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Abstract Anatoxin-a is an important neurotoxin that acts

a potent nicotinic acetylcholine receptor agonist. This

characteristic makes anatoxin-a an important tool for the

study of nicotinic receptors. Anatoxin-a has been used

extensively in vitro experiments, however anatoxin-a has

never been studied by in vivo microdialysis studies. This

study test the effect of anatoxin-a on striatal in vivo

dopamine release by microdialysis.The results of this work

show that anatoxin-a evoked dopamine release in a con-

centration-dependent way. Atropine had not any effect on

dopamine release evoked by 3.5 mM anatoxin-a. However,

perfusion of nicotinic antagonists mecamylamine and a-

bungarotoxin induced a total inhibition of the striatal

dopamine release. Perfusion of a7*-receptors antagonists,

metillycaconitine or a-bungarotoxin, partially inhibits the

release of dopamine stimulated by anatoxin-a. These

results show that anatoxin-a can be used as an important

nicotinic agonist in the study of nicotinic receptor by

in vivo microdialysis technique and also support further in

vivo evidences that a7*nicotinic AChRs are implicated in

the regulation of striatal dopamine release.
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Introduction

Anatoxin-a is a low molecular weight alkaloid (165 Da)

neurotoxin produced by some toxigenic strains of cyano-

bacteria, principally Anabaena and Oscillatoria genera.

This toxin is responsible for the death of livestock, pets and

wildlife and it has also been implicated in cases of human

illness [1]. Typical symptoms in animals include muscle

fasciculation, gasping and convulsion, with death due to

respiratory arrest within minutes after drinking contami-

nated water. This toxin is perhaps one of the most toxic of

the cyanobacterial toxins [2, 3].

Anatoxin-a acts as a potent agonist on nicotinic acetyl-

choline receptors in the central and peripheral nervous

system and in the neuromuscular junction [4, 5]. In fact,

anatoxin-a has been observed to be more potent agonist than

the typical nicotinic agonist, nicotine, and the endogenous

agonist, acetylcholine [5–7]. Moreover, this toxin is a sec-

ondary amine, not an ester, being resistant to enzymatic

hydrolysis. These properties make it an useful natural tool

in the study of neuronal nicotinic receptors [8, 9].

Functional nicotinic receptors exist as heteromeric

complexes, comprised of a (a2–a6) and b (b2–b4) subunits,

or homomeric complexes, comprised of a (a7–a9) subunits

[10]. However, a few subtypes of nicotinic receptors pre-

dominate, notably a4b2* and a7* (* denote the potential

presence of additional subunits) subtypes are widespread in

the vertebrate central nervous system [11–13].
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A large body of evidence indicates that neuronal nico-

tinic receptors are present at presynaptic locations of the

central nervous system, where they modulate the neuro-

transmitter release [14–16].

Anatoxin-a has been used extensively in vitro experi-

ments (slices and synaptosomes) in order to identify the

nicotinic receptors subtypes involved in neurotransmitters

release: noradrenaline, acetylcholine or dopamine from

hippocampus [17–20], acetylcholine from neocortex [21],

glutamate from striatum [22] or noradrenaline from thala-

mus or frontal cortex [23].

However, anatoxin-a has been characterized, mainly,

with respect to dopamine release from striatum, [18, 24–

29], where there are a dense dopaminergic and cholinergic

innervations [30–32].

In slices and synaptosomes from striatum, anatoxin-a

induced [3H]dopamine release in a concentration-depen-

dent way, and this effect was blocked by mecamylamine

(MEC), showing that anatoxin-a elicit the [3H]dopamine

release by interaction with nicotinic receptors [25–27].

Slices retain local anatomical integrity, enabling to

observe neuronal interactions. However, synaptosomes

represents isolated nerve terminals and provide a model

for studying presynaptic receptors. With the aim to

compare nicotinic receptors-evoked [3H]dopamine release

from rat striatal synaptosomes and slice preparations, the

effect of anatoxin-a was observed in both kinds of

neuronal preparations. It was observed that in slices, but

not in synaptosomes, the [3H]dopamine release induced

by anatoxin-a was partially blocked by a7*-selective

nicotinic receptors antagonists, a-bungarotoxin (a-bgt) or

methyllycaconitine (MLA), suggesting that a7* nicotinic

receptors are not present on dopaminergic terminals but

they induce an indirect modulation of striatal [3H]dopa-

mine release.

