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Abstract
Time series forecasting is crucial in various domains, ranging from finance and economics
to weather prediction and supply chain management. Traditional statistical methods and
machine learning models have been widely used for this task. However, they often face lim-
itations in capturing complex temporal dependencies and handling multivariate time series
data. In recent years, deep learningmodels have emerged as a promising solution for overcom-
ing these limitations. This paper investigates how deep learning, specifically hybrid models,
can enhance time series forecasting and address the shortcomings of traditional approaches.
This dual capability handles intricate variable interdependencies and non-stationarities in
multivariate forecasting. Our results show that the hybrid models achieved lower error rates
and higher R2 values, signifying their superior predictive performance and generalization
capabilities. These architectures effectively extract spatial features and temporal dynamics
in multivariate time series by combining convolutional and recurrent modules. This study
evaluates deep learning models, specifically hybrid architectures, for multivariate time series
forecasting. On two real-world datasets - Traffic Volume and Air Quality - the TCN-BiLSTM
model achieved the best overall performance. For Traffic Volume, the TCN-BiLSTM model
achieved an R2 score of 0.976, and for Air Quality, it reached an R2 score of 0.94. These
results highlight the model’s effectiveness in leveraging the strengths of Temporal Convolu-
tional Networks (TCNs) for capturing multi-scale temporal patterns and Bidirectional Long
Short-TermMemory (BiLSTMs) for retaining contextual information, thereby enhancing the
accuracy of time series forecasting.
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1 Introduction

Time series refers to a set of data points that are collected at regular time intervals over periods
of time. Specifically, it is a sequence of observations recorded in successive time points that
may either be continuous or discrete. Time series can be found across many disciplines,
including meteorology [1, 2], econometrics [3, 4], energy consumption [5, 6], retail sales [7,
8], healthcare [9, 10], transportation [11, 12], and marketing [13, 14].
Time series can be classified into the following categories: univariate and multivariate. Uni-
variate time series involves the analysis of one single variable across multiple units of time
(e.g., daily stock prices). On the other hand, multivariate time series deals with various vari-
ables across different periods (e.g., temperature and air pressure over multiple locations) [15,
16]. Multivariate time series may be difficult to analyse due to the curse of dimensionality
and the difficulty in capturing the relationships among the data’s different features [17]. As a
result of these complex characteristics, accurate forecasting of multivariate time series is very
challenging [18]. Several methods for time series forecasting have been proposed [19–21],
including traditional statistical methods and deep learning models, have been proposed [22].
Traditional statistical methods such as linear Auto-Regressive Integrated Moving Average
(ARIMA) [23] andVector Auto-Regression (VAR) [24] have beenwidely used for time series
prediction, however, their performance is limited when dealing with high-dimensional and
non-linear data [25, 26]. However, in many real-world time series problems, the relationships
between the variables are non-linear, and the temporal dependencies can change over time.
Deep learning models, with their ability to automatically learn hierarchical representations
and capture complex patterns, have shown great potential in improving time series forecasting
accuracy [27–29]. Models like Recurrent Neural Networks (RNNs) [30, 31], Convolutional
Neural Networks (CNNs) [32, 33], and Temporal Convolutional Networks (TCNs) have been
widely applied in this context [34, 35].
While deep learning offers significant potential for multivariate time series forecasting, tradi-
tional architectures have inherent limitations that hinder their effectiveness.Notably, recurrent
neural networks (RNNs), despite their strength in sequence modeling, are susceptible to van-
ishing or exploding gradients during training [15]. This particularly affects LSTMs, which
can struggle to effectively capture the intricate interdependencies between multiple time
series variables, a critical element for accurate forecasting [36]. Furthermore, LSTMs, when
applied to high-dimensional multivariate data, encounter difficulties in learning long-term
dependencies. This is partly due to their reliance on large-weight matrices, which increase
the risk of overfitting and limit their ability to capture distant temporal relationships [37, 38].
Similarly, convolutional neural networks (CNNs), with their constrained kernel sizes, strug-
gle to grasp patterns across extended time lags, hindering their performance in longer-term
forecasts [39, 40].

Capturing spatiotemporal dynamics is indeed one of the fundamental challenges in time
series forecasting research. From a theoretical perspective, real-world time series data often
exhibits complex interdependencies that unfold across both spatial and temporal dimensions
[41].Whether modeling energy consumption patterns across interconnected grids [42], trans-
portation flows within urban infrastructure networks [43], or even ecological fluctuations
between interlinked habitats - there are nonlocal spatial correlations that evolve dynami-
cally over time. Traditional univariate and multivariate forecasting methodologies struggle
to adequately account for such spatiotemporal intricacies [44].

