
Abstract Nosologically, Alzheimer disease (AD) is

not a single disorder. A minority of around 400 families

worldwide can be grouped as hereditary in origin,

whereas the majority of all Alzheimer cases (approx.

25 million worldwide) are sporadic in origin. In the

pathophysiology of the latter type, a number of

susceptibility genes contribute to the disease among

which are allelic abnormalities of the apolipoprotein

E4 gene pointing to a link between disturbed choles-

terol metabolism and sporadic AD. Cholesterol is a

main component of membrane composition enriched

in microdomains and is functionally linked to the

proteolytic processing of amyloid precursor protein

(APP). In sporadic AD, a marked diminution of both

membrane phospholipids and cholesterol has been

found. Evidence has been provided that high plasma

cholesterol may protect from AD. In contrast to these

well documented abnormalities observed in AD

patients, it was assumed that an elevated cholesterol

concentration might favour the generation of b-amy-

loid and, thus, AD. However, a series of in vitro-and in

vivo-studies did not provide evidence for the assump-

tion that an enhanced cholesterol concentration

increased bA4-production. A harsh reduction of mem-

brane cholesterol only caused a ‘‘beneficial’’ effect

of APP metabolism. However, this experimentally

induced condition may not be compatible to sporadic

AD. The application of statins in sporadic AD did not

yield results to assume that this therapeutic strategy

may prevent or treat successfully sporadic AD.
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Introduction

Alzheimer disease (AD) is the most prominent neuro-

degenerative disorder. With respect to its nosology,

AD is not a single disorder although both its clinical

phenotype and morphologic brain abnormalities are

fairly uniform. Evidence has been provided that a very

small proportion of 404 families worldwide (by August

2006) of all Alzheimer cases is caused by missense

mutations in the presenilin gene 1 on chromosome 14

(315 families ~78%), in the presenilin gene 2 on

chromosome 1 (18 families ~4%), and in the amyloid

precursor protein (APP) gene on chromosome 21

(71 families ~18%) (http://molgen-www.uia.ac.be//

ADMutations//) leading to autosomal dominant famil-

ial AD with an early onset. These mutations explain

well the genetically induced excess formation of the

APP derivative bA4 which aggregates to form amyloid

deposited as neuritic plaques [1]. In contrast, the great

majority of patients suffering from AD (approx. 25

million patients worldwide) is sporadic in origin.

Beside age as the main risk factor, a number of

susceptibility genes were found contributing to the
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generation of sporadic AD. Of greatest significance in

this respect are a single nucleotide polymorphism in

the gene coding for 11b-hydroxysteroid dehydrogenase

I [2], and allelic abnormalities of the apolipoprotein E4

(APOE) gene on chromosome 19 (for review see 3)

affecting cholesterol metabolism in that plasma total

and low-density lipoprotein cholesterol were found to

be elevated [4–6].

The association of APO E4 allele and an increased

risk of AD may point on a link between elevated

cholesterol and AD. However, several clinico-epide-

miological studies did not yield uniform results.

Increased cholesterol levels at ages 70 were not found

to be associated with an elevated risk of dementia

between ages 79 and 88 [7, 8]. In contrast, exposure to

vascular risk factors inclusive enhanced cholesterol

during midlife increased the risk of dementia in late

life which was reduced by lipid-lowering agents [9, 10].

In a predictive study, most AD patients carrying the

APOE 4 gene were found to have lower total choles-

terol levels than controls in a case–control study [11].

Otherwise, APOE-4 allele carriers with high serum

levels of total cholesterol and high systolic blood

pressure at midlife were at an elevated risk to develop

AD in older ages. This risk was highest in subjects

carrying the APOE-4 allele and having high serum

cholesterol and increased systolic blood pressure [12–

14]. In all studies cited above, the diagnosis of AD was

made on the basis of clinico-psychometric tests only

demonstrating the existence of dementia symptoms

without detailed differentiation of its origin. However,

the ascertainment of the causatively different AD

needs neuroimaging, EEG and cerebrospinal fluid

(CSF) markers additionally.

