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Abstract The brain undergoes many structural and

functional changes during aging. Some of these

changes are regulated by estrogens which act mainly

through their intracellular receptors, estrogen receptor

ERa and ERb. The expression of these receptors is

regulated by several factors including their own ligand

estrogen, and others such as growth hormone and

thyroid hormone. The levels of these factors decrease

during aging which in turn influence estrogen signaling

leading to alterations in brain functions. In the present

paper, we review the effects of aging on brain structure

and function, and estrogen action and signaling during

brain aging. The findings suggest key role of estrogen

in the maintenance of brain functions during aging.
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Introduction

The brain undergoes many biochemical and structural

changes involving both functional reorganization and

compensation during aging. Majority of these changes

are regulated by estrogen which is derived from either

circulation or steroidogenesis in the brain [1–4].

Estrogen acts through nongenomic as well as genomic

pathways. Whereas the nongenomic pathway is not

well understood, the genomic pathway is mediated by

intracellular receptors, estrogen receptor ERa and

ERb. The level of ERa and ERb is influenced by a

number of factors including age, cell density, growth

hormone, thyroid hormone and gonadal steroids [5].

Consequently, the estrogen-mediated functions change

in the brain leading to different diseases. Experimental

studies using animal models and cell culture suggest

that these diseases can be delayed or prevented if

estrogen action is maintained. This article focuses on

recent research findings in four areas—aging of brain,

diverse actions of estrogen in the brain, effect of aging

on estrogen signaling in brain and effect of estrogen

during aging of brain.

Brain aging

Structural changes

The most striking feature of aging brain is its shrink-

age, weight loss and expansion of the ventricular

volume. However, the age-related shrinkage of brain

shows regional specificity [6]. The major factor respon-

sible for age-dependent brain shrinkage is loss of white

matter, which occurs due to damage of myelinated

fibers and is closely correlated with the age-associated

cognitive decline [7]. Other age-associated changes in

the brain include increase in the number of microglia

and astrocytes [8], reduction in dendritic arbors and

dendritic spines of cortical pyramidal neurons [9–11].

Changes in dendrites include both shortening and

fewer dendritic branches. Hippocampal circuits are

also vulnerable to degeneration during normal aging

and Alzheimer’s disease (AD), though such effects

show species specificity. Analysis of synapses in old rats
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shows age-dependent reduction, while similar analyses

in humans and monkeys indicate no loss of synapses in

the hippocampus [12, 13].

Another inevitable consequence of brain aging

includes neuronal death in neocortex and hippocam-

pus, though the extent of neuronal loss during aging is

much debated. The idea of significant neuronal loss

during normal aging of human cortex evolved after

examining the cortices of subjects between 18 and

95 years of age [14]. Data obtained from this and other

similar type of studies suggested that most of the

neocortical areas and hippocampal subfields lose 25–

50% of their resident neurons in old age. However, this

view has been modified after the development of

relatively more accurate procedures for counting neu-

rons [15, 16]. Careful applications of stereological

techniques to several species including humans have

led to the conclusion that the old brain shows no

evidence of neuronal loss in the major areas of

entorhinal cortex and CA1 region of hippocampus,

which are involved in memory function. However,

some age-related neuronal loss occurs in the hilus of

dentate gyrus and subiculum [15].

Other structural changes occurring in the old brain

include intracellular deposition of lipofuscin pigment

(made up of peroxidized proteins and lipids), forma-

tion of neurofibrillary tangles, senile plaques, neuropil

threads, granulovacuolar degeneration, hirano bodies

and infarcts. However, except the lipofuscin pigment,

all other deposits are considered as the hallmark of

AD, though they also exist at lower density in the

normal old brain [17].

Neurochemical changes

There are several evidences suggesting that neurotrans-

mitter systems are affected differentially by aging. The

most consistent age-related change in the neurochem-

ical system is the loss of glutamate receptors. A

significant decrease in the mRNA level of glutamate

receptor is reported in the rat cerebral cortex [18].