In this paper, we address all these limitations by employing a hybrid deep learning model
that fuses the spatial processing capabilities of Convolutional Neural Networks (CNNs) with
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the temporal modeling strengths of Recurrent Neural Networks (RNNs), creating a unified
architecture that includes CNN_LSTM, CNN_BILSTM, and CNN_GRU configurations.
Additionally, we enhance the model’s temporal reach by integrating Temporal Convolutional
Networks (TCNs) with RNNs, resulting in hybrid TCN_RNN models such as TCN_LSTM,
TCN_BILSTM, and TCN_GRU. These models are designed to effectively capture and ana-
lyze the spatiotemporal characteristics of multivariate time series data.

We will compare the effectiveness of our proposed hybrid model with leading deep
learning models, including LSTM, GRU, and BiLSTM networks. This comparison aims
to demonstrate the superiority of hybrid models in overcoming the challenges associated
with spatiotemporal data in multivariate time series forecasting.

The structure of this paper is as follows: Sect. 2 presents an overview of existing research
relevant to our work. Section3 provides a comprehensive background of deep learning archi-
tectures, essential for understanding our proposed method. Section4 presents our proposed
method, detailing the architecture and methodology employed.Sect. 5 describes the method-
ology employed in our study, including the dataset used, experimental design, and evaluation
metrics. Section6 presents the results obtained from our experiments, demonstrating the
effectiveness of our proposed method. Finally, Sect. 7 concludes the paper.

2 RelatedWork

The field of time series forecasting has witnessed significant advancements, with researchers
exploring the application of deep learning techniques to overcome the limitations of tradi-
tional statistical and machine learning approaches. This section provides an overview of the
related work conducted in this area, discussing the advancements achieved and proposed
solutions.
Statistical Models for Multivariate Time Series Statistical models, such as Vector Auto-
Regressive (VAR) [45, 46] and multivariate Exponential Smoothing (ES) [47, 48], have long
been used for time series analysis. These models excel in capturing linear interdependencies
among multiple time series variables. However, they are limited in their ability to model
non-linear relationships and can suffer from overparameterization when dealing with high-
dimensional data [49–51].
Traditional Machine Learning Models Traditional machine learning models like Support
Vector Machines (SVM) [52, 53] and k-Nearest Neighbors (kNN) have been adapted for
time series forecasting [54]. These models provide non-linear modeling capabilities but often
require extensive feature engineering and do not inherently capture sequential dependencies,
which can be particularly limiting for complex time series data [55, 56].
Traditional Deep Learning Models Deep learning models such as RNNs [11], LSTMs [57],
andGRUs [58] have addressed some of the limitations of earlier statistical andmachine learn-
ing approaches by effectively capturing long-term dependencies in sequential data. However,
they can be computationally expensive, difficult to train, and may still encounter vanishing
gradient issues in very long sequences [44].

3 Background of Deep Learning Architectures

This section presents a brief overview of the theory behind the selected deep learningmodels.
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3.1 Long Short-TermMemory (LSTM)

LSTM is introduced to resolve the problems caused by vanishing and exploding gradients in
RNNs [59]. It is recommended for long-term dependency relationships identified in network
traffic since chained memory blocks are used as short-term memory to remember previous
actions taken in time steps. Eachmemory block contains a memory cell as well as three gates:
an input gate (it ), an output gate (ot ), and a forget gate ( ft ).

First, the memory cell executes the forget gate ( ft ) to discard the information that was
unnecessary in the previous state (Ct−1), as shown in equation(1). This step aims to ensure
that the model is effective and scalable. Based on the obtained information, the input gate
(it ) contains the values that should be updated, as shown in equation (2). Additionally, the
activation function generates a vector of new candidate values (C̃t ). To update the state of
the cell, both the input gate value (it ) and the generated vector value are multiplied together.
In the next step, the value of the forget gate ( ft ) is multiplied by the value of the previous
cell’s state (Ct−1) to obtain the updated value for the old cell state, as shown in equation (3).
Finally, the output gate (ot ) is derived from the current cell state (Ct ), as shown in equation
(5).

ft = σ(W f · [ht−1, xt ] + b f ) (1)

it = σ(Wi · [ht−1, xt ] + bi ) (2)

C̃t = tanh(WC · [ht−1, xt ] + bC ) (3)

Ct = ft · Ct−1 + it · C̃t (4)

ot = σ(Wo · [ht−1, xt ] + bo) (5)

ht = ot · tanh(Ct ) (6)

Here, ht−1 represents the output from the previous time step. The weight matrices for the
input, output, and forget gates are denoted by Wi , Wo, and W f , respectively. The sigmoid
activation function is represented by σ , and tanh denotes the hyperbolic tangent function.
The bias terms for the input, output, and forget gates are bi , bo, and b f . The input at time t
is xt . Fig. 1 shows the architecture of the LSTM network.

