activated
by 24-OHC
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with risk of AD in later life [27–29]. Increased

cholesterol has been found in brain membranes in

aging mice [30] and increased flux of cholesterol across

the CNS in aging [16] and in early AD. 24-OHC levels

increase in mild cases, while it decreases in more

severe cases probably due to the loss of neurons

expressing CYP46 [31]. Breaking down of neuronal

membranes along with a reduction in the expression of

CYP-46 would lead to accumulation of cholesterol in

the brain [31]. A preliminary clinical study lowering

plasma cholesterol with atorvastatin in mild-moderate

AD indicated a positive effect on cognition and

behaviour [32]. Staining of sections from AD cortex

with a cholesterol-specific fluorescent probe revealed

that tangle-bearing neurons contain more free choles-

terol than adjacent tangle-free neurons [33].

However, the picture is more complex. On the other

hand, cholesterol affects membrane fluidity and is

essential for membrane function; adequate levels of

cholesterol imported from astrocytes are necessary for

synaptogenesis and neuronal functionality [21]. Other

groups found that cholesterol synthesis decreases with

age in human hippocampus, with no change in brain

levels [34], or no change in hippocampal levels in AD

[35]. In some cases increased levels of total plasma

cholesterol in late life was associated with decreased

risk of dementia [36], while in others no association

was found [37, 38]. For a review, [39].

Recently it has been shown that polymorphisms in a

cluster of genes related to cholesterol metabolism

confer susceptibility to AD [40], including CYP46 [41]

and ABCA1 [42], although other groups have found no

link [43, 44]. Others have found that CYP46 expression

shifts from neurons to astrocytes in AD [45].

Cholesterol and Ab generation

The deleterious effects of cholesterol in AD have been

attributed to its ability to increase Ab generation. Ab is

produced by sequential cleavage of the precursor

protein APP by the amyloidogenic b-secretase (as

alternative to the non-amyloidogenic a-secretase) fol-

lowed by cleavage by c-secretases (presenilins). These

processes take place mainly in the ER and plasma

membranes.

High cholesterol diets caused higher brain accumu-

lation of Ab in rabbits [46, 47] and in a transgenic

mouse model [48], while lowering cholesterol levels

leads to an inhibition of Ab generation both in cultured

neurons and in vivo in guinea pigs and mice [49, 50]. In

humans a reduction of Ab in the CSF has been found

with simvastatin in mild AD but not in more severe

cases [51–53]. Lowered membrane cholesterol inhibits

b-secretase activity in hippocampal neurons [54] and

increases Ab binding to membranes, and Ab toxicity

[55, 56].

At least a fraction of the cell APP, as well as the b-

secretase and c-secretases, are localised in cholesterol-

rich lipid rafts [57–59], while the non-amyloidogenic a-

secretase is associated with the membrane surface,

outside raft domains [60]. A change in cholesterol

levels or distribution within different membrane pools

(i.e. raft vs. non-raft) alters the localization of APP

molecules and their availability to the action of the

various secretases [61, 62]. Lipophilic statins have been

shown to decrease cholesterol levels in raft environ-

ment, and to decrease the expression of the raft marker

protein flotillin [63]. However, drastic reductions (over

35%) in membrane cholesterol decreases Ab genera-

tion [61], which may explain why some groups have

found increased Ab in the brain of transgenic mice

treated with lovastatin [64]. APP processing can be

altered by changes in the dietary cholesterol content in

APP gene-targeted mice, by a mechanism dependent

on ApoE [65]. This group found that high cholesterol

diets in AD transgenic mouse models decreased brain

Ab [65].

Kalvodova and colleagues have found that the

proteolitic activity of b-secretase is also directly

increased by cholesterol, as well as by neutral glycos-

phingolipids and anionic glycerophospholipids [66].

Another mechanism linking cholesterol and Ab
secretion may be ABCA1, the transporter involved in

cholesterol release, which is present in neurons. Oxys-

terols, as well as other agonists of the LXR receptors,

which increase ABCA-1 expression, also increase Ab
secretion, especially the more hydrophobic Ab1-42,

suggesting that the peptide may be released bound to

cholesterol [67]. Others however have found that

increasing ABCA1 expression with oxysterols inhibits

Ab generation [68].

The levels of cholesteryl esters (CE) have also been

linked to Ab generation rather than free cholesterol

(FC). In cells lacking ACAT, which cannot generate

CE and accumulate FC, Ab generation is inhibited

[69]. Treatment with an ACAT inhibitor also leads to

decreased brain Ab load, as well as cognitive function,

in a transgenic mouse model of AD [70].

