
Abstract Since its definition Alzheimer’s disease has

been at the centre of consideration for neurologists,

psychiatrists, and pathologists. With John P. Blass it

has been disclosed a different approach Alzheimer’s

disease neurodegeneration understanding not only by

the means of neurochemistry but also biochemistry

opening new scenarios in the direction of a metabolic

system degeneration. Nowadays, the understanding of

the role of cholesterol, insulin, and adipokines among

the others in Alzheimer’s disease etiopathogenesis is

clarifying approaches valuable not only in preventing

the disease but also for its therapy.
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History

Frau Auguste D was 51-years old, when on 25th

November 1901 was admitted to the Municipal Mental

Asylum in Frankfurt-am-Main, where, at that moment,

Alois Alzheimer covered the position of senior physi-

cian. By the time Frau Auguste passed away, four years

later, Dr Alzheimer was a co-worker to Dr Emil

Kraepelin at the Anatomical Laboratory of the Royal

Psychiatric Clinic, Munich University, where Frau

Auguste D’s brain was sent for Alzheimer to perform

the necroscopic exam, which he did on 8th April.

At the meeting of the South-West German Society

of Alienists in T}ubingen, on the 3rd and 4th November

1906 Alois Alzheimer presented Frau Auguste D’s

clinic-pathologic case; which subsequently published,

on 1907, in the journal Allgemeine Zeitschrift für

Psychiatrie und Psychisch-Gerichtliche Medizin.

‘‘A woman, 51-years old, showed (...) increasing loss

of memory (...) she would think that someone wanted

to kill her (...). Periodically she was totally delirious,

and seemed to have auditory hallucinations. (...) The

generalised dementia progressed (...) After 4 years of

the disease death occurred.’’

At necroscopy Alzheimer found that brain was

atrophic with atherosclerotic large vessels, and

‘‘peculiar changes of the neurofibrils (...) (were)

clustering together in thick bundles which emerge

(d) at the surface of the cell and miliary foci dis-

tinguishable by the deposit in the cerebral cortex of

a peculiar substance (...) very refractory to stain-

ing’’ [1, 2]. The later so called neurofibrillary tan-

gles and amyloid plaques, respectively. A year

later, a second case was described by Francesco

Bonfiglio (1883–1966), and two years later, Gaetano

Perusini (1879–1915), published four cases: including

the above two. Alzheimer, Bonfiglio, and Perusini

did not realize yet they were facing a new disease,

they thought of an unusual variant of senile

dementia. It was Emil Kraepelin firstly to introduce

the term Alzheimer’s disease, in the 8th edition of

his textbook Compendium der Psychiatrie (1910)

[2]. Until our days what has been mostly striking is

that the certain diagnosis of Alzheimer’s disease
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could not have been made but post-mortem by the

clinic-pathologic corollary reported in the Kraepe-

lin’s Compendium der Psychiatrie referring mostly

to Frau Auguste D’s Alzheimer’s case description;

diagnosis depending on medical history, physical

and neurological examinations, psychological testing,

laboratory tests, brain imaging studies, and, possi-

bly, brain tissue examination usually obtained at

autopsy: namely too late!

Alzheimer’s disease is a frightening and shocking

progressive neurodegenerative disorder clinically

characterized by loss of memory and deficits in

other cognitive domains and intellectual functions

steadily developing [3], with the neurotransmitters

which permit cells to be in touch with one another,

including acetylcholine, somatostatin, monoamine

and glutamate, lowered down. Such a scenario,

characterized by damage to the neural networks

critical for attention, memory, learning and higher

cognitive abilities, possibly underlies the devastating

symptomatology. Therefore, alterations in behaviour,

such as apathy, agitation, and psychosis, are also

fundamental characteristics [4]. Memory loss

(amnesia), the most remarkable early symptom,

usually introduces itself as minor forgetfulness, and

then it becomes steadily more pronounced as the

illness progresses; while possibly older memories

keep on relatively preserved. As the disorder goes

further, cognitive (intellectual) impairment extends

to the domains of language (aphasia), coordinated

movement (apraxia), recognition (agnosia) and to

those functions (such as decision-making and plan-

ning) closely related to the frontal lobe of the brain,

reflecting extension of the underlying pathological

process. Neuronal loss, together with deposition of

beta-amyloid plaques, in the spaces around synapses

(neuritic plaques) [5], and abnormal accumulation of

tau protein modified form in the cell bodies of

neurons (neurofibrillary tangles) [3, 6] are the main

features of the pathological process.