3.2 Gated Recurrent Unit (GRU)

The GRU is considered less complex than the LSTM, which is its most significant advantage
as it requires less training time due to its simplified architecture [61]. The GRU consists of
twomain components: the update gate (ut ) and the reset gate (rt ). The update gate determines
which information is necessary to carry forward to the next stage (equation(7)), while the
reset gate decides how much of the past information to forget as (equation(8)). This process
is closely related to the current input and the previous hidden state.

ut = σ(wu · ht−1, xt ) (7)

rt = σ(wr · ht−1, xt ) (8)

ht = (1 − ut ) · ht−1 + ut · tanh(wr · ht−1, xt ) (9)

where wu and wr are the weights for the update and reset gates, respectively. Figure2
shows the architecture of the GRU network.
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Fig. 1 Architecture of LSTM network [60]

Fig. 2 Architecture of GRU network [62]

3.3 Bidirectional Long Short-termMemory (BiLSTM)

Bidirectional LSTMs (BiLSTMs) are a useful variant of the standard LSTM architecture that
is well-suited for modeling time series data. Unlike regular LSTMs which only can use past
context when processing sequential input, Bi-LSTMs contain two separate LSTM layers -
one layer that processes the input sequence forwards in time and another layer that processes
the sequence backwards in time [63].

This bidirectional design allows the BiLSTM to have access to both past and future context
at each time step, as the forward layer can look at future time steps while the backward layer
observes past time steps. The outputs from the two layers are then concatenated and fed into
the next part of the network. This additional contextual information provided by processing
sequences in both directions has been shown to improve Bi-LSTMs performance on tasks
involving sequential data like time series forecasting and natural language processing when
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Fig. 3 Architecture of Bi-LSTM network [65]

compared to standard LSTMs [64]. However, a potential limitation is that Bi-LSTMs require
more parameters than regular LSTMs due to the separate forward and backward layers,
which can increase the risk of overfitting on smaller datasets and require more computational
resources to train. Figure 3. illustrates the bidirectional LSTM.

3.4 Convolutional Neural Network (CNN)

CNNs were originally developed for computer vision tasks to process grid-like data such
as images [66]. The key aspects of a CNN include convolutional layers and pooling layers.
Convolutional layers apply linear convolution operations between the input and learned filters
(typically 3D arrays of weights) to extract local spatial features from the data [67]. The filters
slide across the width and height of the input volume to generate a feature map at each
position.

Pooling layers perform downsampling operations after convolutional layers to reduce
the spatial size of the data and control overfitting [68]. Common pooling methods are max
pooling, which outputs the maximum value from the region, and average pooling [5]. CNNs
stack multiple convolutional and pooling layers to learn increasingly abstract features. The
learned filters in a layer are adapted in subsequent layers to best model the input data.

The basic mathematical formulation of a 1D convolution operation is equation(10):

y[i] = (x ∗ w)[i] =
∞∑

k=−∞
x[k] · w[i − k] (10)

Where x is the input, w is the filter, ∗ denotes the convolution operation, and y is the
output feature map. For multivariate time series with n variables at each time step, the
input x would be a tensor of shape (number of samples, n, time steps). For time series
forecasting, 1D convolutions along the temporal dimension allow CNNs to learn features
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Fig. 4 Architecture of CNN [44]

directly from raw data without manual feature engineering [?]. CNNs have achieved state-
of-the-art performance across domains by leveraging these properties. Figure 4. illustrates
the bidirectional LSTM.

3.5 Temporal Convolutional Network(TCN)

Temporal Convolutional Networks (TCNs) are a type of neural network that is particularly
effective for time series prediction tasks. Unlike traditional recurrent neural networks (RNNs)
like LSTMs and GRUs, TCNs use dilated convolutions to capture long-term dependencies
in time series data [64].