These results show that the anatomical integrity of the

preparations (slices and synaptosomes) play an important

role in the evaluation of a7*receptors-mediated dopamine

release.

However, to date, there are not studies using in vivo

microdialysis technique about the striatal dopamine

release and the involvement of a7* nicotinic receptor

using anatoxin-a as nicotinic agonist. This technique let to

see the effects of all neuronal interactions and therefore to

achieve more physiological results rather in vitro prepa-

rations.

The purpose of the current study was to explore using in

vivo microdialysis technique the effects of anatoxin-a on

the dopaminergic neuronal system in the striatum of con-

scious and freely moving rats and try to test the involve-

ment of a7* nicotinic receptors observed in slices

experiments.

Methods

Animals

Female Sprague–Dawley rats (250–300 g) were used for

all experiments. Rats were housed in plastic cages under

controlled temperature conditions (22 � 2�C) and light/

dark cycles (14 h/10 h) with free access to food and water.

The experiments were performed according to the Guide-

lines of the European Union Council (86/609/EU) on the

use of laboratory animals.

Chemicals

Anatoxin-a and MLA were purchased from Tocris (USA);

MEC, atropine and a-bgt were acquired from Sigma, St

Louis (USA). All other chemicals and reagents were of

analytical grade.

Microdialysis procedure

Surgical and perfusion procedures were performed

according to previous studies [33]. Briefly, rats were an-

aesthetized (i.p.) with chloral hydrate (400 mg kg)1) and

placed in a stereotaxic apparatus Narishige SR-6) for the

implantation of a guide-cannula. The coordinates for guide-

cannula implantation above the striatum were 1 mm A/P,

+3 mm L/M and +6 mm D/V, according to the rat brain

atlas of Paxinos and Watson [34]. The skull was exposed,

and a small hole was drilled in the skull over the left

striatum. A guide-cannula was lowered into the brain and

fixed to the cranium with miniature screws and acrylic

dental cement and the incision was closed with sutures.

Surgery was performed using sterile instruments and

aseptic conditions.

The experiments were carried out 24 h after implanta-

tion of the guide-cannula. A microdialysis probe (CMA/

Microdialysis, Sweden) with a 3 mm membrane length was

inserted through the guide-cannula into the striatum.

Continuous perfusion was performed with a Ringer’s

solution (147 mM NaCl, 4 mM KCl, 3.4 mM CaCl2; pH

7.4) using a CMA/102 infusion pump (CMA/Microdialy-

sis, Sweden).

Microdialysis samples were collected every 20 min by

means of a CMA/142 microsampler (CMA/Microdialysis,

Sweden) in order to quantify dopamine, dihydroxyphenil-

acetic acid (DOPAC) and homovanillic acid (HVA).

All experiments were made with awake, conscious and

freely-moving rats.

At the end of experiments, animals were killed with an

overdose of anaesthetic and brains were removed and fixed

for subsequent sectioning in order to determine the location
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of the microdialysis probe (Fig. 1). Placements were eval-

uated according to the atlas of Paxinos and Watson [34].

Only data from animals with correct probe placements in

striatum were used.

Drug treatment

Initial studies were conducted to determinate the optimum

concentration for the antagonist for these studies. Con-

centrations of antagonists selected (MEC, 1.75 mM; a-bgt,

40 lM; atropine, 3.5 mM; or MLA, 3.5 mM) did not affect

the basal dopamine release from striatum (see Results).

Higher concentrations could not be used because per se

changed the basal levels of dopamine (data not shown).

The concentration of antagonists selected was also higher

than the concentrations used in other microdialysis studies

[35–43].

All drugs used were dissolved in the perfusion fluid and

administered locally into the striatum through the micro-

dialysis probe. Dialysates were collected every 20 min and

after four basal samples (80 min) the drugs were admin-

istered. Anatoxin-a was infused at different concentrations

(1, 2, 3.5 and 7 mM) during 20 min at a flow rate of

1.5 ll min)1. After this, the perfusate was switched back to

the unmodified perfusion medium and the infusion con-

tinued in the absence of anatoxin-a for 150 min.