Many efforts have been made in the evaluation of

the above stigmata by autopsy and the searching for

a correlation with quantitative measures of dementia

by the means of scales, such as the Blessed

Dementia Scale [7–9]. Moreover, other scales have

been used to quantify cognitive impairment, like the

Mini Mental State Examination (MMSE) [10, 11],

which have been used also to relate the cerebral

ventricular size and the cerebrospinal fluid acetyl-

cholinesterase levels with the degree of Alzheimer’s

dementia disease [12]; or, also, the Assessment Scale

for Cognition (ADAS-Cog) scores [13].

Disease mechanism(s)

Many efforts have been made in the understanding

Alzheimer’s disease causes and mechanism(s). From

time by time a mechanistic primum movens have been

evoked for Alzheimer’s disease pathogenesis. It was

1965 when two different research groups have de-

scribed experimentally induced Alzheimer’s disease

like lesions in rabbit brains by aluminium exposure [14,

15]. Afterwards, it has been established that excessive

cortical intranuclear aluminium content is present in

Alzheimer’s disease patients, possibly relating to neu-

rofibrillary degeneration [16–18]. Although the above

observations arose into postulating aluminium neuro-

toxicity by induced immune-reactivity as etiologic issue

in Alzheimer’s disease, such a mechanism has re-

mained unconfirmed and therapies with chelating

agents have been not advisable [19]. Another of the

oldest hypotheses to elucidate the mechanism(s)

underlying Alzheimer’s disease has been the ‘‘cholin-

ergic’’ [20]. It is very well acknowledged the choliner-

gic neurotransmitter system quite critical role for the

higher brain activities, such as the cognitive one [21];

besides, cholinergic neurons within the nucleus basalis

of Meynert result nearly completely destroyed in

Alzheimer’s disease [22]; therefore, subsequently many

investigators have postulated the cholinergic dysfunc-

tion as the primary/direct memory decline causative in

Alzheimer’s disease. Unfortunately, the first-genera-

tion Alzheimer’s therapeutic approaches based on the

above hypothesis using mostly acetylcholinesterases

inhibitors, have not led to a cure, but only to the

transitory symptomatic palliative treatment [23] being

cognitive enhancers still a provocative and vague label

for drugs used to treat demented of the Alzheimer type

[24], and the cholinergic network not the only one to

be injured (see above). Two other hypotheses, more

exquisitely interrelated with an ‘‘inflammatory’’ con-

text, quite often have been alternatively described as

the ‘‘baptist’’ and ‘‘tauist’’ viewpoints by Alzheimer’s

disease dedicated scientific publications; stringently

relating the beta-amyloid [5], and/or the tau proteins

[25, 26] atypical physiopathology to the full disease

cascade, respectively. Also Alpha synuclein, the pro-

tein involved in Parkinson’s disease, has been con-

nected with amyloid plaques in Alzheimer’s disease

[27]. Finally, pathological interactions among these

three candidate proteins have been evoked [28, 29].

As a matter of fact, not all people who have path-

ologic classical Alzheimer’s disease stigmata, such as

plaques and/or tangles, are clinically manifesting dis-

ease symptoms; being synapses loss much better
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related with the cognition decline than the mere pres-

ence of plaques and tangles [30, 31].

A great attention deal there have been regarding

‘oxygen radicals’, produced in an oxidative stress con-

test, as neurotoxic mediators processes behind Alz-

heimer’s and other neurodegenerative diseases

stigmata [32–35], leading to the key role of anti-oxi-

dants such as of vitamin E (tocopherol) in the nervous

system and their possible use in treating the above

diseases [36]. Thus, several studies have been per-

formed in search of altered vitamin E concentrations in

cortex [37, 38], in plasma [39], and also in cerebrospinal

fluid of patients with Alzheimer’s disease [40, 41]. To

date, disagreeing data do not sustain convincing vita-

min E therapeutic effects on Alzheimer’s disease pro-

gression by itself. For example, the Alzheimer’s

Disease Cooperative Study [42] showed that treatment

with vitamin E could be helpful for a delay in the

disease progression timing in moderately severe Alz-

heimer’s disease patients; while in another clinical

study the results did not go in the same direction [43].

Discouraging results have been obtained also in clinical

trials with Vitamin C (for which almost same antioxi-

dant principles could apply) and/or vitamin E [44].