The architecture of TCNs consists of multiple stacked convolutional layers. Each layer
applies a dilated convolution operation, which allows the model to consider information from
a wider range of previous time steps. The dilation rate increases exponentially with each
layer, enabling the model to capture long-range dependencies. Accordingly, a 1D dilated
convolutional operation on an element of a sequence can be defined as equation(11):

f (s) = (x ∗ d f )(s) =
k−1∑

i=0

f(i) · xs−d·i (11)

Where f : {0, . . . , k−1} → R is the convolution kernel, k is the kernel size, d is the dilation
factor, and s − d · i represents the data of the past. d increases as the network gets deeper.

TCNs also employ residual connections that directly pass values from input to output
of convolutional blocks, enabling very deep networks for capturing longer-term patterns
[69]. Skip connections further allow information to skip over blocks to preserve temporal
resolution

In a TCN, the output at time (t) is computed as a function of the input at time (t) and the
outputs at previous time steps. This property ensures that the model’s predictions at a given
time step are only influenced by past data, adhering to the causality principle typical of time
series data. Figure 5. illustrates the bidirectional LSTM.
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Fig. 5 Temporal Convolutional Network (TCN) architecture [64]

4 ProposedMethod

In this section, we present a proposal for hybrid TCN_RNNs and CNN_RNNs models,
specifically CNN_LSTM,CNN_BiLSTM,CNN_GRU, TCN_LSTM, TCN_BiLSTM, and
TCN_GRU.

4.1 Hybrid CNN_RNNs(LSTM,GRU or BiLSTM) Models

Our research proposes using hybrid CNN-RNN models, specifically CNN-LSTM, CNN-
BiLSTM, and CNN-GRU, to predict multivariate time series. These models combine the
strengths ofConvolutionalNeuralNetworks (CNNs) andRecurrentNeuralNetworks (RNNs)
to handle the high-dimensional and spatiotemporal aspects of multivariate time series data.

The architecture of these models typically consists of three main components: the con-
volutional layers, the recurrent layers, and the output layer. The convolutional layers extract
spatial features from the input data, while the recurrent layers capture the temporal depen-
dencies.

In the case of CNN-LSTM, the input data is first fed into the CNN layers, which perform
convolutional operations to extract relevant spatial features. The output of the CNN layers
is then passed to LSTM, which enables the model to capture long-term dependencies in
the temporal dimension. The LSTM layers process the sequential information and generate
hidden states passed through time. Finally, the output layer, typically composed of fully
connected layers, produces the predicted values for the multivariate time series. Figure6
illustrates a novel deep learning architecture that combines Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks has been proposed for advanced
time series analysis and forecasting. Additionally, substituting an LSTM layer with a GRU
or BiLSTM layer introduces a unique set of benefits.

Similarly, CNN-BiLSTM incorporates bidirectional LSTM, which processes the input
data in both forward and backward directions. This allows the model to capture temporal
dependencies from past to future and from future to past, enhancing its ability to learn
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Fig. 6 Architecture of hybrid
CNN-LSTM for time series
forecasting

complex patterns in the data. On the other hand, CNN-GRU models replace the LSTM with
gated recurrent units (GRUs). GRUs have a simplified architecture compared to LSTMs,
making them computationally more efficient while still capturing temporal dependencies
effectively.

In several ways, these hybrid models address the challenges of high dimensionality and
spatiotemporal dependencies in multivariate time series prediction. By leveraging the convo-
lutional layers, they can automatically extract relevant spatial features from high-dimensional
input data, reducing the dimensionality and focusing on the most informative aspects. Sec-
ondly, the recurrent layers, such asLSTMandGRU, enable themodels to capture the temporal
dependencies and patterns in the data across different time steps. Lastly, integrating bothCNN
and RNN components within the hybrid architecture ensures that the model can effectively
capture spatial and temporal correlations, leading to improved prediction performance.

4.2 Hybrid TCN_RNNs(LSTM,GRU or BiLSTM) Models

In our research paper, we introduce hybrid Temporal Convolutional Network (TCN)-RNN
models, such as TCN-LSTM, TCN-BiLSTM, and TCN-GRU, to tackle multivariate time
series forecasting. These models address the challenges of high dimensionality, spatiotempo-
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ral dependencies, and other complexities inherent inmultivariate time series. The architecture
of a hybrid TCN-RNN model combines the parallel computation benefits of TCNs with the
sequential data processing capabilities of RNNs. TCNs use causal convolutions, ensuring
that predictions at a given time step are influenced only by past data, preserving the temporal
order of events. This is achieved through dilated convolutions, which expand the receptive
field exponentially without increasing the parameters.