Based on the above epidemiological studies, on the

strong connection found between elevated plasma

cholesterol and bA4 generation in transgenic mice

[15], and on the association of both APP and bA4 with

cholesterol-rich membrane domains [16, 17], it was

assumed that both the generation and clearance of bA4

are regulated by cholesterol [18]. Finally, this concept

that high concentration of brain cholesterol leads

inevitably to abnormal bA4 accumulation as the main

cause of AD [1] prompted investigatiors to use statins

for prevention and treatment of AD in experimental

and clinical studies. However, a number of issues do

not support this concept. (1) It has not been proven

that excess formation of bA4 is necessary for the

generation and the development of sporadic AD [19].

(2) Transgenic mice models of AD may represent its

hereditary type and have not been shown to be valid

for sporadic AD. (3) Serum cholesterol has not been

demonstrated to penetrate the blood–brain barrier, i.e.

provided cholesterol were increased in the serum

compartment in sporadic AD, it might have no impact

on its concentration in the brain compartment ([20, 21];

see also below). (4) The state of the neuronal mem-

branes of AD patients, in particular its composition of

phospholipids and cholesterol, may not have been

considered in the therapeutic strategy using statins.

It becomes, thus, obvious that the role of brain

cholesterol is conflicting for the development of

sporadic AD. Therefore, in this short review, its role

is discussed in terms of the physiological significance

and in terms of the pathophysiological impact to

sporadic AD, also contributing to the question whether

or not the use of statins to reduce brain cholesterol is of

benefit for patients suffering from sporadic AD.

Formation and function of cholesterol in the healthy

adult brain

In the mammalian central nervous system (CNS),

cholesterol is synthesized exclusively by de novo

synthesis reaction from acetyl-CoA in the 3-hydroxy-

3-methylglutaryl-CA (HMG-CoA) reductase reaction

by oligodendrocytes, astrocytes and neurons [22]. In

vitro studies showed a cholesterol shuttle from astro-

cytes to neurons that is mediated by apoE [23]. Plasma

lipoproteins are unable to cross the blood–brain barrier

[20, 21]. Serum cholesterol levels have been demon-

strated to have no effect on HMG-CoA reductase and

its activity in the brain [24], and on total brain

cholesterol levels [25].

Cholesterol synthesis via the HMG-CoA reductase

reaction needs additional proteins such as seladin-1

which is highly expressed in almost all neurons, and

energy [20, 26, 27]. The formation/availability of both

acetyl-CoA and energy as ATP in the brain has been

demonstrated to be controlled by the neuronal insulin/

insulin receptor signal transduction cascade [28]. Cho-

lesterol is removed from the brain by the neural rate-

limiting enzyme cholesterol 24-hydroxylase which

mediates the hydroxylation of cholesterol to 24-hy-

droxycholesterol the concentration of which was found

in the brain compared to other organs and that can

pass the blood–brain barrier. Cholesterol 24-hydroxy-

lase is encoded by the CYP46 gene [29–31].

Cholesterol serves as the basic compound from

which neurosteroids derive [32]. Glia-derived choles-

terol has been demonstrated to promote synaptogen-

esis in nervous tissue [23]. Cholesterol has been found

to stimulate neurite outgrowth in rabbit dorsal root

ganglion neurons what was accentuated by apoE [23a].

Synaptic plasticity depends on a well-balanced cholesterol
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homeostasis mediated by apoE [33]. The latter also has

been shown to play an important role in the translo-

cation of cholesterol from astrocytes to neurons in

mouse brain under long-term (24 weeks) environmen-

tal stimulation [23b]. Its greatest significance, however,

has cholesterol as an important component of plasma

membranes of every brain cell. Its concentration in the

CNS has been found to be higher than in any other

tissue and accounts for 23% of the sterol of the whole

body pool [22]. In cell membranes, cholesterol is

asymmetrically distributed in the cytofacial and exofa-

cial layer with higher concentration in the former

ensuring fluidity and function [34].

Concentration and distribution of membrane cho-

lesterol are tightly regulated by the cell [35] whereby

around 75% of free cholesterol resides in the cytofacial

layer and around 25% in the exofacial layer. Choles-

terol plays an essential role in the regulation of

synaptic function and plasticity [36]. In the exofacial

leaflet of the lipid bilayer, microdomains (lipid rafts)

are located that are enriched in cholesterol, glycos-

phingolipids and acylated proteins. Beside its essential

role in signal transduction, they are assumed to be

involved in processing of the APP [37–39].