Although another attractive hypothesis to be men-

tioned is the ‘‘cobalaminergic’’ [45] elaborated by the

low CSF and serum vitamin B12 levels evidences in

Alzheimer’s patients [46, 47], vitamin B12 is bio-

chemically, and nutritionally intimately related to folic

acid [19], for which a specific chapter should be held. In

fact, folates are essential for central nervous system

development, and insufficient folate activity at the

moment of conception and during early pregnancy can

result in congenital neural tube defects. In adult life

folate deficiency is often related to megaloblastic

anaemia and, possibly, to high blood levels of homo-

cysteine. Notably, elevated homocysteine blood levels,

accompanied by low folate intake, have been linked

with high arterial disease risk, but also with increased

dementia and Alzheimer’s disease risks [48]. In fact, in

Alzheimer’s disease experimental animal models folic

acid deficiency homocysteine impairs DNA repair in

hippocampal neurons and sensitize them to amyloid

toxicity [49]. Furthermore, an Alzheimer’s dementia

pathogenesis hypothesis has been related to the

defective DNA repair ability in Alzheimer’s tissue

cells, with consequential DNA damage, and cell func-

tionality breakdown until death. Being cobalamin and

folate dependently linked in a DNA and S-adenosyl-

methionine synthesis key position, cobalamin/folate

deficiency (often featuring in Alzheimer’s disclosed

disease) would result in a concomitant slow down

DNA and S-adenosylmethionine synthesis, possible

common pathogenesis hallmarks for Alzheimer’s dis-

ease, Down syndrome, and AIDS-related dementia

[50].

In the stream of the redox failure, and, more in

general, abnormalities in energy metabolism [51, 52],

interest goes to the characterization of the mitochon-

drial injury [53], to the reduction of the key enzymes

alpha-ketoglutarate dehydrogenase complex [54, 55],

and carnitine acetyltransferase impairment [56], all

leading to the clinical studies testing the therapeutic

effects of acetyl-L-carnitine, which exerts also a choli-

nomimetic activity [57–64]. Noteworthy, it is remark-

able to underline that, in Alzheimer’s disease patients

who carry Apolipoprotein(Apo)E4 allele of APOE

gene, the clinical Dementia Rating (CDR) score cor-

relates better with alpha-ketoglutarate dehydrogenase

enzyme complex activity than with densities of neuritic

plaques or neuritic tangles; however, in patients with-

out ApoE4, the CDR correlated better with densities

of neuritic plaques or neuritic tangles than with alpha-

ketoglutarate dehydrogenase enzyme complex activity

[65]. This suggests that mitochondrial dysfunctions may

be more important for the development of Alzheimer’s

disease in patients who carry ApoE4 allele than in

those who do not. ApoE, present in three common

polymorphisms in the population: epsilon 2, epsilon 3,

and epsilon 4, is a low density lipoprotein (LDL)

associated lipoprotein involved in the plasmatic cho-

lesterol transport and in the recognition by the LDL

receptor; function which exerts also centrally where is

involved in the brain cholesterol transport, has

acquired very high importance for neurologists in 1993

when the association of the ApoE4 allele with familial

and sporadic late-onset Alzheimer disease was

reported [66–68]. ApoE involvement in Alzheimer’s

disease is strongly related to cholesterol involvement

into the physiopathology of the process beginning from

the observation that levels of high-density lipoprotein

cholesterol are significantly lower in multi-infarct

dementia than in Alzheimer’s disease [69].

Cholesterol and ApoE

Cholesterol and apoE complex interplays are receiving

greatest attention in Alzheimer’s disease involvement,

as already extensively described elsewhere in reason of

many experimental and clinical supporting data [70,

71]. Cholesterol in the brain is almost totally synthe-

sized in loco [72]; it covers more than two percent of

brain weight, and it covers about 25% of the total

cholesterol body amount [73, 74]. The majority of

cholesterol in central nervous system is unesterified
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and resides in two different pools: the myelin sheaths,

and the plasma membranes of astrocytes and neurons.

Brain cholesterol synthesis is very high during fetal

development and declines in adult life being central

cholesterol recycling quite efficient. In fact, in central

nervous system cholesterol half-life could be as long as

5 years. But, still some excretion for central cholesterol

steady state might be required. Thus, cholesterol exits

the brain through the blood–brain barrier carried by

ApoE or more properly by conversion into the polar

oxisterol derivative 24(S)-hydroxycholesterol, also

called cerebrosterol [75–77] to underline the fact that it

is produced almost exclusively in the brain. 24(S)-hy-

droxycholesterol release into circulation reflects cen-

tral cholesterol turnover with inverse age-dependent

manner [78], then it could be considered a non-invasive

marker for monitoring brain deregulated cholesterol

turnover [79]. Not surprisingly, plasma (24(S)-hy-

droxycholesterol is very high in individuals with Alz-

heimer’s disease, as a consequence of the dramatic

increased brain cholesterol turnover [80]. Remarkably,

24S-hydroxycholesterol induces inflammatory gene

expression in primary human neural cells [81]; and,

also it shows an in vitro neurotoxic profile [82].