On top of the TCN architecture, we integrate RNNs, such as LSTM, BiLSTM, and GRU,
to capture both forward and backward temporal dependencies, further enriching the model’s
predictive capacity. The LSTM, for instance, includes gates that regulate the flow of informa-
tion. In Fig. 7, we can observe the overall structure of the hybrid TCN-LSTM architecture.
The input time series data is passed through the TCN layers responsible for capturing local
patterns and conducting temporal convolutions. Similarly, replacing the LSTM layer with a
GRU or BiLSTM layer offers a different set of advantages.

These hybrid TCN-RNN models effectively manage the high-dimensional nature of mul-
tivariate time series by capturing relevant features through the TCN layers and modeling
temporal sequences via RNNs. The spatiotemporal component is addressed by the TCN’s
ability to process multiple time steps simultaneously and by the RNN’s proficiency in captur-
ing temporal sequences, making the models suitable for forecasting tasks where both spatial
and temporal factors are critical.

5 Experiments

In the Experiments section, we describe the dataset used for evaluation, the experimental set-
ting, and the evaluation metric employed to assess the performance of our proposed method.

5.1 Dataset description

In our study, we employ two distinct datasets: one focusing on air quality and the other on
traffic volume control. The air quality dataset,1 which spans from March 2004 to February
2005, provides historical data on various air pollutants, including carbon monoxide (CO),
nitrogen dioxide (NO2), ozone (O3), and others. This dataset is derived from hourly averages
collected by a set of five metal oxide chemical sensors embedded in an Air Quality Chemical
Multisensor Device, positioned at road level in a significantly polluted area within an Italian
city. On the other hand, the traffic volume control dataset is designed to analyze and man-
age traffic flow, offering insights into the dynamics of vehicular movement and congestion
patterns. By leveraging these datasets, we aim to develop and evaluate models that can effec-
tively predict and control both air quality and traffic volume, contributing to environmental
sustainability and efficient urban planning.

The traffic volume dataset2 contains hourly Interstate 94 westbound traffic volumes for
(MN DoT ATR) station -301 from 2012 to 2018, roughly halfway between Minneapolis and
St Paul, Minnesota. The traffic volume is affected by hourly weather conditions and holidays.
A detailed description of the datasets is represented in Table 1. Traffic volume is our target
output to predict the traffic flow, and other data are treated as themodel’s input. These columns
dropped because min, Q1, Q2, and Q3 were all zero for rain and snow features.

1 https://archive.ics.uci.edu/dataset/360/air+quality
2 https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume
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Fig. 7 Architecture of hybrid TCN-LSTM for time series forecasting
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5.2 Data preprocessing

Data preprocessing plays a vital role in the overall effectiveness of deep learning algorithms.
In this experiment, specific steps have been taken to preprocess the data. Firstly, missing
values are addressed by replacing themwith themean value before and after themissing value
(known as the near mean approach). Outliers, which can disrupt the learning process, are also
identified and treated as missing values. When dealing with categorical data, deep learning
algorithms face challenges in effectively representing them. To overcome this, a technique
called “one-hot encoding” is employed. This method transforms categorical data with n
possible values into n indicator features, with only one active feature at a given time. In this
case, “one-hot encoding” is used for the categorical features of holiday, weather_main, and
weather_description. We perform normalization to ensure a fair comparison and appropriate
weighting of variables with different scales. This involves scaling the data to values between
0 and 1 [70]. Deep learning networks are susceptible to scaling, and the min-max scaler suits
these networks. The min-max scaler is shown in equation (12):

xscaled = x − xmin

xmax − xmin
(12)

Where x represents the dataset, and xscaledrepresents the normalized dataset.
To forecast traffic flow in the traffic volume dataset and true hourly averaged concentration

CO inmg/m3" inAirQuality for the next h time steps, a slidingwindow approach is employed
to transform the input time series data into input–output pairs. This is achieved by considering
a size windoww, where xt represents the time-series data, h denotes the forecasting horizon,
and f indicates the deep learning model established through training. The input–output pairs
can be represented as equation (13):

[xt+1 + xt+2, . . . , xt+h] = f (xt , xt−1, . . . , xt−w) (13)

5.3 Experimental Setting

This study aims to implement a hybrid deep learning model for multivariate time series
forecasting. For each model, 80% of the training data is selected for training, and 20% is
selected for validation. Fig. 8 illustrates the process of reshaping and splitting the dataset for
further analysis and model training.