The asymmetric distribution of cholesterol in the

exofacial and cytofacial layers along with predomi-

nance of fatty acids in the exofacial layer maintains the

distance between the two layers and, thus, the bio-

physical properties of membranes, also supported by

the asymmetric distribution of the phospholipids,

ethanolamine phosphoglyceride (PE) mainly facing

the inside, and choline phoshoglyceride the outside of

the membrane [40]. Intercalated in this fluid structure

are proteins such as ion channels, receptors, mem-

brane-bound enzymes etc [41]. Both structure and

function of membranes have been found to be also

ensured by a normal cellular energy state [42].

Cerebral membranes, cholesterol and aging

There is ample evidence to show that aging is the main

risk factor for neurodegenerative processes such as

sporadic AD. With aging, a multitude of inherent

variations in fundamental metabolic processes mainly

in glucose/energy metabolism, and in related metabo-

lism, and its control are set into motion at the cellular,

molecular and genetic levels which frequently result in

functional imbalancies of regulative systems [43]. Age-

related changes in membrane composition inclusive

cholesterol will have to be discussed in more detail.

Two different aspects may be of significance for

membrane function: Loss of lipids, and displacement

of constituents within the bilayer. In human brain,

the concentrations of the major membrane lipids

decreased by 18% and 21% (phospholipids), by 18%

and 19% (cholesterol), and by 11% and 18% (gan-

gliosides) in frontal and temporal cortices between 20

and 100 years of age [44, 45]. In another study,

cholesterol started to fall beyond the age of 69 years

in cerebral gray and white matter, and in very old age

in the hippocampus, too [46]. In contrast, the choles-

terol concentration did not change in cerebral cortex

and hippocampus of 24-month-old (aged) rats [47].

With respect to the relation of unsaturated and

saturated fatty acids in membranes, a shift was found

in favour of the latter [48]. The decreased insertion of

arachidonic acid in membrane lipids associated with an

increase in arachidonoyl-CoA [49], and the increase of

cholesterol in the exofacial layer associated with a

reduction in the cytofacial layer altering cholesterol

asymmetry [34] were found to be age-related changes.

All together, these changes are in agreement to that

normal aging changes both structure and function in

brain membranes leading to varied function of e.g. ion

channels, membrane fluidity, receptors, etc. The latter

are markedly modified in structure [49a] and number

comprising the insulinergic [43], acetylcholinergic [49b]

glutamatergic [49c] and dopaminergic transduction

systems [49d]. These changes may have marked

impacts in the development of multifold disturbances

accompanying neurodegenerative diseases in general

and sporadic AD in particular.

Cholesterol metabolism in sporadic AD brain

One major metabolic abnormality in sporadic AD is

perturbed cerebral glucose metabolism [50–52]. At the

cellular level, the diminished cerebral glucose utiliza-

tion may be mediated by reduced capacities of key

enzymes working in glycolytic glucose breakdown

leading to both reduced formation and oxidation of

acetyl-CoA [53–55]. The reduced availability of acetyl-

CoA has been found to reduce both the synthesis of

acetylcholine in the presynaptic neuron [56] and the

formation of ATP [57, 58]. In context with this article,

both less acetyl-CoA and the depletion of ATP may

have marked effects on the activity of HMG-CoA

reductase which is inactivated by the ATP-dependent

activation of the AMP-mediated kinase [59] although

mRNA HMG-CoA reductase was not found to be

modified [60]. This concerted action may cause a

reduced level of cholesterol in brain tissue what is

mirrored in the cerebral spinal fluid [61]. Since seladin-

1 which participates in the formation of cholesterol has
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been demonstrated to be downregulated in AD brain

[26], an increased synthesis of cholesterol in sporadic

AD brain may not be assumed to occur. Otherwise, the

cholesterol-catabolising enzyme CYP 46 has been

found to be abnormaly induced in glial cells [62] the

gene of which shows polymorphism associated with

AD [63]. As a result of the increased cholesterol

catabolism, its metabolite 24S-hydroxycholesterol was

found to be enhanced in both plasma [64, 65] and CSF

[66].

The depletion of ATP, as was found in SAD brain

[57, 58], may have marked impacts on the maintenance

of the non-equilibrium distribution of Na+, K+ and

Ca2+ in that the intracellular concentrations of both

Na+ and Ca2+ may rise whereas K+ is released from

the cell. The increase of intracellular cytosolic Ca2+

concentration causes the activation of phospholipases

which degrade phospholipids ([67], for review [68, 69]).

