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Abstract Studies have demonstrated that oxidative stress

is associated with amphetamine-induced neurotoxicity,

but little is known about the adaptations of antioxidant

enzymes in the brain after amphetamine exposure. We

studied the effects of acute and chronic amphetamine

administration on superoxide dismutase (SOD) and cata-

lase (CAT) activity, in a rodent model of mania.

Male Wistar rats received either a single IP injection of

D-amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle

(acute treatment). In the chronic treatment rats received a

daily IP injection of either D-amphetamine (1 mg/kg, 2 mg/

kg, or 4 mg/kg) or vehicle for 7 days. Locomotor behavior

was assessed using the open field test. SOD and CAT

activities were measured in the prefrontal cortex, hippo-

campus, and striatum. Acute and to a greater extent chronic

amphetamine treatment increased locomotor behavior and

affected SOD and CAT activities in the prefrontal cortex,

hippocampus and striatum. Our findings suggest that

amphetamine exposure is associated with an imbalance

between SOD and CAT activity in the prefrontal cortex,

hippocampus and striatum.
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Introduction

There is an emerging body of data indicating that major

neuropsychiatric disorders, such as bipolar disorder (BD)

and schizophrenia, are associated with increased oxidative

stress and changes in antioxidant enzymatic defense [1–

3]. A recent genetic study found that BD was significantly

associated with a single-nucleotide polymorphism in the

TRPM2 gene, which is involved in intracellular calcium

homeostasis in response to oxidative stress [4]. In addi-

tion, chronic administration of lithium and valproate

(first-line mood stabilizers) demonstrated robust antioxi-

dant properties against glutamate-induced oxidative stress

in vitro [5].

It has long been recognized that the administration of

dopaminergic drugs induces manic symptoms in individuals

with BD [6, 7]. Further, the use of amphetamine in healthy

volunteers induced manic symptoms, such as enhanced

mood, racing thoughts, high energy and restlessness [8].

Considering the difficulty of modeling the highly complex

mood swinging nature of BD, the psychostimulant-induced
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S. S. Valvassori Æ G. Z. Réus Æ M. R. Martins Æ J. Quevedo (&)
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88806-000 Criciúma, SC, Brazil

e-mail: quevedo1@terra.com.br

F. C. Petronilho Æ K. Bardini Æ F. Dal-Pizzol
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hyperactivity is the best established animal model of mania

[9–11]. We have recently found that longer administration

of amphetamine was associated with increased protein and

lipid oxidative damage in rat brain [12]. As an extension of

this latter study, we assessed the effects of acute and chronic

amphetamine administration on superoxide dismutase and

catalase activity (two major antioxidant enzymes) in a

rodent model of mania.

Experimental procedure

Adult male Wistar rats, obtained from our breeding colony,

were maintained on a 12-h light/dark cycle, with free

access to food and water. All experimental procedures

involving animals were performed in accordance with the

NIH Guide for the Care and Use of Laboratory Animals

and the Brazilian Society for Neuroscience and Behavior

(SBNeC) recommendations for animal care. Rats received

1 mg/kg, 2 mg/kg, or 4 mg/kg IP injections of D-amphet-

amine (Sigma, St Louis, USA) either as an acute treatment

(single injection) or chronic treatment (once daily injection

for 7 days). Locomotor activity was measured 2 h after the

last injection, and the rats were sacrificed by decapitation

right after the behavioral experiment. The prefrontal cor-

tex, hippocampus and striatum were dissected, rapidly

frozen, and stored at )80�C until assayed.

Locomotor activity was assessed using the open-field

task. This task was carried out in 40 · 60 cm open field

surrounded by 50 cm high walls made of brown plywood

with a frontal glass wall. The floor of the open field was

divided into 12 equal rectangles by black lines. The ani-

mals were gently placed on the left rear rectangle, and

allowed to explore the arena. Crossings of the black lines

and rearings performed were counted for 5 min. To

determine CAT activity, the brain tissue was sonicated in

50 mM phosphate buffer and the resulting suspension was

centrifuged at 3,000g for 10 min. The supernatant was used

for enzyme assay. CAT activity was measured by the rate

of decrease in hydrogen peroxide absorbance at 240 nm

[13]. SOD activity was assayed by measuring the inhibition

of adrenaline auto-oxidation, as previously described [14].

Differences among groups were performed using one-way

ANOVA and multiple comparisons were performed by a

Newman-Keuls test. Behavioral data are presented as

mean – SEM. and biochemical data are presented as

mean – SD. In all comparisons, P < 0.05 was considered

to indicate statistical significance.