In other experimental groups, 1.75 mM MEC, 3.5 mM

MLA and 3.5 mM atropine, were administered for 40 min,

(20 min before anatoxin-a administration and 20 min to-

gether with 3.5 mM anatoxin-a, in the same microdialysis

solution) at a flow rate of 1.5 ll min)1.

Because the relatively high molecular weight of a-bgt

limits its diffusion through the microdialysis membrane, it

was directly injected into the striatum. Before anatoxin-a

administration, 4 ll of a-bgt 40 lM was injected into the

striatum (0.4 ll min)1 for 10 min). Higher flows were not

tested in order to prevent neuronal damage by direct

administration. Similar administration was used in previous

microdialysis studies [35].

In another experiment, MEC and a-bgt were infused

with anatoxin-a. MEC was administered for 40 min

(20 min before anatoxin-a administration and 20 min with

anatoxin-a 3.5 mM) at a flow rate of 1.5 ll min)1, and a-

bgt 40 lM (0.4 ll min)1 for 10 min) was directly injected

into the striatum before of anatoxin-a and MEC

co-administration.

Assay of dopamine and metabolites

The samples obtained from the microdialysis procedure

(30 ll) were used to quantify the levels of dopamine and

metabolites using High-Performance Liquid Chromatog-

raphy (HPLC) with electrochemical detection [44]. The

mobile phase contained 70 mM KH2PO4, 1 mM octane-

sulfonic acid, 1 mM EDTA, and 10% methanol. Dialysates

were injected into a Hewlett-Packard Series 1050 Liquid

Chromatograph, using a Rheodyne 7125 injection valve.

Compounds were separated on a Phenomenex reverse-

phase column type nucleosil 5 l C18. Elution was carried

out at a flow rate of 1.8 ml min)1. The dopamine and

metabolites detection was achieved using an ESA Coulo-

chem 5100 electrochemical detector at a potential of

Fig. 1 Histological

presentation of the

microdialysis probe location in

the rat striatum, following

coordinates with respect to

bregma, A/P +1 mm; M/L

+3 mm, D/V +6 mm, according

to Paxinos and Watson (1986).

The arrow mark the probe tract
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+400 mV. The retention times of dopamine and its

metabolites were as follows: dopamine 8 min, DOPAC

12 min and HVA 15 min.

In vitro recoveries of dopamine, metabolites

and anatoxin-a

The determination of the diffusion rate of dopamine, DO-

PAC and HVA across the dialysis membrane was carried

out in vitro. So, the dialysis probe was placed in an stan-

dard solution of dopamine and metabolites (50 pg ll)1)

and flushed with Ringer at the same flow as in vivo con-

ditions (1.5 ll min)1 for 20 min). Levels of dopamine and

metabolites in the dialysates were determined by HPLC.

Recoveries were calculated from the concentration of

substance in the perfusion fluid divided by its concentration

in the standard solution. The recoveries of dopamine,

DOPAC and HVA were over 16 � 0.18%, 19 � 0.24% and

21 � 0.15%, respectively. All values of extracellular

dopamine and metabolites were corrected using these

recoveries.

The diffusion rate of anatoxin-a through the microdial-

ysis probe was also estimated in vitro. In this case, the

anatoxin-a was dissolved in Ringer solution and it was

perfused through the dialysis probe. It was placed in an

Eppendorf tube containing 1 ml of Ringer solution. The

flow rate was the same as used in the experiments with

freely-moving rats (1.5 ll min)1). Under these conditions,

the diffusion rate of anatoxin-a across the microdialysis

membrane was 0.5 � 0.08 % for 20 min. In this case,

samples of anatoxin-a were measured by HPLC using flu-

orescence detection [45]. Therefore, perfusion of 3.5 mM

anatoxin-a during 20 min, suggest that 5.15 � 0.3 nmoles

of anatoxin-a are administered in the striatum.