Energy depletion has been assumed to enhance also

the catabolism of membrane cholesterol [42].

Membrane composition in sporadic AD brain

It has been well documented in several studies that

membranes undergo marked changes in sporadic SAD.

First data were reported on the catabolic metabolites

glycerophosphocholine and glycerophosphoethanol-

amine which both were found to be enhanced [70].

The degradation of structural membrane compounds

such as phosphatidylcholine and phosphatidylethanol-

amine associated with an increase in both glycer-

ophosphocholine and glycerophosphoethanolamine in

a nearly stoichiometric relationship pointed to an

increased activity of phospholipases [71]. Regional

differences became obvious in the phospholipid con-

tents as a whole in that decreases were found in frontal

white matter and the caudate nucleus whereas the

Alzheimer-specific areas frontal and temporal cortex

and hippocampus showed insignificant decreases only

[72]. Interestingly, the same authors reported on an

Alzheimer-specific change of the fatty acid composi-

tion involving an increase of saturated and a decrease

of unsaturated fatty acids [48]. Gangliosides were

found to be reduced in temporal cortex, hippocampus

and frontal white matter, but phospholipids did not

show significant changes. Likewise, cholesterol de-

creased insignificantly by around 10% in temporal lobe

and caudate nucleus [73]. A stronger reduction of brain

membrane cholesterol by 30% [39] was found to be

associated with an 50% increase in BACE1 in the

soluble fractions [74]. Reduced cholesterol has been

demonstrated to accentuate the membrane disturbing

effects of bA4 on individual hippocampal membranes

from AD patients [75, 76]. In AD brains exhibiting

morphological changes of an early disease stage, GM1

ganglioside-bound bA4 was found [77] which, in in

vitro-studies, showed a confirmation different from

that of soluble bA4 and which accelerated the rate of

amyloid fibril formation of soluble bA4 [78–80]. The

increase in membrane-bound bA4 concentration trig-

gered its conformational transition from helix-rich to

b-sheet-rich structures [81]. Marked structural mem-

brane changes in temporal gyrus membranes of AD

patients became obvious by lipid and protein analyses

showing an unchanged phospholipids: protein mass

ratio but a decrease by 30% of the unesterified

cholesterol: phospholipids ratio [82].

More detailed studies on cholesterol metabolism/

concentration in sporadic AD brain revealed no

uniform data. No differences were found in the 3-

hydroxy-3-methylglutaryl-CoA reductase mRNA in

Alzheimer and control brain pointing to a robust

capacity to synthisize cholesterol in AD brain [60].

However, the activity of HMG-CoA reductase is

reduced due to an energy-deficit [59]. The undisturbed

or even elevated synthesis of cholesterol associated

with its increased catabolism (see above) might explain

the higher concentration/turnover of free cholesterol in

(damaged) tangle-bearing neurons compared to adja-

cent tangle-free neurons [83]. These findings may

indicate a dysregulation of cholesterol homeostasis

what may include cholesterol metabolism in the

membrane. The cholesterol-binding protein caveolin

involved in cellular cholesterol transport has been

found to be increased in both mRNA and protein [84].

As a result of this dysregulated metabolism, the

depletion of cholesterol in the—normally cholesterol-

enriched-lipid rafts—may be assumed [85, 86]. Both,

dysregulation of metabolism and disorganization of

membrane structure may have considerable impact on

the function of proteins, and the formation of its

metabolites such as bA 1–40 and bA 1–42 [87].

Otherwise, both, ceramides and cholesterol increased

in association with disease severity in membranes of

brain areas affected by AD (middle frontal gyrus) but

not in a non-vulnerable brain region (cerebellum) [88].

Ceramides derive from sphingolipids which are en-

riched in membrane microdomains as cholesterol is

(see above).