The selection of hyperparameters plays a critical role in the performance of any deep
learning algorithm. After fine-tuning our forecasting model by using grid search to obtain the
best-performingmodel across thewhole dataset [71], we conducted amanual grid search over
a series of combinations to select the best hyper-parameters. We use the Adam optimization
algorithm to optimize the model parameters [72], which can adapt the learning rate. Table 2
outlines the hyperparameter search space for the deep learning models employed in this
research, detailing the range of parameters explored to optimize model performance.

Table 3delineates the optimal hyperparameters for the hybrid deep learningmodels applied
to our datasets, showcasing the configuration that yielded the best performance.
We propose Multi-Layer, Convolutional, and Recurrent Networks as basic building blocks
and then combine them into heterogeneous architectures with different variants, trained with
optimization strategies like drop_out = 0.2 and skip connections, early stopping, adaptive
learning rates, filters, and kernels of various sizes, between others. This study uses the ReLU
since it most effectively forecasts noisy non-stationary time series [73]. In addition, the ReLU
reduces training time, simplifying the model.
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Fig. 8 Data Reshape And Split

Table 2 Hyperparameter search space for deep learning models (grid search)

Model Hyperparameters

LSTM, BiLSTM, GRU Number of hidden units: [32, 64, 128, 256]

Dropout rate: [0.1, 0.2, 0.3, 0.4]

Number of layers: [1, 2, 3]

Learning rate: [0.001, 0.0001, 0.005,0.0005]

Number of Epochs:[32,64,128,256]

Number of Batch:[32,64,128,256]

CNN Number of Filters: [32, 64, 128, 256]

Kernel Size: [3, 5, 7, 9]

Pooling Size: [2, 3, 4, 5]

Dropout Rate: [0.1, 0.2, 0.3, 0.4]

Number of Layers: [1, 2, 3]

Learning Rate: [0.001, 0.0001, 0.005, 0.0005]

Number of Epochs:[32,64,128,256]

Number of Batch:[32,64,128,256]

TCN Number of filters: [32, 64, 128, 256]

Kernel size: [2, 4, 8]

Number of stacks: [2, 4, 6]

Dilations: [[1, 2, 4], [2, 4, 8], [4, 8, 16]]

Dropout rate: [0.1, 0.2, 0.3, 0.4]

Learning rate: [0.001, 0.0001, 0.005,0.0005]

Number of Epochs:[32,64,128,256]

Number of Batch:[32,64,128,256]
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5.3.1 Baseline Models

Multilayer Perceptron (MLP): MLP is a type of artificial neural network that consists of
multiple layers of interconnected nodes. It is commonly used for regression and classification
tasks, including time-series forecasting.MLP learns complex nonlinear relationships between
input and output variables by adjusting the weights and biases of the network during training.
MLP’s ability to capture intricate patterns and dependencies in the data [74].
Support Vector Regression (SVR): SVR is a machine learning algorithm that extends the
concept of support vector machines (SVM) to regression problems. It aims to find a function
that best fits the training data while minimizing the error andmaximizing the margin between
the data points. SVR is particularly effective when dealing with nonlinear relationships in
time-series data [75].
Vector Autoregression (VAR):VAR employs statistical modeling to examine and forecast the
interconnectedness among multiple time series variables. VAR models leverage the lagged
values of each variable as predictors to anticipate their future states [76].
Autoregressive Integrated Moving Average (ARIMA): The ARIMA model is a fundamental
statistical tool for time-series analysis that combines autoregressive, differencing, andmoving
average components. It is widely utilized in time-series forecasting to capture and model the
underlying patterns and trends within the data. ARIMA is particularly effective when dealing
with stationary time series data, where the mean and variance remain constant over time [77].
Seasonal Autoregressive Integrated Moving Average with eXogenous variables (SARIMAX):
SARIMAX builds upon the ARIMAmodel by integrating seasonal components and external
variables. It is particularly useful for time-series forecasting when the data exhibits seasonal
patterns and incorporates additional information (exogenous variables) to enhance prediction
accuracy [78].
Table 4 presents a structured overview of the hyperparameters for the baseline model,
including their names, descriptions, and default values where applicable.