Expression of results and statistics

The results are shown as the mean � S.E.M. respect to the

basal levels, for 5–6 animals per group, except in the

3.5 mM anatoxin-a experimental group formed by 20

animals. The average concentrations of three stable sam-

ples before drugs administration were considered as the

basal levels. These basal levels were taken as 100% in

order to compare the different response of dopamine and

metabolites after drug administration.

Statistical evaluation of the results was performed by

means of ANOVA and Student–Newman–Keuls multiple

range test, considering the following significant differences:

*P < 0.05, **P < 0.01, ***P < 0.001, respect to the basal

and a P < 0.01 and b P < 0.05 with respect to anatoxin-a

administration.

Results

The basal striatal dopamine, DOPAC and HVA contents

were 0.15 � 0.4, 13 � 1.1 and 4 � 0.87 ng 20 ll)1 of

sample, respectively.

Effect of different doses of anatoxin-a on basal striatal

dopamine release

Anatoxin-a (1 mM) had not significant effects on striatal

dopamine levels. Perfusion of 2 mM anatoxin-a during

20 min evoked an increase in striatal dopamine levels of

225 � 15%. The maximum increase of dopamine was ob-

tained 20 min after anatoxin-a administration and dopa-

mine returned to the basal levels at 60 min. The perfusion

of 7 and 3.5 mM doses of anatoxin-a for 20 min increased

the dopamine levels to 1440 � 45% and 632 � 51%,

respectively. The maximum increase was obtained 40 min

after anatoxin-a administration and dopamine returned to

the basal at 80 min.

Intraestriatal infusion of anatoxin-a through the dialysis

probe evoked increases in extracellular dopamine levels in

a concentration-dependent way (Fig. 2).

No notable behavioural activation was observed during

or after anatoxin-a perfusion.
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Fig. 2 Effects of intraestrial perfusion of different concentrations of

anatoxin-a (AnTx-a) (1, 2, 3.5 and 7 mM) on dopamine (DA)

extracellular levels from rat striatum. Arrow denotes the infusion of

anatoxin-a during 20 min. The results are shown as means � S.E.M.

of 5–6 experiments with the doses of 1, 2, and 7 mM; and 20 animals

per group for dose of 3.5 mM expressed as a percentage of the basal

levels (100%). Basal levels were considered as the mean of dopamine

concentration in the three samples collected before toxin administra-

tion. Significant differences: *P < 0.05, **P < 0.01, and ***P < 0.001

in respect to the basal levels. Statistical evaluation of the results was

performed by means of ANOVA and Student–Newman–Keuls

multiple range test

494 Neurochem Res (2006) 31:491–501

123



The perfusion of the four doses of anatoxin-a had no

effect on dopamine metabolites, DOPAC and HVA. These

are low at the beginning of every experiment, and then

increase until stabilization, but there are no changes due to

the anatoxin-a. These effects were similar to that induced

by perfusion of Ringer medium alone (Fig. 3a and 3b).

Because that higher doses of anatoxin-a (7, and 3.5) mM

induced significant increased of dopamine release, we se-

lect the dose of 3.5 mM as a control group (n=20) to ob-

serve the effects of the different treatments on dopamine

release induced by the toxin (Figs. 2, 4–8).

Effect of MEC on dopamine release stimulated

by anatoxin-a

In order to test if striatal dopamine release induced by

anatoxin-a is mediated by interaction with nicotinic

receptors, the effect of anatoxin-a was studied in presence

of MEC, a non-competitive nicotinic receptor antagonist

[46]. About 1.75 mM MEC was administered as a control

for 40 min, and no modification of dopamine basal levels

was observed. The perfusion of anatoxin-a and MEC to-

gether decreased the dopamine release stimulated by ana-

toxin-a. In this case, the dopamine release was 196 � 34%,

being this increase 69% less than that observed with ana-

toxin-a alone (Fig. 4). These results show that anatoxin-a

acts through nicotinic receptors evoking dopamine release.