Inversely, the other oxysterol 27-hydroxycholesterol

mostly produced in non-brain tissues, such as the liver,

might cross the blood–brain barrier in the opposite

direction towards the brain where accumulate in Alz-

heimer’s disease patients [83].

The lipoproteins present in the cerebrospinal fluid,

mostly represented by apoE [84, 85] function in brain

cholesterol redistribution from producing cells, such as

astrocytes, oligodendrocytes, and microglia to different

cellular and subcellular sites of neurons [86] in the

need of membrane remodelling during regeneration of

neurites, axons, and synapses. ApoE is crucial for

synaptic integrity by supplying cholesterol, stabilizing

neural cytoskeleton, regulating intracellular calcium.

ApoE is also a beta-amyloid scavenger by regulating

extracellular beta-amyloid concentration through apoE

receptor internalization to lysosomes. Increased neu-

ronal cholesterol requirement for membrane regener-

ation induces glial apoE increased expression and

secretion [87]. One of the 3 human isoforms of apoE,

apoE4, is a very well documented risk factor for late-

onset Alzheimer’s disease possibly because of the

lower affinity for the apoE receptor with reduction of

the beta-amyloid scavenging whit consequent in-

creased beta-amyloid lipid peroxidation. Moreover,

compared to ApoE3 ApoE4 is less expressed during

increased brain cholesterol requirement affecting

neurites, axons, and synapses regeneration until neural

degeneration [71].

Beta-amyloid extracellular plaques formation occur

preferentially in the cholesterol-rich regions of mem-

branes known as lipid rafts, and cholesterol level

changes might alter the distribution of beta-amyloid

precursor cleaving enzymes within the membrane such

as the integral membrane proteases (secretases) [88].

Interactions between insulin and cholesterol

Rafts may be involved in the aggregation of beta-

amyloid and also in its clearance by amyloid-degrading

enzymes such as plasmin, neprilysin [89]; and insulin-

degrading enzyme [88]. Not surprisingly, clinical and

epidemiological studies have found that type 2 diabe-

tes, and hyperinsulinaemia, increase the risk of devel-

oping Alzheimer’s disease in the elderly. One of the

links between hyperinsulinaemia and Alzheimer’s dis-

ease may be, among the others, insulin-degrading en-

zyme. Insulin-degrading enzyme degrades both insulin

and amylin, peptides related to the pathology of type 2

diabetes, along with beta-amyloid. The current evi-

dences suggest that hyperinsulinaemia may elevate

beta-amyloid through insulin’s competition with beta-

amyloid for insulin-degrading enzyme [88]. Genetic

studies have also shown that insulin-degrading enzyme

gene variations are associated with the clinical symp-

toms of Alzheimer’s disease as well as the risk of type 2

diabetes [88]. The deficiency of insulin-degrading

enzyme can be caused by genetic variation or by the

diversion of insulin-degrading enzyme from the

metabolism of beta-amyloid to the metabolism of

insulin [88]. It is intriguing to notice that both hyper-

insulinaemia and insulin-degrading enzyme gene

variations are related to the risk of Alzheimer’s dis-

ease when the Apolipoprotein E4 allele, the major

risk factor of late-onset Alzheimer’s disease, is not

present [70].

It is very important to keep in mind that insulin exerts

a strong activity on 3-hydroxy-3-methylglutaryl-CoA

reductase [90], the 3-hydroxy-3-methylglutaryl-CoA

into mevalonate converting enzyme in the rate-limiting

step in cholesterol biosynthesis. Interestingly, 3-hydro-

xy-3-methylglutaryl-CoA reductase cholesterol-lower-

ing drugs (statins) that are 3-hydroxy-3-methylglutaryl-

CoA reductase inhibitors also act to stabilize and

promote increased transcription and translation. Cho-

lesterol is a feedback inhibitor of 3-hydroxy-3-methyl-

glutaryl-CoA reductase and also reduces expression of

the enzyme. Another important strong relationship

between cholesterol and insulin is evident in type 2

diabetes, and more in general in insulin-resistance,
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where there is high synthesis of cholesterol with very low