Among different glutamate receptors, N-methyl-D-

aspartate (NMDA) receptor levels change in the

prefrontal cortex of aged macaque monkeys and rats

[19, 20]. In addition, the expression levels of a-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid and

NMDA receptor subunit proteins, GluR2 and NR1

decrease significantly in neurons, suggesting corticocor-

tical links between temporal and frontal cortices in aged

monkeys. In vitro experiments also demonstrate an age-

dependent decrease of glutamate receptor-dependent

synaptic activation in prefrontal cortex layer 2/3 of

pyramidal cells of the aged monkey [21]. However, so

far there is no conclusive evidence for the age-depen-

dent alteration in kainate (a glutamate receptor) and c-

amino butyric acid (GABA) receptors [6].

Besides different receptors, the levels of neuro-

chemicals, their metabolites and presynaptic markers

also show age-dependent changes. For example, the

levels of metabolites of acetylcholine, dopamine (DA)

and noradrenaline (NA) are reduced in the cerebral

cortex of aged rats and monkeys [22]. The level of

GABA also decreases in the old rat brain. In the rat

hippocampus, the expression of presynaptic protein

synaptophysin declines with age, and the degree of

decline correlates with deficits in spatial memory [23].

The cholinergic and monoaminergic systems projecting

from the basal forebrain and brainstem also show

certain degree of functional impairment during aging

[24]. Thus, age-related neurochemical alterations dis-

play region specificity that affects brain functions in old

age.

Functional changes

Several age-dependent studies show impairments in

gait control, sleeping cycle, learning and memory.

However, Burke and Mackay [25] described the

memory impairment with advancing age as a selective

deficit rather than a general decline in all cognitive

functions. The memory capabilities that depend on the

hippocampal function (spatial memory) are particu-

larly vulnerable with increasing age. The application of

functional magnetic resonance imaging technique in

aged humans demonstrated a decrease in the cortical

activity [26]. Studies on spontaneous activities of

cortical neurons indicate a reduced firing rate in old

age [6]. However, the lack of age-related changes in the

spontaneous neuronal firing rate in some areas of the

hippocampus suggests that the loss of spontaneous

neuronal activities may be restricted to specific circuits

[27]. Apart from the decrease in firing rate, modifica-

tions also occur in the neuronal firing pattern in the

area governing the circadian rhythm (suprachiasmatic

nuclei) [6]. In the CA1 region, the significant loss of

synapses matches with a decrease in the evoked

synaptic potential and a reduction in the evoked

GABA-mediated inhibitory postsynaptic potentials.

However, there also occur compensatory changes for

maintaining the magnitude of synaptic potential [28].

Such changes include an increase in the excitatory

postsynaptic potential of NMDA receptor signaling in

CA1 area of the aged rat. These compensatory

alterations in synaptic function may account for rela-

tively minimal age-related functional changes in the

brain [29].
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Estrogen action in brain

Numerous studies support the beneficial effect of

estrogens on the function and viability of neurons

and learning and memory processes [1–3]. Estrogen

action in various regions of the brain influences

reproductive process, higher cognitive functions, pain

mechanism, fine motor skills, mood, temperature

regulation, sleep and susceptibility to neurodegenera-

tive disorders [30].

Actions on brain micromorphology

Estrogen significantly affects the microstructure of

different brain regions [31–33]. The increase in synap-

tic spine and dendritic density, which depends on

circulating estrogen levels, is correlated with the

superior performance in behavioral and memory tests

[34, 35]. The depletion of estrogen in adult female rats

by removal of ovaries results in loss of spines from

certain hippocampal cells, whereas the ovariectomized

rats receiving exogenous estrogen show normal num-

ber of hippocampal spines. These changes are medi-

ated through the estrogen dependent increase in

NMDA receptor and its phosphorylation in rat hippo-

campal neurons [36, 37].

Neurotrophic action

In addition to affecting the microstructure of brain,

estrogen regulates the level of neurotrophins such as

nerve growth factor (NGF), which is essential for early

development, differentiation and growth of neurons.

Receptors for both estrogen and neurotrophins are

located on same neurons in the rodent basal forebrain,

hippocampus and cerebral cortex [38]. The functional

significance of this co-localization is supported by the

observation that estrogen increases the expression of

p75NGFR, a 75-kDa transmembrane protein which binds

with low affinity to NGF and other neurotrophins.