Statin as a therapy for AD

As mentioned above, retrospective studies of cardio-

vascular patients taking statins have shown a decreased

incidence of AD in this population [6, 7]; since then, a

large part of the cholesterol inhibition research has

been done using these drugs. Statins are inhibitors of
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HMG-CoA reductase, the regulatory step in the

biosynthetic pathway for cholesterol; they have been

used for a long time to treat hypercholesterolaemia,

and are well tolerated. However, results in connection

with AD have been inconsistent. Some recent pro-

spective studies have found no association between

statin treatment and AD risk [37, 71]. Statins also seem

to have no effect on the Ab burden in human AD

brains [72].

Statins in mice decrease brain cholesterol by a

mechanism that seems to involve ApoE, since no effect

is observed in ApoE deficient animals [30]. Statins also

decrease 24-OHC, indicating an effect on brain cho-

lesterol [73, 74].

One problem in interpreting the statin treatment

results is that where an effect is seen, all types of statins

tested seem to have a similar impact on risk of AD and

brain cholesterol [7, 74], irrespective of the fact that the

more lipophilic drugs (lovastatin, simvastatin) cross the

blood brain barrier much more easily than the more

hydrophilic ones (pravastatin, atorvastatin) [75]—rais-

ing the question that the effect may be indirect.

It is possible that statin-induced reductions in

peripheral cholesterol affect brain cholesterol via the

degradation product 27-hydroxycholesterol (27-OHC),

which can cross the blood brain barrier and is actively

taken up by the brain [76].

Michikawa [77] ascribes the conflicting data to the

existence of different cholesterol pools, pointing out

that total serum cholesterol does not affect CSF or

brain levels, and that statins affected brain cholesterol

only at high doses. Cholesterol is transported in the

CSF mainly in HDL, the form released from cells: this

pool is low in AD patients and is increased by statins,

both in serum and CSF. It is also the high HDL

cholesterol levels that correlate with increased AD

pathology, rather than the total or LDL pool [78]. The

two pools are regulated in opposite ways also by the

ApoE phenotype, i.e. higher total and LDL cholesterol

and lower HDL cholesterol are found in the subjects

with the ApoE4 phenotype compared to those with the

ApoE3.

Another interesting set of data showed that choles-

terol distribution in the plasma membrane was uneven

and that statins caused cholesterol to translocate from

the cytofacial leaflet to the exofacial leaflet. This

change is accompanied by decreased Ab levels in vivo,

suggesting that cholesterol distribution and not total

cholesterol levels may be important to Abeta produc-

tion in the CNS [61, 79].

Finally, a side effect of statin treatment in a small

proportion of cases is a myopathy, which seems to be

related to the inhibition of the synthesis of ubiquinone,

which shares the HMGR step with the biosynthetic

pathway of cholesterol [80]. It is possible that an

adverse effect on this important mitochondrial electron

carrier may contribute to the variability of results

obtained with statin therapies, especially in a situation

such as AD where the antioxidant balance and

mitochondrial function may already be compromised.

Statins have pleiotropic effects on top of lowering

cholesterol. One of these is the prevention of the

isoprenylation of small G-proteins such as RhoA and

Rac1, which results in the inhibition of their translo-

cation to the membrane [81]. This in turn regulates,

among other things, the activities of NOS and NADPH

oxidase, to generate NO and superoxide respectively

[82, 83], resulting in alterations in the vascular tone and

in the anti-inflammatory action. Statins have also direct

immunological effects on microglia [84], and anti-

apoptotic effects [85]. Some effects on APP processing

have been attributed to inhibition of isoprenoid prod-

ucts [86]. Wolozin [87] has in fact proposed that the

primary action of statins could be actually to reduce

inflammation by inhibiting microglial activation, rather

than to decrease the Ab load. The implication would

be that the treatment would prevent the progression of

AD towards the more severe stages, rather than

reducing the incidence, as the role of inflammation

seems to be less important in the early stages.

However, at least part of the effects observed are

attributable to statins’ cholesterol lowering action. In

cultured neurons, lowering cholesterol with a com-

pletely different mechanism, i.e. binding the lipid with

methyl-b-cyclodextrin, also lowered Ab levels, indicat-

ing that at least in this model the effect is related to

cholesterol levels [50]. In addition, a non-statin cho-

lesterol lowering drug, BM15.766, also decreased brain

Ab in transgenic mice [88].

Micro-array experiments have revealed alterations

in gene expression patterns in the brain of mice after

statin treatment, mostly genes involved in cell growth

and signaling and trafficking that were similarly

changed by three drugs of this class [89].

Further clinical and laboratory trials are currently

under way which will hopefully help clarify the

mechanism of action of these drugs.