absorption [91, 92]. Insulin also down-regulates the

expression of enzymes (cholesterol 7a-hydroxylase and

sterol 27-hydroxylase) involved in the catabolism of

cholesterol in oxysterols, which together with insulin are

required for expression of sterol-regulatory-element-

binding proteins [93]. Noteworthy, in Alzheimer’s dis-

ease patients are present altered levels of plasma oxys-

terols [82]. The sterol-regulatory-element-binding

proteins modulate insulin’s ability to express genes in-

volved in cholesterol and triacylglycerol synthesis. Fi-

nally, copper-oxidized LDL inhibits insulin-dependent

phosphorylation of the signalling kinases ERK (extra-

cellular-signal-regulated kinase) and PKB/Akt, sug-

gesting that oxysterols may be involved in insulin

resistance. For more specific details see ref [70].

Insulin functions in brain regions involved in cog-

nition, and insulin dysfunction in these areas can result

in memory loss and even Alzheimer’s disease [70, 94,

95]. In CNS there is high expression of insulin recep-

tors mostly localized to synapses. The expression of

insulin receptors, increased in postmortem brain tis-

sues from patients with sporadic Alzheimer’s disease,

shows a significant reduction in the kinase activity,

suggesting an insulin signalling dysfunction in Alzhei-

mer’s disease [96]. Consistent with this, a severe

reduction in cerebral glucose utilization is found in

late-onset sporadic Alzheimer’s disease, although their

glucose supply to the brain is normal [97]. Also, it has

been shown that the increase in blood insulin, not

glucose level, significantly improves memory in Alz-

heimer’s disease, suggesting that insulin has a glucose-

independent mechanism of regulating cognition [98].

Moreover, insulin and insulin-like growth factor I

(IGF-I) (see below) are involved in tau phosphoryla-

tion. Old insulin receptor substrate 2 knockout mice

show in the hippocampus neurofibrillary tangles

deposits containing phosphorylated tau [98]. Insulin is

a strong negative modulator of intracellular accumu-

lation of beta-amyloid by accelerating beta-amyloid

precursor protein/beta-amyloid transfer from Golgi to

plasma membrane. Insulin degrading enzyme, the

extracellular protease involved in insulin, IGF-I, and

IGF-II degradation, as described above, is also in-

volved in beta-amyloid cleavage. Not surprisingly,

insulin degrading enzyme transgenic neuronal overex-

pressing mice present reduced brain beta-amyloid

levels, and retarded or completely absent amyloid

plaque formation; while, mice with insulin degrading

enzyme deficit show increased cerebral accumulation

of endogenous beta-amyloid [98].

Thus, insulin dysregulation may strongly contribute

to Alzheimer’s disease pathology by several mecha-

nisms, from reduced brain glucose utilization, to neu-

rofibrillary tangle formation, and increased beta-

amyloid aggregation by insulin degrading enzyme

inhibition. Insulin effects on neuronal cognition and

memory could act at several levels by regulating ion

channels, neurotransmitter receptors and synaptic

transmission. Being the memory improvement insulin-

mediated very fast (~30 min), it is quite possible an

insulin receptor-mediated signal on substrates directly

involved in synaptic transmission and plasticity, rather

than targets that take much longer time to modify (e.g.

beta-amyloid clearance) [98].

Given the above insulin activities, it is still very

important to keep in mind that insulin, besides regu-

lating glucose metabolism, stimulates lipogenesis,

diminishes lipolysis, increases amino acid transport

into cells, modulates transcription and stimulates

growth, DNA synthesis and cell replication. Thus,

distinguishing between insulin’s effects on glucose

levels and insulin’s possible role as a neurohormone

might be difficult, because changes in peripheral insulin

produce a variety of effects unrelated to memory. For

example, animals with streptozotocin-induced diabetes

have impaired memory and insulin-enhancing thera-

peutic agents enhance memory [70].

Given relationship between non-insulin diabetes

type 2 and Alzheimer’s disease [99], glucose itself has

been shown to be toxic in several cell types such as

endothelial [100], cardiomyocytes [101]; but also in

critically ill patients with mortal effects [102]. It is al-

ready very well described ‘toxic’ effects of hyper-

glycaemia and the brain diabetic end-organ damage

[99]. In fact, hyperglycaemic rodents, not only express

cognitive impairments but also functional and struc-

tural alterations in the brain [103]. High glucose levels

might exert toxic effects by an enhanced glucose flux

through the polyol and hexosamine pathways, distur-

bances of intracellular second messenger pathways, an

imbalance in the generation and scavenging of reactive

oxygen species, and by advanced glycation of impor-

tant structural and functional proteins. It is important

also to underline how high glucose levels, as discussed

above, might inhibit cholesterol intestinal absorbance,

and increase cholesterol biosynthesis, peripherally [91,

92], and, possibly, centrally (brain).