5.4 EvaluationMetric

The evaluation of amodel’s performance is a critical aspect of assessing its effectiveness. Sev-
eral commonly employed evaluation metrics in the literature for time series models include
the Mean Absolute Error (MAE), Mean-Squared Error (MSE), and R-squared ( R2) [79].
Mean Squared Error (MSE): MSE measures the average squared difference between the
predicted values and the actual target values. Equation(14) Define MSE as:

1

n

n∑

i=1

(yi − ŷi )
2 (14)

where n is the number of data points, yi is the actual target value, and ŷi is the predicted
value.
Mean Absolute Error (MAE): MAE measures the average absolute difference between the
predicted values and the actual target values.Equation(15) define the MAE as:

1

n

n∑

i=1

|yi − ŷi | (15)

R-squared (R2): R2 measures the proportion of the variance in the target variable that is
predictable from the predictors. R2 ranges from 0 to 1, with higher values indicating a better
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Table 4 Hyperparameters of Baseline Models

Model Hyperparameters

MLP Number of hidden layers:3

Number of neurons per hidden layer:128,64,32

Activation function:Relu

Epochs:150

Batch_size:32

SVR Kernel type (RBF)

Regularization parameter (C=1.0)

Kernel coefficient (gamma= scale)

VAR Lag order (p)=2

ARIMA Order of AR component (p)=1

Order of I component (d)=1

Order of MA component (q)=1

SARIMAX Order of seasonal AR component (P)=1

Order of seasonal I component (D)=1

Order of seasonal MA component (Q)=1

Order of non-seasonal AR component (p)=1

Order of non-seasonal I component (d)=1

Order of non-seasonal MA component (q)=24

fit of the model to the data. Equation(16) defines the R2 as:

R2 = 1 −
∑N

i=1

(
yit − ŷt i

)2
∑N

i=1

(
yit − ȳit

)2 (16)

Mean Absolute Percentage Error (MAPE): MAPE measures the average percentage error
between the predicted values and the actual target values. Equation(17) defines the MAPE
as:

MAPE = 1

N

N∑

i=1

∣∣yit − ŷt i
∣∣

∣∣yti
∣∣ (17)

6 Results and Discussion

In this study, we comprehensively evaluated various deep learning models for time series
forecasting on two datasets: Traffic Volume and Air Quality. The models were assessed
using several evaluation metrics, including Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
R-squared (R2).
Table 5 presents the evaluation results for the different models, categorized into baseline
models, state-of-the-art neural networks, and our proposed models.
The baseline models, including Multilayer Perceptron (MLP),Support Vector Regression
(SVR),Vector Autoregression (VAR), Autoregressive IntegratedMoving Average (ARIMA),
and Seasonal Autoregressive Integrated Moving Average (SARIMAX), showed relatively
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Fig. 9 Comparison of forecasting values and actual values for traffic flow (Timesteps =24)

poor performance on both datasets. For Traffic Volume, they had high MSE, RMSE, MAE,
and MAPE values, and negative R2 values, indicating that they did not fit the data well.
Similarly, for Air Quality, they had high MSE, RMSE, MAE, and MAPE values, and low
R2 values, suggesting that they struggled to capture the underlying patterns in the data.
Among the baseline models, SARIMAX achieved the best performance for the Air Quality
dataset, with an MSE of 1.5, RMSE of 1.2, MAE of 0.9, MAPE of 113, and an R2 of 0.2.In
comparison, the MLP and SVR models demonstrated better performance on both datasets.
MLP achieved an MSE of 0.0125, RMSE of 0.0751, MAE of 0.111, and an R2 of 0.80 for
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Fig. 10 Comparison of forecasting values and actual values for Air Quality (Timesteps =24)

Traffic Volume, and an MSE of 0.0059, RMSE of 0.065, MAE of 0.076, and an R2 of 0.74
for Air Quality. SVR, on the other hand, had an MSE of 38.4, RMSE of 8, MAE of 9.02, and
R2 of 0.32 for Traffic Volume, and an MSE of 24.5, RMSE of 4.9, MAE of 4.02, and an R2
of 0.30 for Air Quality.