Effect of atropine on dopamine release evoked

by anatoxin-a

To investigate the possible interaction of muscarinic

receptor on dopamine release evoked by anatoxin-a, the

effect of anatoxin-a was studied in the presence of atropine,

a muscarinic receptor antagonist. Infusion of 3.5 mM

atropine for 40 min produced not significant effect on

dopamine levels in striatum. Coinfusion of anatoxin-a and
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Fig. 3 Effects of intraestrial perfusion of different concentrations of

anatoxin-a (AnTx-a) (1, 2, 3.5 and 7 mM) on (a) DOPAC and (b)

HVA extracellular levels from rats striatum. Arrow denotes the

infusion of anatoxin-a during 20 min. The results are presented as

means � S.E.M., expressed as a percentage of the basal levels

(100%). Basal levels were considered as the mean of substance

concentration in the three samples collected before anatoxin-a

administration. Statistical evaluation of the results was performed

by means of ANOVA and Student–Newman–Keuls multiple range

test
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Fig. 4 Effects of MEC on anatoxin-a (AnTx-a) induced dialysate

dopamine (DA) content in rat striatum. Anatoxin-a infusion started at

the time indicated by the arrows over 20 min, and infusion of MEC

was indicated by the black bar (40 min). The results are presented as

means � S.E.M., expressed as a percentage of the basal levels

(100%). Basal levels were considered as the mean of dopamine

concentrations in the three samples collected before anatoxin-a

administration. Significant differences: *P < 0.05, **P < 0.01, respect

to the basal levels and a P < 0.01, b P < 0.05 respect of the anatoxin-a

alone administration. Statistical evaluation of the results was

performed by means of ANOVA and Student–Newman–Keuls

multiple range test
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atropine increased extracellular dopamine levels, with a

maximum value reaching 512 � 57%, 40 min after the

treatment, and dopamine returned to the basal levels in

60 min. This effect was significantly similar to that

obtained with anatoxin-a alone (Fig. 5).

Effect of MEC and a-bgt on dopamine release

stimulated by anatoxin-a

In this experiment we observed the effect of anatoxin-a in

presence of MEC and a selective a7*-receptor antagonist,

a-bgt [47]. Perfusion of 1.75 mM MEC and 40 lM a-bgt

not induce increase of striatal dopamine release. When

3.5 mM anatoxin-a was administrated in presence of MEC

and a-bgt no significant effects respect to the basal levels

were observed (Fig. 6).

The total inhibition of dopamine release by MEC and a-

bgt show that effect of anatoxin-a is only mediated through

interaction with nicotinic receptors.

Effect of MLA on dopamine release stimulated

by anatoxin-a

To investigate if the a7* receptors could be implicated in

the dopamine release induced by anatoxin-a, we infused

MLA, a selective nicotinic a7*-receptor antagonist [12],

through the microdialysis probe. Intrastrial infusion of

3.5 mM MLA for 40 min had not significant effects on

striatal dopamine levels. When anatoxin-a and MLA were

administered, the dopamine release was 260 � 49%, re-

spect to the basal levels (Fig. 7). This increase in extra-

cellular dopamine levels was 58% smaller than that

observed with anatoxin-a alone, showing the participation

of a7* receptors on the effects of anatoxin-a on striatal

dopamine release.

Effect of a-bgt on dopamine release evoked

by anatoxin-a

To confirm the involvement of a7*-selective nicotinic

receptors on dopamine release induced by anatoxin-a, a-bgt

was infused together with anatoxin-a. Injection 40 lM a-

bgt into the striatum had no significant effects on dopamine

basal levels. Infusion of anatoxin-a in a-bgt pretreated

animals increased dopamine levels to 311 � 35% over the

basal (Fig. 8). In this case, the increase of dopamine levels

was 49% smaller than that observed with anatoxin-a alone.

Metabolites of dopamine

The effect of the different treatments (MEC, MLA, a-bgt

and atropine) on the dopamine metabolite levels, DOPAC
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alone administration. Statistical evaluation of the results was

performed by means of ANOVA and Student–Newman–Keuls

multiple range test
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and HVA, were similar to that observed with the different

doses of anatoxin-a alone (results not shown).