Insulin and IGF-1

Emerging evidences underline the relationship

between insulin and IGF-1 on important functions in

the brain, such as on metabolic, neurotrophic, neuro-

modulatory and neuroendocrine activities. Also IGF-1,
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like insulin (see above), is present in brain by active

transport through the blood–brain barrier and possibly

by locally production in the brain. Insulin and IGF-1

share a high degree of structural and functional

homology and both bind to, and activate the receptor

of the other, thus sharing several physiological func-

tions [104]. The insulin–IGF-1 pathway in Alzheimer’s

disease shows perturbations overlapping with those

above descript for insulin itself [94, 104], with IGF-1

also involved in the metabolism and clearance of beta-

amyloid. Serum IGF-1 levels strictly relate with cere-

bral levels of beta-amyloid in animals: in old rats

injected with IGF-1 beta-amyloid levels are decreased

in the brain. While, in IGF-1 defective mice is present

an increase in beta-amyloid cerebral levels. IGF-1 and

insulin might also influence the development of neu-

rofibrillary tangles by regulating the phosphorylation

of tau as described elsewhere [104].

Metabolic system degeneration

Given all the above, when considering the involvement

of single metabolic dysfunction and/or factor in Alz-

heimer’s dementia, many other metabolic pathways

and factors should require to be taken into account for

simultaneous/contemporaneous scientific investiga-

tions. Consequently, we might assist to the contours

disclosure of predominant systemic metabolic dys-

functional representations in which Alzheimer’s dis-

ease is meant to play the tragic and horrifying leading

role [105], contextualized to the above mentioned

factors (plus many others) which participate and con-

tribute in a (in)decorous way. Such an approach has

been very useful in making an allowance for looking at

Alzheimer’s disease as late-onset system degeneration,

involving certain populations of cholinergic neurons

but also many other cell populations. Thus, John P.

Blass have been the enthusiastic protagonist, promoter,

and catalyser of an outstanding scientific journey,

spending most of his energies in searching, identifying

and characterizing peripheral (nonneural) markers

[106, 107] meant to be helpful for testing pathophysi-

ological hypotheses and for the diagnosis of Alzhei-

mer’s disease [108]. Accordingly, he has contributed,

among others, to describe the reduced pyruvate dehy-

drogenase complex activity in Alzheimer brain and

eventually in periferic fibroblasts [109, 110]; fibroblasts

altered calcium uptake [111], changed metabolic

properties [112], affected glucose metabolism [113],

replicative life span [114], phosphofructokinase activity

[115] compared to brain [116], expression of ‘‘Alzhei-

mer antigens’’ [117], abnormality of the alpha-keto-

glutarate dehydrogenase complex [118], altered

oxidation and signal transduction systems [119]; red

blood cell abnormalities [120], choline uptake [121];

the diminished mitogen-induced calcium uptake by

lymphocytes [122]; the impairment of the mitochon-

drial function [123]; the reduced activities of thiamine-

dependent enzymes in the brains and peripheral tissues

[124]; transketolase abnormality [125]; brain carnitine,

carnitine acetyltransferase, and glutathione [56], in

Alzheimer’s disease patients; enriching the complex

chapter of the metabolic alterations common to neural

and non-neural cells in Alzheimer’s disease [126].

Multifactoriality and complexity

Alzheimer disease, like most chronic diseases, is

probably best considered in a life course framework,

with a journey started at patient’s conception and early

foetal life. The epidemiological, preclinical, and clinical

studies conducted over the past several decades

strongly suggest that what lies beneath the disease,

usually flaming much later in life [127], is a very slow

chronic process involving risk factor constellations with

neuropathologic alterations starting many decades be-

fore, at the lighting of the patient’s life [128, 129], in the

stream of the thrifty phenotype hypothesis which claim

the activation during the ontogenesis of adaptive

mechanisms preventively activated in prevision of al-

tered nutritional environment signalled by altered

maternal nutrition [130]. For example, some risk fac-

tors such as genes inheritance and/or nutritional

deprivation/excess altering brain formation and growth

may have their major effects in early life; others related

to socioeconomic status, such as smoking, malnutrition,

and obesity in childhood, as well as in adulthood, may

set the stage for later adulthood influences such as

insulin resistance, obesity, hyperlipidemia, hyperten-

sion, diabetes, metabolic syndrome, cardiovascular,

and cerebrovascular disease, all related to Alzheimer’s

disease’s increased incidence [128–132].