As a result in between, it may be deduced that both

phospholipids and cholesterol in membranes diminish

in sporadic AD brain. However, whereas the biochem-

ical processes in the breakdown of membrane constit-

uents by phospholipases due to acute pathological

conditions such as ischemia and hypoglycaemia have
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been clearly demonstrated (for review [89]), there is no

direct evidence of the maintenance of an elevated

activity of phospholipases in chronic diseases such as

sporadic AD, and in its post mortem state. The activity

of the major catabolic enzyme phospholipase A2 was

found to be decreased and the extend of the reduction

correlated with the disease process [90]. Otherwise, the

activities of lysophospholipid acyltransferase which

recycles lysophospholipids into phospholipids, and

glycerophosphocholine phosphodiesterase contributing

to phospholipid resynthesis were found to be enhanced

[90a] suggesting compensatory mechanism to reduce

the primarily occurring phospholipid loss in the incip-

ient disease state.

Plasma cholesterol and AD

Although the cholesterol metabolism in the brain has

been found to be regulated independently from non-

nervous tissues (see above), some findings point to an

interrelationship between these two compartments. In

a late-life/post mortem autopsy study, a strong linear

association was found between increasing late-life

HDL-cholesterol and increasing number of neuritic

plaques in neocortex and hippocampus and neurofi-

brillary tangles in neocortex [91]. In contrast, AD

patients revealed significantly higher LDL cholesterol

and significantly lower HDL cholesterol related to the

amount of bA 1–42, but not bA 1–40 in AD brains [92].

The latter findings may be in agreement with data

showing that high cholesterol in late life was associated

with a decreased dementia risk [8]. In a subject sample

representing a cognitive continuum from normal cog-

nitive function to mild dementia, low HDL-cholesterol

was found to be associated with a higher risk of

dementia whereas high HDL-cholesterol was associ-

ated with a larger hippocampal volume (less hippo-

campal atrophy as an index of AD pathology) and was

assumed to be protective against dementia/AD [93].

The use of statins—a rational therapy for Alzheimer

disease?

Pharmacology

Statins are inhibitors of the 3-hydroxy-3-methylgluta-

ryl-CoA reductase, representing the rate-limiting en-

zyme in cholesterol biosynthesis. Statins exist in two

different forms: (1) the lactone form is lipophilic

comprising e.g. lovastatin, simvastatin and cerivastatin

which are able to pass the blood–brain barrier; (2) the

acid from is hydrophilic comprising e.g. atorvastatin,

fluvastatin and pravastatin which do not pass the

blood–brain barrier to any significant extent [94, 95].

Both lovastatin and simvastatin were found to reduce

the cholesterol content in the cytofacial membrane

leaflet, and lovastatin in the exofacial membrane

leaflet, too. Interestingly, pravastatin—although not

passing the blood–brain barrier—reduced cholesterol

in the exofacial membrane leaflet, and was also shown

to affect gene regulation in the brain [96, 97].

Effects on membranes, tau-protein and APP/

b-amyloid in experimental in vitro- and in vivo-studies

Lovastatin treatment (100 mg/kg/day) over a period of

23 days caused a marked reduction in brain cholesterol

content associated with decreased pyrene-excimer

fluorescence indicating altered membrane function in

young and middle-aged mice [98]. This cholesterol-

induced reduced membrane lipid fluidity was assumed

to dysregulate membrane-bound allosteric enzymes,

membrane permeability and to modulate the phospho-

lipid–protein interaction [99, 100]. Treatment of hip-

pocampal neurons with lovastatin (‡10 lM) induced

cell death within 72 h [101]. The latter is a generally

observed phenomenon after reduction of cholesterol

[20]. Before complete destroyment of the neuritic

network a decrease in dendritic outgrowth, attenuated

axonal branching and depolymerization of microtu-

bules associated with hyperphosphorylation of tau

protein were observed [101–103].

In numerous studies, a combination of statins and

methyl-b-cyclodextrin of both different concentrations

and duration was used to markedly reduce the choles-

terol level in membranes and to induce effects on APP/

b-amyloid metabolism. Methyl-b-cyclodextrins have

been demonstrated to selectively extract cholesterol

from plasma membranes [104, 105], i.e. the application

of both compounds may cause a harsh membrane

damage. In vivo- and in vitro-studies showed that a

reduction of membrane cholesterol content deterio-

rated membrane properties such as fluidity, and that

the cholesterol content of membranes was negatively

correlated with the membrane perturbing effect of b-

amyloid [76]. Synaptic plasticity was impaired in that

the formation of neurodegenerative fragmentation and

teardrop varicose widening of neurites were found to

be associated with a damage of long-term potentation

[33]. However, most studies focus on the relationship

between membrane cholesterol content and b-amyloid

formation to demonstrate the beneficial effect of

statins as a therapeutic strategy in the treatment of
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AD. In different cell lines (HEK cells, neuroblastoma