Niemann-Pick Disease type C

It is also worth pointing out the pathological similar-

ities between AD and Niemann-Pick Disease type C

(NPC), an autosomal recessive disorder caused by a

failure in cholesterol trafficking, due to a mutation in

the NPC-1 protein (Fig. 2). Both present neurofibrillary

tangles and tauopathy, endosomal abnormalities, and
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increased Ab generation [90]. In NPC cholesterol

accumulates in late endosomes without being able to

proceed towards the plasma membrane and ER, which

as a result are cholesterol-poor. Mice expressing a

pathogenic mutant NPC-1 display increased c-secretase

activity and accumulate Ab1–40 and Ab1–42 [91]. Cells

treated with a drug which inhibits NPC-1, U18666A,

also accumulate Ab, and the effect disappears on

removal of the drug [92].

Cholesterol and Ab toxicity

Since Ab toxicity is correlated to its state of aggrega-

tion, many studies have investigated the relationship

between cholesterol and the toxic effects of Ab. Ab is

known to interact with and disrupt the order and

fluidity of lipid bilayers [93], according to their lipid

composition, and this interaction also affects the rate of

peptide aggregation. Cholesterol has been reported to

favour the formation of amyloid polymerisation

‘‘seeds’’ which initiate peptide aggregation [94]. Arispe

and Doh [95] found that lowering membrane choles-

terol increased the membrane incorporation of Ab and

cytotoxicity. This is in agreement with the findings of

many groups, who also showed that higher cholesterol

reduced the effects of Ab on calcium signalling and

neurotoxicity [55, 56, 96–98].

On the other hand, cholesterol was necessary for Ab
binding and toxicity in other models [99, 100]. Oxidised

cholesterol metabolites promote Ab aggregation in

vitro [101]. Recently, Schneider and colleagues [102]

showed that low cholesterol reduces the ability of Ab
to form oligomeric aggregates, which are now consid-

ered the most toxic species of the peptide, without

affecting the generation of Ab monomers.

The interactions between membrane cholesterol and

Ab are undoubtedly very complex and subtle changes

in the concentration and/or distribution of this lipid in

the various cell compartments have often contrasting

effects on Ab binding and toxicity, depending also on

the aggregation state of Ab [103]. This has been

brilliantly reviewed by Eckert and colleagues [104,

105].

Ab on lipid metabolism

Interesting recent findings show that Ab in turn also

affects lipid metabolism. Ab1–42 induces accumulation

of cholesterol and ceramides in hippocampal neurons

[106]. Ceramides are the products of sphingomyelin

metabolism by sphingomyelinases (SM), and are

involved in various signaling pathways including those

leading to apoptosis. Ab oligomers have been shown

to induce neuronal apoptosis mediated by a SM-

ceramide pathway [107]. Other groups have also

shown that while Ab1–42 stimulates sphingomyelinase,

Ab1-40 inhibits HMG reductase (the target of statins),

and therefore inhibits cholesterol synthesis [108].

Changes in the 1–40/1–42 ratio in AD therefore may

in turn alter membrane lipid composition, alter the

activity of proteins associated with membranes, and

affect cell viability, and initiate a vicious Ab-choles-

terol loop.

Grimm and collaborators have shown that detergent

resistant membranes from presenilin KO mice differ

from the wild type in the cholesterol content and also

show altered membrane fluidity, demonstrating that

Ab and presenilin not only regulate lipid metabolism

but also are involved in the regulation of membrane

structure and function [109].

ApoE and neurodegeneration

The ApoE4 phenotype is associated with higher risk of

AD [4], earlier age of onset of both AD [110] and

Down’s syndrome (where there is an additional copy of

the chromosome carrying the APP gene) [111], and

also with a worse outcome after head trauma [112] and

stroke, both in humans [113] and in transgenic mice

expressing the human ApoE4 [114]. Individuals carry-

ing ApoE4 have higher total and LDL cholesterol

[115], greater amyloid and tangle pathology [116, 117]

and show worse mitochondrial damage [118] compared

to those carrying other forms.

In cultured neurons, cholesterol uptake is lower

when the lipid is bound to ApoE4 compared to ApoE2

and ApoE3 [119]. ApoE4 is less efficient than the other

forms in promoting cholesterol efflux from both

neurons and astrocytes [120]. Lipidated ApoE binds

aggregated Ab in a isoform-specific manner, ApoE4

being much more effective than the other forms, and

may cause enhanced deposition of the peptide [121].

ApoE knockout mice (ApoE–/–) have been used

extensively for cardiovascular research. Brain cells

from these animals are more sensitive to excitotoxic

and age-related synaptic loss [122], while Ab induced

synaptosomal dysfunction was also exaggerated com-

pared to material from control animals [123]. Human

ApoE isoforms have been expressed in ApoE–/– mice.

Expression of ApoE3, but not ApoE4, is protective

against excitotoxicity and age related neurodegenera-

tion [122] and Ab toxicity [124]. Astrocytes from

ApoE–/– mice expressing human ApoE3 release more

cholesterol into the medium than those expressing

ApoE4, and therefore may modulate the amount of the

lipid available for neurons. In other cases ApoE3 was

123

744 Neurochem Res (2007) 32:739–750



found to bind Ab more avidly than ApoE4 when

associated with lipids [125], and may therefore affect

Ab removal from the extracellular space.