Results

As expected, both acute and repeated amphetamine

administration significantly increased locomotor activity

(Figs. 1, 2). Figures 3 and 4 illustrate that a single

amphetamine injection increased SOD activity in the pre-

frontal cortex, whereas repeated amphetamine exposure

increased SOD activity in the hippocampus and decreased

striatal SOD activity. No effects on CAT activity were

observed after a single amphetamine injection in any brain

region (Fig. 5). Repeated amphetamine administration in-

creased CAT activity in the prefrontal cortex and decreased

striatal CAT activity (Fig. 6). Higher amphetamine dosage

(4 mg/kg) increased CAT activity, whereas a lower dosage

(2 mg/kg) decreased CAT activity in the hippocampus

after repeated amphetamine exposure.
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Discussion

In the present study, we demonstrated that acute and, to a

greater extent, repeated amphetamine exposure modified

SOD and CAT activities in the prefrontal cortex, hippo-

campus and striatum. Using the same animal model, we

have recently reported that repeated amphetamine admin-

istration increased oxidative stress in a greater extent than

single amphetamine use [12]. SOD acts by metabolizing

the excess of superoxide anion (O2
Æ)) generation and by

producing hydrogen peroxide (H2O2). CAT metabolizes

the excess of H2O2 producing O2 + H2O, thereby

decreasing the intracellular redox status. The brain is par-

ticularly prone to oxidative damage due to its relative high

content of peroxidizable fatty acids and limited antioxidant

capacity [15]. Previous studies have demonstrated that

alterations on the redox state can lead to an imbalance

between SOD and CAT activities and to oxidative stress

[16, 17]. In situations which SOD levels are increased

without a concomitant CAT increase, the intermediate

product H2O2 may accumulate and generate hydroxyl

radicals, which may lead to lipid and protein oxidation

(damage).

Even though there is compelling data indicating that

oxidative stress plays a major role in amphetamine-induced

neurotoxicity [18, 19], there is a paucity of data assessing

the effects of amphetamine on antioxidant enzymes. In a

model of neurotoxicity (4 · 10 mg/kg), Jayanthi et al. [20]

found that methamphetamine exposure decreased SOD

activity in the frontal cortex and decreased CAT activity in

the striatum of CD-1 mice. Using a different model

(20 mg/kg for 14 days), Carvalho et al. [21] showed that

amphetamine decreased SOD activity in the striatum and

increased CAT activity in the prefrontal cortex of Wistar

rats. On the other hand, D’Almeida et al. [22] found no

changes in SOD and CAT activity after chronic metham-

phetamine treatment (2.5 mg/kg for 5 months) in Wistar

rats. The profound methodological differences between

studies make it difficult to draw conclusions, and therefore

further studies are necessary to clarify the importance

of these antioxidant changes. Interestingly, it has been

reported that the dopamine D2 receptor agonist ropinirole

protected mouse striatal neurons against 6-hydroxydop-

amine (6-OHDA) toxicity, by increasing SOD, CAT, and

glutathione activity [23], whereas the dopamine agonist

cabergoline demonstrated robust antioxidant effects against

6-OHDA-neurotoxicity [24]. In addition, the stimulation of

D2 presynaptic autoreceptors may exert neuroprotective

effects by a negative feedback mechanism, reducing the

release of dopamine for oxidation by monoamine oxidase

[25]. Studies assessing the effect of D2 blockers on

amphetamine-induced oxidative stress would help to

increase our knowledge on the dopamine-mediated neuro-

protection and neurotoxicity.

Acute and chronic amphetamine exposure modulated

SOD and CAT activity with a distinct pattern for each brain

region and dosage regimen. These findings may explain, in

part, why different areas of the brain are differentially

susceptible to the toxic effects of amphetamine [26, 27].

One reason for these discrepancies may be fact the basal
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activities of various antioxidant enzymes, such as SOD,

CAT, glutathione reductase, glutathione peroxidase, and

glutathione-S-transferase are highly variable across brain

regions [21]. It has been recently demonstrated that

amphetamine regulates the expression of SOD mRNA via

c-fos/c-jun activation in the hypothalamus [28]. Although

speculative, it is possible that the regulation of antioxi-

dant’s gene expression by amphetamine in other brain

regions may be relevant to the differences observed. Future

studies addressing the genes regulated by amphetamine

exposure may help us clarify this issue.

We also found that during acute treatment, 4 mg/kg of

amphetamine increased the locomotor behavior to a lesser

extent than 2 mg/kg. During chronic treatment all of the

dosages induced the same level of locomotor activation.

This is in line with previous reports showing that the

locomotor activity after acute amphetamine challenge

reduces with increasing dosage, due to the emergence of

stereotypic behavior [29, 30]. In conclusion, our findings

suggest that acute and, to a greater extent, chronic

amphetamine administrations are associated with an

imbalance between SOD and CAT activities. This is pos-

sibly due to changes in the intracellular redox state, in the

prefrontal cortex, hippocampus, and striatum. Such an

imbalance may increase the predisposition to the genera-

tion of free radicals and therefore increase the suscepti-

bility to oxidative damage. Given the recent evidence that

oxidative stress may play a role in the pathophysiology of

BD [1–4], this animal model may be a useful tool to further

test the molecular underpinnings underlying amphetamine-

induced oxidative stress.
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