SH-SY5Y cells, human astroglioma cells, primary

neurons), around 60% of cholesterol was removed

from the cell by methyl-b-cyclodextrin or was reduced

by around 50% by lovastatin. This harsh membrane

damage resulted in a drastic increase of secreted-

a-secretase cleaved soluble APP, in a decreased secre-

tion of bA4-peptides by around 20% and in increase

membrane fluidity. It is deduced from the data that

cholesterol reduction promotes the non-amyloidogenic

a-secretase pathway and that this strategy may be

useful for the prevention of or therapy for AD [106]. In

other studies, a-secretase cleaved APP (secreted APP)

was found to be unchanged or reduced [107, 108] and

bA4-formation was reduced between 50% and 70%

when cellular cholesterol was diminished by 50–70%

by lovastatin, or methyl-b-cyclodextrin, or by both. It

was concluded that cholesterol is required for the

formation of bA4 and that this process may be

inhibited by the depletion of cholesterol [108, 109].

However, in studies more relevant to the reduction of

cholesterol in sporadic AD brain membranes (see

above), the latter was diminished by 30% only what

was accompanied by an increase in b-secretase, a

higher b-secretase/APP colocalization and an in-

creased Ab-production. In contrast, a harsh reduction

of cholesterol by more than 35% of control induced

less Ab-production most likely due to an overall

marked disruption of membrane integrity [74, 109a],

not described in postmortem AD brain (see above).

In most of the in vivo-studies investigating the

cholesterol-lowering effects of statins transgenic ani-

mals were used. The results are incomplete (e.g. no

determination of cholesterol content) and with respect

to bA4-formation not uniform: reduction of the latter

up to 60% were found as well as no changes, and

increases up to 50% (for review [110]). In one study

only, wild-type adult male guinea pigs were used which

received simvastatin over three weeks in a 227–407

times higher dose than applied in human beings [111].

Whereas the plasma cholesterol level was found to be

markedly reduced (16% of control), no significant

change in total brain cholesterol level was found.

However, the cholesterol precursor lathosterol was

diminished indicating a reduction of de novo brain

cholesterol synthesis. Simvastatin treatment reduced

bA4 concentration in both CSF and brain tissue

between around 50–60%.

Taken together, the results from the in vitro- and in

vivo-studies discussed above do not provide evidence

for the assumption that an enhanced cholesterol

content in membranes increased bA4-production. All

experiments started in normal conditions i.e. normal

cholesterol concentration. The application of statins in

combination with, or without methyl-b-cyclodextrin,

caused ‘‘beneficial’’ effects of APP metabolism associ-

ated with reduced bA4-production first when the

cholesterol content of membranes was reduced by

50–60% of normal. Applied to AD brain, the abnormal

but moderate decrease of cholesterol (around –15% to

–30%) might have to be diminished about 2-to 3-fold

stronger to achieve a ‘‘beneficial’’ effect on APP/bA4-

metabolism. It is not clear as yet whether or not a

neuron would survive such a harsh procedure.

Another aspect might also be taken in account. APP

(and presenilin) mutations are found to be rare in AD

brain, and the hereditary form of the disease represents

a very small proportion of AD patients only (see

Introduction). Mutated APP used in cell culture

studies or in transgenic animals is produced in excess

causing an increased amount of cleaved APP, and,

thus, an increased formation of Ab. This process may

be diminished by the harsh membrane damage due to

cholesterol reduction by more than 35% of normal.

This experimental condition may not be assumed

to mirror the pathology of sporadic AD brain

membranes.

Effects of statins in the treatment of dementia

in human beings

Sporadic AD is the most frequent form of all demen-

tias in the elderly, but other causations than that for

sporadic AD (the causation(s) of which is (are) as yet

unknown) will have to be considered for treatment

strategies. To give one example only: vascular demen-

tia is different from sporadic AD in origin, and, thus,

different therapeutic strategies may have to be applied.

Studies on unclassified dementias

The most frequently cited articles in this context are

from Wolozin et al. [112] and Jick et al. [113]. The

latter retrospective study included 284 subjects who

had a first-time diagnosis, 84% of whom were classified

as having possible or probable AD. Different statins

were applied over a period of more than four years.