Estrogen also regulates the levels of brain-derived

neurotrophic factor, insulin like growth factor-1 (IGF-

1), transforming growth factor beta and related recep-

tors TrkA and TrkB [39–41].

Neuroprotective action

Estrogen protects the neuronal damage through many

ways. It reverses the effect of oxidative stress in neuronal

cell culture by increasing the intracellular concentration

of glutathione, a natural free radical scavenger. It

modulates the activity of antioxidant enzymes such as

superoxide dismutase, catalase and glutathione perox-

idase [42]. The antioxidant property of estrogen has

been related primarily to its basic chemical property

such as the presence of a hydroxyl group in steroid ring A

of the estrogen molecule. Any modification or absence

of this hydroxyl group leads to the loss of neuroprotec-

tive effect [43–45]. Estrogen replacement in young and

middle aged rats after the removal of ovaries signif-

icantly decreases ischemic injury compared to vehicle-

treated controls [46–48]. Such estrogen dependent

protection against ischemia induced neuronal damage

occurs by inhibiting the release of free calcium from

intracellular stores and the influx of calcium from the

extracellular space and thus preventing activation of

apoptotic signaling [49]. Other mechanisms by which

estrogen prevents the neuronal death involve inhibition

of apoptosis by increasing the level of antiapoptotic

proteins or repressing the level of pro-apoptotic proteins

[50, 51]. Estrogen treatment also increases the clearance

of amyloid b by microglia [52], protects against glucose

deprivation [53], decreases the inflammatory reactions

by blocking expression of pro-inflammatory factors [54],

helps in laminin reorganization after injury and regu-

lates the permeability of blood–brain barrier [55, 56].

Learning and memory

The variation in plasma concentration of estrogen

during menstrual cycle is responsible for cyclic mod-

ulation of mood and cognitive activities. Systematic

analysis of the impact of estrogen loss and replacement

in human demonstrated that verbal memory declines

with the loss of estrogen [57]. In Morris water maze

test of rodents, retention/consolidation of spatial

memory varies with alterations in estrous cycle and

this hippocampus-dependent task is sexually dimorphic

[58]. Although all studies do not show enhancement in

estrogen dependent spatial memory tasks, results

indicate that such enhancement may be limited to

working versions of spatial memory [59–61]. The

sexually dimorphic differences also exist in human

cognitive functions, e.g., women excel in verbal mem-

ory, verbal fluency and fine motor skills, whereas men

excel in visuospatial skills and gross motor coordina-

tion [62]. These cognitive changes may occur due to

differences in the exposure of male and female brains

to sex steroids during early development.

Modulation of neurotransmitter system

Serotonergic system

Estrogen regulates components of the serotonin system

such as increase in the expression of tryptophan

Neurochem Res (2006) 31:1389–1398 1391

123



hydroxylase, serotonin transporter mRNA, 5-HT1A

mRNA, 5-HT2A mRNA and 5-HT2A receptor binding

[63–66] in dorsal and medial raphe of midbrain,

amygdala, hypothalamus, hippocampus and many

other brain areas of primates and rodents. Estrogen

also causes a rapid decrease in the coupling of G

proteins to 5-HT1A receptor system, resulting in the

reduction of inhibitory effect of 5-HT1A agonists on

lordosis behavior, hyperphagia, and oxytocin and

corticotropin responses [67].

Dopaminergic system

Like serotonin system, estrogen influences the dopa-

minergic system involved in motor function, motiva-

tion, reward, cognition and hypothalamic–pituitary axis

control [68, 69]. The level and turnover of DA fluctuate

during the estrous cycle [70]. However, administration

of estrogen following ovariectomy increases the release

of DA [71, 72], and concentrations of D1 and D2

receptor in the striatum [73]. Estrogen inhibits the

release of DA from the median eminence [74], but

induces the release and turnover of striatal DA. Re-

uptake of DA increases in the rat preoptic-septal

tissue, but decreases in the hypothalamus [75].