Discussion

The presence of nicotinic acetylcholine receptors in pre-

synaptic terminals in the central nervous system is well

established and it is believed that modulatory actions by

stimulating transmitter release or by enhancing synaptic

efficacy are considered to constitute a major role of neu-

ronal nicotinic acetylcholine receptors [16]. Nicotinic

receptors are implicated in the presynaptic modulation of

neurotransmitters release, including glutamate, GABA,

norepinephrine, dopamine and acetylcholine in different

brain areas [16, 48]. However, the most studied example of

presynaptic nicotine modulation is the release of dopamine

from striatum [49–53].

Striatum has a dense local innervations from cholinergic

interneurones that closely interacts with dopaminergic

projections [32], principally from the substantia nigra

(nigrostriatal pathway). Distinct subtypes of nicotinic

receptors modulate the release dopamine in the striatum,

and the identification of nicotinic receptors subtypes in-

volved in this process has been extensively studied [54].

Different nicotinic agonist have been used widely in the

study of function of nicotinic receptors subtypes involved

in the striatal dopamine release, such as nicotine, lobeline,

cytisine or epibadidine, as studied in vitro using striatal

slices [55–58] or synaptosomes [59–62] and in vivo mic-

rodialysis [57, 63–66]. Anatoxin-a, in the same way than

those nicotinic agonists, has been used extensively in the

study of nicotinic receptors-involvement on dopamine

release from striatum using in vitro studies (slices and

synaptosomes). However, to date, anatoxin-a, has never

been used by in vivo microdialysis in the study of nicotinic

receptors.

In the present study, we have investigated using in vivo

microdialysis technique the effects of anatoxin-a on striatal

dopamine release and we tried to compare these in vivo

results with the effects of anatoxin-a observed in some in

vitro experiments.

Under our experimental conditions, when anatoxin-a

was administered through the microdialysis probe, it

evoked a concentration-dependent increase in dopamine

output in striatum. That anatoxin-a elicited extracellular

dopamine release by interacting with nicotinic receptors

was established by the ability of MEC to partially block the

response of the toxin.

These results are consistent with previous in vitro

experiments about the effect of anatoxin-a on [3H]dopa-
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mine release. Using striatal slices and synaptosomes loaded

with [3H]dopamine, anatoxin-a evoked [3H]dopamine re-

lease in a concentration-dependent and mecamylamine-

sensitive way [25, 26, 29]. Also, similar findings using

nicotine, lobeline or epibatidine were observed by in vivo

microdialysis studies from striatum [37, 65, 67].

Our in vivo results, concentration-dependent and mec-

amylamine-sensitive, demonstrate that anatoxin-a evoke

the dopamine release in the terminal fields of the nigroe-

striatal pathway, being consistent with the presynaptic

nicotinic modulation of dopamine, established preparations

in vitro [16, 25, 26, 29].

In all experiments, extracellular levels of metabolites

DOPAC and HVA were not changed after treatment with

anatoxin-a or nicotinic antagonists. The lack of effect of

anatoxin-a on metabolites levels could indicate that ana-

toxin-a does not interfere in the processes of reuptake and/

or metabolism of dopamine. These results agree with pre-

vious in vivo studies made with nicotine [37].

To support that dopamine release induced by anatoxin-a

was of neuronal origin, in previous studies (under sub-

mission), we observed that this effect was blocked by

tetrodotoxin and free-calcium medium, being consistent

with the exocytotic dopamine release observed in synap-

tosomes studies [25, 27].

The dopamine release induced by anatoxin-a was not

completely blocked by MEC. This observation may indi-

cate that anatoxin-a could also act on non-nicotinic

receptors such as muscarinic receptors, inducing dopamine

release or, that MEC dose used, was not enough to block all

nicotinic receptors. It was observed that a7* nicotinic

receptors are somewhat less sensitive to MEC than a/b
receptors, requiring higher concentrations for full blockade

of them [68].

Because muscarinic receptors are implicated in striatal

dopamine release observed in some microdialysis experi-

ments [69, 70], we decided to investigate weather the

muscarinic receptors had any mediation, directly or indi-

rectly, on anatoxin-a actions. Perfusion of atropine, a

general antagonist of muscarinic receptors, had not any

effect on dopamine release evoked by anatoxin-a, sug-

gesting that muscarinic receptors are not involved in this

response.