Metabolic syndrome

The metabolic syndrome is characterized by clustering

risk factors for cardiovascular diseases, but also for

Alzheimer’s disease. Non insulin diabetes type 2 [99],

hyperinsulinemia [133, 134], insulin resistance [135],

atherosclerosis [136], inflammation, and inflammatory

cytokines [137] have been identified as independent

predictors of cerebrovascular disease, ischaemic stroke

and accelerated cognitive decline and dementia, which,
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if combined, inside metabolic syndrome, might pow-

erfully reinforce these effects [99]. Given the clustering

of hyperinsulinemia, insulin resistance, hypertension,

dyslipidaemia, hyperglicemia in metabolic syndrome

the effort to determine which factor might be the pri-

mum movens in the development of Alzheimer’s dis-

ease cognitive dysfunction is becoming an empty

exercise. Moreover, new evidences relate other factors,

which are disrupted in the metabolic syndrome, with

the cognitive impairment and Alzheimer’s disease

development: leptin, adiponectin, and ghrelin.

Leptin

Adipose tissue secretes a variety of proteins with

important roles in metabolism, reproduction, immunity

and cardiovascular function. The endocrine function of

adipose tissue, especially that exerted through leptin,

could be simplistically linked to adaptive metabolic

mechanisms to energy availability, leading to storage

or mobilization of fat, in relationship to food intake

and fasting energy storage providing insights into

obesity and other diseases associated with energy

imbalance [138, 139]. It is very important to underline

the discovering of very well documented activities of

leptin in the brain, with particular emphasis on trans-

port across the blood–brain barrier, signal transduc-

tion, neuropeptide targets and roles during fasting and

obesity [140]. In fact, leptin is released into the blood

stream and circulates to the brain crossing the blood–

brain barrier; to act through the leptin receptors

(ObR), which is widely expressed in the central ner-

vous system as multiple forms [141]. Leptin primarily

acts on the hypothalamus arcuate nucleus neurons, but

also hippocampal and peripheral neurons [142]. Very

recent data disclose also the leptin involvement in

memory function by synapses inducing mechanisms

[143]. The CA1 hippocampal region of Zucker and db/

db mice, neither of which expresses functional leptin

receptors, shows impairments of long-term potentia-

tion and long-term depression [144]. These mice pres-

ent also impaired spatial memory further supporting an

involvement of leptin and/or its receptor in Alzhei-

mer’s disease. Spatial memory consolidation requires

ERK activity in entorhinal cortex, a cerebral area af-

fected by neurodegeneration in preclinical Alzheimer’s

disease. Interestingly, leptin restores the increase in

ERK1/2 phosphorylation which is lost in Leprdb/db

mice pyriform and entorhinal cortex [145].

It has been also demonstrated leptin ability to

regulate in vitro and in vivo beta-amyloid levels, the

major proteinateous component of the amyloid plaques

in Alzheimer’s disease patients’ brains. Leptin modu-

lates beta-amyloid kinesis in a bidirectional way,

reducing its extra-cellular levels, by reducing beta-sec-

retase activity in neuronal cells possibly by altering the

lipid composition of membrane lipid rafts; and by

increasing apoE-dependent beta-amyloid uptake [146].

Finally, most strikingly, chronic administration of leptin

to Alzheimer disease-transgenic animals reduces the

brain beta-amyloid load [146]. Moreover, galanin, which

together with its receptors (GALR) is overexpressed in

limbic brain regions associated to cognition impairment

in Alzheimer disease [147], results highly modulated in

the mRNA expression by leptin [148]. Thus, a complex

direct and indirect action in leptin deregulated condi-

tions might be evoked in Alzheimer’s disease, taking

into account also leptin involvement in the general

metabolism with obvious consequences on the central

nervous system (CNS) metabolism and performance.

As a matter of fact, a disturbed dual relationship

between leptin and cortisol has been detected in Alz-

heimer’s patients [149], a weight loss associated to

inappropriate leptin levels [150], or more related to

gender dimorphism [151] probably due to the fact that

the disease was already acclaimed at the leptin evalu-

ation moments [152]; while, in some cases, the change

in eating behaviour could be significantly more com-

mon in the frontotemporal dementia than in Alzhei-

mer’s disease [153] or weight loss despite an increased

intake of calories [154].