Cholinergic system

Administration of estrogen to ovariectomized rats

increases the activity of choline acetyl transferase

(ChAT) in the basal forebrain, and two of its projec-

tion areas, CA1 region of hippocampus and frontal

cortex. ChAT is involved in the synthesis of acetyl-

choline [76]. In the noradrenergic system, both a- and

b-adrenergic receptors are upregulated by 17b-estra-

diol in ovariectomized female rats [75, 77]. However,

b-adrenergic receptors are eventually downregulated

due to a hormone dependent increase in noradrenergic

activity. The synaptic uptake of NA decreases when

estrogen is administered alone [78], but increases when

estrogen is followed by progesterone in rats [77].

Effect of aging on estrogen signaling in brain

Estrogen mediates numerous responses via three

distinct types of signaling, namely genomic, nonge-

nomic and ligand-independent pathways.

Genomic pathway

The classical genomic pathway involves signaling

through intracellular receptors, ERa (NR3A1) and

ERb (NR3A2). Both ERa and ERb are ligand-acti-

vated transcription factors belonging to the nuclear

receptor superfamily of steroid receptors [79]. In the

absence of ligand (estrogens), ERs are sequestered in a

multiprotein inhibitory complex within the nuclei. A

recent study shows the localization of ERb exclusively

in the mitochondria of target cells [80]. The binding of

ligand induces conformational changes in ERs such as

homo- or hetero-dimerization of receptors and high

affinity binding to specific estrogen responsive elements

(EREs) located as cis-acting enhancers within the

regulatory regions of target genes. The DNA-bound

receptors contact general transcription apparatus either

directly or indirectly via coregulators, cointegrators and

other proteins having histone modification activities. It

is generally accepted that the ER–coactivator interac-

tion stabilizes the formation of transcription pre-initi-

ation complex and facilitates the remodeling of

chromatin at ERE. Depending upon the cell and

promoter context, the DNA-bound receptor exerts

either positive or negative effects on the expression of

downstream target genes [1, 79, 81].

Estrogen receptora and ERb can also modulate the

expression of target genes that do not have ERE in

their promoter regions. ERE independent pathway

implies the interaction of liganded ERs with other

transcription factors such as Fos and Jun proteins at

AP1 binding sites and Sp1 transcription factor in GC-

rich promoter sequences [82, 83]. These actions of ERs

depend on ligand, cell and receptor subtype [84].

Repression of interleukin-6 (IL-6) gene by estrogen

involves the interaction of ERs with two transcription

factors, nuclear factor jB (NF-jB) and CCAAT/

enhancer binding protein b. The interaction of ERa
with c-rel subunit of NF-jB prevents the binding of

NF-jB to IL-6 promoter resulting in the repression of

IL-6 expression [84].

Nongenomic pathway

Nongenomic actions of estrogens are mediated by the

binding of hormone to either a subpopulation of

classical ERs, which are located at the plasma mem-

brane [85, 86] and exist as functional dimers when

activated by estrogens [87] or novel membrane ERs

such as ER-X [88]. Nongenomic pathway involves the

activation of various protein kinase cascades such as

src, ras, MEK and MAPK [89, 90].

Ligand-independent pathway

In addition to ligand mediated activation, ER functions

can be modulated by ligand-independent pathway
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through extracellular signals. Signaling through pep-

tide growth factors such as epidermal growth factor,

IGF-1 and cAMP activates ER and target gene

transcription. ERa and ERb also act as the target of

growth factor dependent phosphorylation which occurs

through MAPK signaling pathway [3], after phosphor-

ylation both ERa and ERb interact with different

coactivators for activation of target genes [91].

Signal transduction pathways also connect the non-

genomic actions of estrogens to genomic responses

[89]. The nongenomic pathway stimulates a second

messenger system, which phosphorylates various cel-

lular substrates including transcriptional regulators like

cAMP response element (CRE) binding protein

(CREB) by protein kinase A or serum response factor

(SRF)–Elk-1 complex by MAPK/ERK [89]. These

transcription regulatory proteins CREB and SRF–Elk-

1 bind to DNA regulatory regions namely CRE and

serum response element, respectively. The resulting

cascades are capable of regulating non-ERE-contain-

ing genes. Thus, stimulation of second messenger

system can regulate both ER dependent and ligand-

independent genomic actions, independent to each

other.