The wide-ranging studies on the role of ApoE in AD

have been reviewed extensively [19, 126, 127], includ-

ing some suggestions that ApoE may be a direct

pathogenic factor in AD independently from its effect

on amyloid-related mechanisms [128], including neu-

rotoxic effects of ApoE4 involving mitochondrial

damage [129, 130].

Neuronal-glial interaction

Most of the research involving Ab is focused on its

interaction with neurons, since these are the cells that

die in AD and after treatment with the peptide.

However, the living brain is a complex structure where

neurons depend heavily on surrounding glial cells for

their survival. It is becoming increasingly clear that

glial cells, notably astrocytes, far from having just a

structural function, play pivotal roles in the metabolic

support of neurons and in cell signaling. Walsh and

collaborators [131] have found in retina that Ab-

induced dysfunction of glial cells caused secondary

neuronal death in the ganglion cell layer.

We have found that in brain primary mixed cultures,

Ab selectively induced calcium oscillations surprisingly

in astrocytes and not in neurons, following a delay of

10–15 min [132]. It has been shown previously that Ab
will insert into lipid bilayers and form calcium per-

meant channels [95, 133] and our data strongly

suggested that the astrocytic calcium fluctuations were

dependent on calcium influx from the extracellular

space, probably through membrane channels formed

by the peptide itself. In lipid bilayers, peptide aggre-

gation and insertion depends strongly on the lipid

composition of the membrane, in particular on the

cholesterol content [95], raising the possibility that the

lipid composition of neuronal and astrocytic mem-

branes may differ and so determine the selective action

of the peptide. At 24 h we observed cell death in

neurons but not in astrocytes, although a decrease in

glutathione content was observed in both cell types

[132]. The functional importance of this response was

underlined by the rescue of cells by glutathione

precursors. Subsequent work showed that Ab treat-

ment also caused mitochondrial depolarisation but

again only in astrocytes. This response was dependent

on both the calcium response and on oxidative stress.

We traced the source of oxidant species to the

activation by Ab of an NADPH oxidase expressed by

astrocytes [134], which we described for the first time

[135]. This would cause an oxidative stress in the

astrocytes, followed by a secondary impact on neuronal

viability, as neuronal antioxidant defences are main-

tained mainly by astrocytes [136]. Activation of this

enzyme by Ab has been observed in microglia [137],

but has not been described before in astrocytes.

Ab and NADPH oxidase

NADPH oxidase is primarily expressed in immune

competent cells—neutrophils, monocytes and micro-

glia—where it is responsible for the superoxide burst

and bacterial killing. A range of isoforms have more

recently been described in a wide range of cells and

tissues. The microglial enzyme is activated by Ab, as

mentioned above [137], and expression is elevated in

AD brains [138]. The enzyme consists of a membrane-

bound cytochrome b558 (subunits p22phox and

gp91phox), and cytosolic subunits (p40phox, p47phox,

p67phox, Rac and Rap1A); the latter translocate to

bind the membrane-bound subunits during activation.

We have characterized the properties of the astro-

cytic NADPH oxidase by Western blot analysis and

by immunofluorescence which showed coexpression

with the astrocyte-specific marker glial fibrillary acidic

protein (GFAP), using antibodies against gp91 and

p67, both in cultures and in vivo [135]. Recent studies

[139, 140] have shown that the cytochrome b558 is

localised in the cholesterol-rich lipid rafts, which are

required for activation: cholesterol depletion reduces

translocation of cytosolic subunits and superoxide

generation. Statins also inhibit Rac1 independently

from their effect on cholesterol [141]. Conversely, in

mice lacking ApoE, which have higher levels of

oxysterols, macrophages show increased p47 translo-

cation and generation of reactive oxygen species

[142].

It is also interesting to note that activation of

sphingomyelinases and apoptosis by Ab in neurons has

been proposed to be mediated by activation of

NADPH oxidase [143].

We believe that activation of NADPH oxidase may

play a major role in the Ab-induced neurodegenera-

tion in Alzheimer’s Disease, raising the possibility that

modulating the activity of this enzyme may prove

beneficial.

Conclusion

There are multiple strands of research pointing at an

important role for cholesterol in the pathogenesis of

Alzheimer’s Disease. The picture is however far from

clear, ad there is still disagreement in several areas, the
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difficulties rising among other things, from the fact that

AD is a complex multifactorial disease, and that

cholesterol metabolism is subject to a complex regu-

lation at many different levels and in different com-

partments, so that increases or decreases in cholesterol

levels bring about re-adjustments of the system in way

that may not be immediately evident. Certainly more

research is needed in this rapidly evolving and prom-

ising field.
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