Ghrelin

Ghrelin, the endogenous ligand of growth hormone

secretagogue (GHS) receptors, is gut hormone and

neuropeptide, recognized for several years to influence

pituitary hormone secretion, appetite, body weight,

metabolism, and gastrointestinal, cardiovascular and

immune systems, functions with a grossly direct and

inverse relationship to adiponectin and leptin, respec-

tively [155–160]. By looking at how ghrelin binds to

parts of the brain that regulate food intake such as

hippocampus, it has been found that it also binds to

other parts like the pyramidal neuron of layer V in the

sensorimotor area of cerebral cortex, in the cingulate

gyrus, as well as in the neurons of lateral, paraven-

tricular, and arcuate nuclei hypothalamus [161]. In

Alzheimer’s, the hippocampus is the area that shows

the most atrophy. It has also to be underlined the link

between Alzheimer’s disease, as described elsewhere,

and obesity, and insulin resistance and how obesity

increases the progression of dementia, like in Alzhei-

mer’s disease. Ghrelin binding is also present in other
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brain areas, including the telencephalon. Very recently

it has been reported that circulating ghrelin going

through the blood–brain barrier enters the hippocam-

pus, and binding to neurons of the hippocampal for-

mation promotes dendritic spine synapses formation

and generation of long-term potentiation [162]. Ghre-

lin is highest in the circulation during the day and when

the stomach is empty, these results also indicate that

brain activity may be most effective before meal-time.

The ghrelin-induced synaptic changes are paralleled by

enhanced spatial learning and memory. Targeted dis-

ruption of the gene that encodes ghrelin results in

decreased numbers of spine synapses in the CA1

region and impaired performance of mice in behavio-

ural memory testing, both of which rapidly reversed by

ghrelin administration [163]. Those observations dis-

close an endogenous/complex function of ghrelin

linking once again metabolic activity controls with

higher brain functions which when disrupted could

disclose Alzheomer’s disease (-like symptoms).

Adiponectin

Adiponectin is, with (an inverse function compared to)

leptin, another important adipocyte hormone involved

in glucose and lipid metabolism generating a negative

energy balance by increasing energy expenditure.

Adiponectin, also known as Acrp30, is an adipose

tissue-derived hormone with anti-atherogenic, anti-

diabetic and insulin sensitizing properties [164–167]. In

mice, targeted deletion of the adiponectin gene leads

to insulin resistance [168, 169]. In addition, adminis-

tration by continuous systemic infusion of adiponectin

significantly increases insulin sensitivity in type 2 dia-

betic mice [170]. In humans, a reduced serum concen-

tration of adiponectin has been shown to correlate with

obesity [171], insulin resistance [171, 172] and type 2

diabetes [172–174]. Collectively, these findings suggest

that adiponectin not only has an essential function in

regulating whole-body energy homeostasis, but also it

could strongly counteract the most of the risk factors

for sporadic Alzheimer’s disease such as insulin resis-

tance, diabetes, obesity, vascular injury, atherosclero-

sis, and, more in general the metabolic syndrome. It is

possible that adiponectin’s protective effects could be

played mostly indirectly due to the fact that neither

radiolabelled nonglycosylated nor glycosylated globu-

lar adiponectin crosses the blood–brain barrier in mice;

and, in addition, adiponectin is not detectable in

human cerebrospinal fluid using various established

methods. Interestingly, it has been shown adiponectin

receptors expression in brain endothelium, upregulated

during fasting [175]. The above phenomena might

account for a further adiponectin (indirect) regulatory

mechanism on brain metabolism-activity; regulatory

mechanism probably affected in Alzheimer’s disease.

In this sense, it is noticeable that treatment with

adiponectin reduces secretion of the centrally active

interleukin-6 (IL-6) [176] in the above brain endothe-

lial cells, phenomenon paralleled by a similar trend of

other proinflammatory cytokines. It is remarkable that

IL-6, and proinflammatory cytokines, has not only

been involved in immune dysfunction but also in Alz-

heimer’s disease pathogenesis [176].

Conclusions

In the ‘80s John P. Blass, by focusing his attention by a

metabolic approach to the neurodegenerative diseases,

made a cultural/scientific revolution in the under-

standing of Alzheimer’s disease. Only nowadays such

an approach is reaching the critical mass useful for

lightening a real revolution in the understanding the

physiopathology of Alzheimer’s disease for an effica-

cious therapy which until now has been examined

through the residual phenotype represented by a

damaged brain.
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