Brain aging and ERs

The level of ERa and ERb is determined by a balance

between its synthesis and degradation during aging of

the brain. The binding of ER to its cognate ligand

varies in specific regions of the brain of young and old

rats [92]. Aged female rats show decreased binding of

17b-estradiol in preoptic area, but no difference is

found in amygdala, medial basal hypothalamus and

pituitary [93]. In contrast, other groups have reported

decreased binding in hypothalamus, preoptic area and

pituitary of old female rats [94, 95]. Such discrepancy in

results needs to be resolved by additional approaches.

Further complexity in the interpretation of these

results was added after the discovery of ERb which

has almost similar affinity of binding with 17b-estradiol

as ERa.

In situ hybridization studies using ERa specific

probes demonstrate little or no change in ERa mRNA

expression in the preoptic area and hypothalamus of

old rats [96–99]. Further, immunohistochemical studies

show that the number of cells expressing ERa protein

does not change in the median preoptic nucleus (MPN)

of adult and old female rats [100]. However, the

number of cells expressing ERa protein increases in

anteroventral periventricular nucleus (AVPV) but

decreases in ventromedial nucleus of old rats [101]. A

recent report from our laboratory indicates that ERa

protein level does not vary with age, but shows sex

dependent differences in the cerebral cortex of AKR

mice [102].

The expression of ERb mRNA shows no effect of

age in MPN, paraventricular or periventricular preop-

tic nuclei [99], but decreases significantly in supraoptic

nucleus. The immunoreactivity of ERb also shows no

change in principal nucleus of the bed nucleus of the

stria terminalis, but increases in AVPV of old rats

[103]. We have recently reported an age-dependent

decrease in the level of ERb protein in the cerebral

cortex of AKR mice [102].

Estrogen effects in aging brain

In addition to age-related changes in ER expression,

the response to estrogen varies with age. As described

earlier, experiments using laboratory animals and cell

culture suggest beneficial effect of estrogen treatment

on the brain; however, almost all of these studies

involve young or middle aged animals. Studies using

senescent laboratory animals suggest that estrogen

treatment may or may not have the same effect in old

brain as in adult [104–107]. Estrogen treatment in the

gonadectomized aged rats has been shown to be

responsible for the reversal of hippocampus related

memory impairment, blocking of long-term depression,

decreased cytosolic calcineurin activity [58, 108],

increased level of growth associated protein-43 and

choline acetyltransferase [109].

Estrogen is also involved in the modulation of

expression of amyloid precursor protein (APP) asso-

ciated with AD in old brain. Of the various APP

isoforms (APP770, APP751 and APP695), the APP695

is predominantly found in the brain and its level

remains high under non-pathological conditions.

Experimental evidences suggest that the level of

APP695 is upregulated by estrogen treatment in old

female mouse cerebral cortex [110–112], suggesting

that estrogen treatment in old age may shift the APP

load in non-pathological condition.

In contrast to these beneficial effects, estrogen

treatment in aged rats fails to induce an increase in

spine number but has an impact on the molecular

nature of CA1 axospinous synapses through enhance-

ment of synaptic NR1 and NR2B expression, suggest-

ing that estrogen can restore a partial youthful NMDA

receptor profile in aged rats [113]. Similarly, Jezierski

and Sohrabji [114] reported that aged forebrain is

unresponsive to estrogen dependent neurotrophin

expression. Estrogen treatment reduces the permeabil-

ity of blood–brain barrier in the olfactory bulb of
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young but not old rats, and increases the permeability

in the hippocampus of old females compared with age-

matched untreated animals, suggesting that the hor-

monal decline leads to increased permeability of the

blood–brain barrier, which is further exacerbated by

estrogen treatment in specific regions [56].

The comparison of estrogen replacement effects

between young adult and reproductively senescent

animals suggests that estrogen replacement is benefi-

cial when given to ‘‘surgically menopausal’’ (ovariec-

tomized) animals. However, estrogen replacement

appears to be deleterious for the acyclic reproductively

senescent animals, where target organs such as the

brain have been in a prolonged estrogen-deficient state

[115].