Perfusion of MEC and the selective a7* receptor

antagonist a-bgt induced a total inhibition. These results

confirm that the effect of anatoxin-a is only mediated

through activation of nicotinic receptors and also show the

participation of a/b and a7*-receptors.

As mentioned in the in the introduction, it was observed

that [3H]dopamine release induced by anatoxin-a was

blocked by a7*-receptors antagonist (MLA or a-bgt) in

slices but not in synaptosomes, showing that evaluation of

a7*-receptors on striatal dopamine release is only possible

in preparations which preserve some of the anatomical

integrity, such as slices preparations [25]. In vivo micro-

dialysis represent more anatomical integrity than in slices,

and we can observe the effect of anatoxin-a on all neuronal

striatum system.

In similar way that in slices and synaptosomes experi-

ments, we tested the effect of two a7*-selective nicotinic

antagonists, MLA and a-bgt, on dopamine release induced

by anatoxin-a. The results showed that MLA attenuated

59% of striatal dopamine release induced by anatoxin-a.

Therefore, this inhibition show the mediation of a7*-nic-

otinic receptors in the effect of anatoxin-a on striatal

dopamine release.

Investigations about the selective antagonist MLA on

a7* nicotinic receptors suggest that this toxin could interact

on dopamine neurons with other nicotinic subunits differ-

ent to a7 [71]. To confirm the mediation of a7* nicotinic

receptors in the effect of anatoxin-a on in vivo striatal

dopamine release, we used a-bgt as a more a7-selective

antagonist. The dopamine release induced by anatoxin-a

with a-bgt was 49% smaller than that induced by anatoxin-

a alone. In this case, the inhibition elicited by a-bgt was

smaller than that elicited by MLA, although we cannot

compare the inhibition percentage of the two antagonists

because their administration in the striatum was different

(see Methods).

The ability of both a7*-receptors antagonists to partially

inhibit the in vivo dopamine release stimulated by 3.5 mM

anatoxin-a confirm the involvement of a7* nicotinic

receptors, as it have been observed in slices from striatum

[25, 29]. Although the concentration of a7*-antagonist

used in these experiments would be enough to block the

receptors, we cannot to sure total blocked. However, to

demonstrate the participation of a7* nicotinic receptors on

dopamine release was the aim of this experiment, but not to

test the effects of total blockade of them.

Kaiser and Wonnacott [29] suggested a model about the

relationship between nicotinic receptors and presynaptic

boutons in the rat striatum. The model implies that non-a7*

nicotinic receptors on dopamine terminals stimulate

dopamine release; however, a7* receptors on striatal

glutamatergic nerve terminals elicit release of glutamate

which, in turn, acts on ionotropic glutamate receptors on

dopamine terminals, enhancing the dopamine release. This

explain why only in more integral preparations such as

slices or in our in vivo studies, it is possible to check the

indirect modulation of a7* receptors on striatal dopamine,

but not in synaptosomes.

In vivo studies in progress in our lab are investigating

the involvement of glutamatergic receptors on dopamine

release induced by anatoxin-a.

In a recent study, in slices with nicotine, it was observed

that a7* receptors did not appear to play a significant role
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in dopamine release from striatum [72]. A possible

explanation for this finding, could be that a7-subtype is not

very sensitive to nicotine, and the dose of nicotine used in

this study 10 lM, not enough to active a7* receptors [73,

74]. In synaptosomes studies, using anatoxin-a, it was also

demonstrated, that glutamatergic axon terminals posses

nicotinic receptor of the a7 subtype, able to mediate

enhancement of striatal glutamate release [22].

In the same work [22], it was observed that anatoxin-a

was much more potent at the a7* nicotinic receptor regu-

lating glutamate release (EC50=2.1 nM) than the non-a7*

nicotinic receptor mediating enhancement of dopamine

(EC50=110 nM) [26], showing that anatoxin-a could rep-

resent an important tool in the studio of a7* nicotinic

receptors.

In conclusion, our results show that anatoxin-a can be

used as an important nicotinic agonist in the study of nic-

otinic receptors by in vivo microdialysis technique. These

results also support further in vivo evidences that a/b and

a7*nicotinic AChRs are implicated in the striatal dopamine

release induced by anatoxin-a.
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