The state-of-the-art models, including Long Short-Term Memory (LSTM), Gated Recur-
rent Unit (GRU), Bidirectional LSTM (BiLSTM), and Temporal Convolutional Network
(TCN), showed significant improvements over the baseline models. For Traffic Volume, they
had lowerMSE,RMSE,MAE, andMAPEvalues, and higher R2 values, indicating better per-
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formance. For Air Quality, they also showed improvements in all metrics.TCN demonstrated
the highest performance for both datasets. For the Traffic Volume dataset, TCN achieved an
MSE of 0.0023, RMSE of 0.047, MAE of 0.36, MAPE of 188, and an R2 of 0.950. Similarly,
for the Air Quality dataset, TCN obtained an MSE of 0.0018, RMSE of 0.0424, MAE of
0.0299, MAPE of 31, and an R2 of 0.93.
Our proposed models, which combine different architectures, showed notable improve-
ments in forecasting performance. For the Traffic Volume dataset, the CNN-BiLSTMmodel
achieved the lowest MSE (0.0020), RMSE (0.045), and MAE (0.030), along with an R2 of
0.960. The TCN-BiLSTMmodel also performed exceptionally well, with anMSE of 0.0018,
RMSE of 0.042, MAE of 0.022, MAPE of 178, and the highest R2 of 0.976.
For the Air Quality dataset, the CNN-LSTM model achieved the lowest MSE of 0.0012,
while the TCN-BiLSTM model outperformed all others with an RMSE of 0.422, MAE of
0.027, MAPE of 29, and the highest R2 of 0.94.
Figs. 9 and 10, show the comparison of forecasting values and actual values for Traffic Flow
and Air Quality respectively:
Figure 9: Comparison of forecasting values and actual values for Traffic Flow (Timesteps
= 24). The sub-figures show the actual vs. predicted values for each state-of-the-art model
(LSTM, GRU, BiLSTM, TCN) and our proposed models (CNN-LSTM, CNN-BiLSTM,
CNN-GRU, TCN-LSTM, TCN-BiLSTM, TCN-GRU).
The TCN-BiLSTM model achieves the closest match between actual and predicted values,
demonstrating its superior performance for Traffic Flow forecasting. The CNN-BiLSTM and
TCN-LSTMmodels also show good accuracy, while the LSTM, GRU, and BiLSTMmodels
have larger forecasting errors.
Figure 10: Comparison of forecasting values and actual values for Air Quality (Timesteps =
24).
The TCN-BiLSTM model again achieves the closest match between actual and predicted
values, demonstrating its effectiveness for Air Quality forecasting. The CNN-BiLSTM and
TCN-LSTMmodels also show good accuracy, while the LSTM, GRU, and BiLSTMmodels
have larger forecasting errors.
Overall, the visual comparisons in Fig. 9 and 10 confirm the quantitative results from Table 5.
The TCN-BiLSTM model consistently achieves the closest match between actual and pre-
dicted values across both datasets. The CNN-BiLSTM and TCN-LSTM models also show
promising performance. These findings provide further validation of the effectiveness of the
proposed hybrid CNN-RNN and TCN-RNN models for multivariate time series forecasting.
The superior performance of our proposed hybrid models can be attributed to their ability
to effectively capture both spatial and temporal dependencies in the multivariate time series
data. By combining convolutional and recurrent modules, these architectures can extract
relevant features and dynamics, leading to more accurate forecasting results.

7 Conclusion

In this paper, we comprehensively evaluated various deep learning models for multivariate
time series forecastingonTrafficVolumeandAirQuality datasets.Our proposedhybridCNN-
RNN and TCN-RNN models significantly outperformed both baseline and state-of-the-art
models.These results highlight the effectiveness of combining convolutional and recurrent
modules for multivariate time series forecasting. The hybridmodels were able to capture both
spatial and temporal dependencies, leading to more accurate predictions. The TCN-BiLSTM
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model achieved the best overall performance, with the lowest error and highest R2 values for
both datasets. The CNN-BiLSTM and TCN-LSTM models also showed promising results.
The hybridmodels presented in our paper have demonstrated an outstanding ability to address
someof the traditional challenges facedbyothermodels in time series forecasting. These chal-
lenges include capturing complex non-linear patterns, dealingwith noisy data, and accounting
for the seasonality and trend components inherent in many time series datasets.
In essence, these hybrid models combine the best of both worlds-the feature extraction capa-
bilities of CNNs and TCNs and the sequential data processing strengths of RNNs. This results
in a more robust and accurate forecasting model that can outperform models relying on a
single approach. As evidenced by our results,the hybrid models have consistently achieved
lower error rates and higher R2 values, signifying their superior predictive performance and
generalization capabilities.While our proposed hybridmodels have shown promising results,
there are several avenues for future research to further improve the accuracy and efficiency of
time series forecasting. Firstly, we plan to explore the application of Transformer-basedmod-
els, which have recently shown great success in natural language processing and computer
vision tasks. By leveraging the self-attention mechanism, Transformer models can poten-
tially capture more complex dependencies in multivariate time series data, leading to even
more accurate forecasting results. Secondly, our objective is to investigate the feasibility of
real-time time series forecasting using our proposed models. By developing efficient and
scalable architectures, we can enable real-time forecasting applications in various domains.
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