Recent studies in non-human primates suggest that

aged female monkeys (equivalent to perimenopausal

women) are just as responsive as young monkeys with

respect to estrogen-induced increase in CA1 spine

number [116]. A behavioral analysis demonstrated

significant estrogen-induced enhancement of cognitive

function in aged ovariectomized rhesus monkeys [117].

The estrogen-treated group showed enhanced perfor-

mance in hippocampus-dependent task (delayed non-

matching to sample, DNMS) as well as the delayed

response task (a prefrontal task that is sensitive to

aging). Although the effects of estrogen on DNMS

were moderate, estrogen treatment dramatically af-

fected the delayed response performance, restoring it

to that of young monkeys [117]. This indicates that in

primates the prefrontal cortex might be at least as

responsive to estrogen as the hippocampus, implicating

a much broader array of cognitive functions than

suggested by the rat hippocampal data.

Like the aged laboratory animals, results from

clinical studies characterizing the cognition-enhancing

and neuroprotective efficacy of estrogen in old age

have revealed conflicting results. Earlier clinical inves-

tigations indicate that as compared to young women,

postmenopausal women are more vulnerable to neu-

rodegenerative diseases such as AD, Parkinson’s dis-

ease, stroke and memory dysfunction and estrogen

replacement therapy (ERT) not only reduces the risk

to AD but increases the verbal memory [104]. Using

positron emission tomography, Rasgon et al. [118]

reported that estrogen replacement may preserve

regional cerebral metabolism and protect against

metabolic decline in postmenopausal women, espe-

cially in the posterior cingulate cortex, and thus

estrogen enhances the chance of neuronal survival.

Another study showed differences between estrogen

users and non-users in the cerebral blood flow in the

hippocampus, parahippocampal gyrus and temporal

lobe. These studies suggest that at least some areas of

the brain involved in memory circuits and sensitive to

AD are responsive to ERT in old females [119]. ERT

in postmenopausal women also increases the choline

containing compounds in parietal and hippocampus

regions, indicating increased neuronal/glial membrane

turnover and suggesting that neuroprotective effects of

estrogen may involve modulation of cell integrity [120].

However, recent intervention trial (Women’s Health

Initiative) concluded that the replacement of estrogen

and other hormones prescribed to postmenopausal

women does not improve global cognitive impairment

and dementia [121]. The intervention trial also found

that 65–79 years old women with 10–20 years post-

menopausal state are less responsive to estrogen

replacement than perimenopausal women in their

early 1950s [122]. Postmenopausal women of 65 years

and above, and free of probable dementia and treated

with estrogen and progesterone had a negative impact

on verbal memory and a trend to a positive impact on

figural memory over time compared with placebo, but

other cognitive domains were not affected. Both effects

on memory were evident only after long-term therapy

[122]. In another double-blind experiment, hysterecto-

mized women (age 58–75 years) receiving placebo,

estradiol or estradiol/progesterone treatment failed to

show any beneficial effects in any of the cognitive tests

(out of nine parameters) [123]. Therefore, this study

does not support the notion that treatment with sex

hormones has beneficial effects on cognition in old

women. Taken together, these reports suggest a ‘‘short

period of opportunity’’ as a function of age and

duration of estrogen depletion, after which replace-

ment is less effective. In fact, such age-associated

alterations in response to estrogen might be a crucial

factor for the failure of estrogen replacement to

protect against cognitive impairment.

Conclusions

Aging is associated with alterations in brain structure

and function. Estrogen action in brain influences many

anatomical and neurochemical processes that go

beyond their traditional role. So far the information

about age-dependent changes in the membrane ER(s)

is lacking, while very little is known about the changes

occurring in nuclear ERs. Changes in ERs depend

upon receptor subtypes and brain regions with the

likely net outcome of a differential response to

estrogen in the aging brain. Experimental evidences

obtained from laboratory animals suggest that these

effects may be of particular importance in the context
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of aging when circulating estrogen level decreases.

However, the effect of estrogen supplementation in old

females is not as beneficial as in adults, at least in the

case of cognitive impairment, indicating the impor-

tance of detailed knowledge about age-dependent

changes in estrogen signaling pathway and fidelity of

other downstream interacting molecules.
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