This treatment was associated with a substantial

lowered risk of developing dementia whereby it was

emphasized that no distinction between AD and other

forms of dementia was possible. Wolozin et al. [112]

evaluated the records of nearly 57,000 patients in a

cross-sectional analysis retrospectively. The diagnoses

were made by documentation of cognitive impairment,
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neuropsychological examination, computed tomogra-

phy and magnetic resonance imaging of the brain. The

diagnosis of AD referred to probable AD and did not

exclude confounding vascular disease factors, i.e. a

population of mixed causes of dementias was included

in the evaluation comprising 753 patients both taking

and not taking medications. As a result, a lower

prevalence (60–73%) of dementia of the cohort taking

statins during the study interval (October 1996 through

August 1998) was found. In a subsequent case–control

and retrospective cohort study on patients diagnosed as

suffering from hypercholesterolemia or dementia (AD,

vascular dementia, mixed-type dementia, Lewy body

dementia), patients on statins showed an improvement

on their MMSE score by 0.7 as compared to a decline

by 0.5 in controls. The data also suggested that the use

of statins was associated with a lower prevalence of

vascular dementia and AD [114].

None of the above studies gave information on

drugs used additionally to treat the different types of

dementias.

Studies on classified dementias

In smaller samples of well diagnosed AD patients

(n = 44), CSF markers such as bA40, bA42,

tau-protein, lathosterol and cholesterol were included

in the studies. A 26-week treatment with 80 mg/day

simvastatin reduced serum cholesterol by around 50%,

CFS lathosterol by around 10% and CSF 24S-hydroxy-

cholesterol by around 10%. The patients were allowed

to take acetylcholinesterase blockers during the 26-

week study period. In a subgroup of mildly diseased

AD patients (MMSE21-26: n = 8), CSF bA40 fell

significantly accompanied by no changes in CSF bA42.

Simvastatin treatment maintained the MMSE score at

baseline level [115]. Nineteen AD-patients received

simvastatin (20 mg/day) for 12 weeks in an open trial,

leading to a slight increase of the ADAS-cog score,

a decrease in serum total cholesterol and LDL

cholesterol, and a reduction of both the a-secretase-

cleaved and the b-secretase-cleaved APP, but without

any variations in CSF bA42, tau-protein, and phospho-

tau-protein [116], largely confirmed in a small, 1 year

open-label study [117]. Sixty seven patients with mild

to moderate AD were included in a 1-year pilot proof-

of-concept, double blind, placebo-controlled, random-

ized study and treated with atorvastatin known not to

pass the blood–brain barrier. The drug treatment was

80 mg/day atorvastatin while continuing to take cho-

linesterase inhibitors. Atorvastatin caused decreases in

serum total cholesterol, LDL-cholesterol and VLDL-

cholesterol. Improvement on the ADAS-cog score
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Fig. 1 Simplified membrane structure demonstrated as fatty
acids and cholesterol in healthy adult life time, sporadic AD and
in sporadic AD + statin treatment. Membrane cholesterol is

reduced in sporadic AD. Statins inhibit cholesterol synthesis and
further damage membrane structure
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were observed after a 6-months treatment first what

was maintained until 12 months. No significant changes

were found during the period of 1-year treatment in

several other psychometric test procedure applied

[118].

The data of the above studies do not support the

assumption that the application of statins may be of

benefit for AD patients. Remarkably, the clinical

outcome of AD patients after a long-term treatment

[115, 118] was very limited in improvement (8 out of 40

patients in [115]) and significance at the level of a trend

[118]. These results are somewhat surprising in so far

that a stronger improvement of clinical symptoms has

been found in many studies using acetylcholinesterase

inhibitors only. Therefore, drug interactions may not

be excluded causing a reduced efficacy of acetyl-

cholinesterase inhibitors by statins.

To summarize, the data discussed above do not

support the assumption that the application of statins

may prevent or treat AD and may inhibit b-amyloid

production [119–122]. In contrast, statin treatment

intensifies the disease-induced cholesterol deficits in

membranes rendering the latter prone to collaps

(Fig. 1). Otherwise, statins may be helpful in the

treatment of vascular dementia and vascular-related

cognitive impairment associated with cardiovascular

disease and hypercholesterolemia, i.e. in secondary

dementia [122].
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